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We demonstrate the possibility of a unified weak-electromagnetic gauge scheme in which the
suppression of strangenesswhanging weak amplitudes arises by spontaneous breakdown of an SU(3)
symmetry.

The construction of gauge-type models' to ex-
plain the rich and varied structure of hadron weak
reactions is an exciting task and has consequently
attracted much attention. Most models have con-
tained the following two features:

(a) acceptance of the Cabibbo' rotation as an
initially present and hence unexplained effect,

(b) the classification of the fundamental hadrons
according to structures different from the usual
SU(3}which has been so successful in strong-inter-
action dynamics [of course these are related in
that (a) tends to imply (b)] .

Here we point out that a previously given' SU(3)
x U(1) gauge model can be modified so as to avoid
having to assume (a) and (b). Many variations on
the present scheme can also be imagined.

The fundamental hadron fields are considered to
include the left-handed usual quark triplet,

lets. In (2), r~~=r,'„=0
Our gauge symmet:ry group will involve a U(l)

in addition to the SU(3) which acts on the above
triplets. The nine vector gauge fields are

octet: (W, },with (W', ) =0
singlet: D (3)

F = (,')"'(w-')-

H„= (1/4 )[(w,') -(w,')„] .
(4)

The fields I and D will mix to give the photon
A and a heavy neutral meson Z:

It is convenient to call the U-spin singlet member
of the octet I" and the uncharged U-spin triplet
member H; specifically

while the two lepton triplets are

Vo Vp

(I2+r, )l e I, l(I+r, )l u

ke 1 (p, 3

Note that a (very) heavy electron and a (very)
heavy muon are introduced for symmetry with the
hadrons. All right-handed objects are taken to be
singlets with respect to an SU(3) symmetry group.
Other quark-triplet schemes can be similarly
accommodated. To emphasize the general fea-
tures of the model we define the left- and right-
handed hadron currents

(j')', =fe r. (I+r,)e. ,

(j')',.=is&r (I-r,)e.

and the analogous lepton currents

I', =fgr. (1+r,)g. +ix r. (1+r,)x. ,

'.„r= V,fr„( rI, ) g. + iX,r.(I-r,) X. ,

where $, and y are the electron and muon trip-

where Q is a mixing angle unrelated to the Cabibbo
angle. The (matter current)x (gauge field) part
of the interaction Lagrangian density is

L= g[l', + (j'),„]W;
3 2 3 3-g'[I', + I', „+ I,'„+, r' + , r', ——

-(j"}X.+R(i ")2.+2(j')' ]D.+"., (6)

where g and g' are given by

g= ~, g = (q) gcotg .

l e l is the magnitude of the electric charge, while
(6) and (7) correspond to the unique Yang-Mills
scheme which [with the mixing of (5)] leads to the
ordinar y electromagnetic interaction. The terms
multiplying g are independent of the charge assign-
ments of the fundamental triplets, while the terms
multiplying g' depend upon them.

As usual we take the observed weak interactions
to result mainly from the exchange of heavy gauge
bosons between two currents. Thus the resulting
pattern of weak amplitudes as well as the sym-
metry structure of the theory depends on the gauge
meson mass matrix. We arrange the mass terms

1769



1770 J. SCHECHTER AND M. SINGER

in the Lagrangian density to include some mixing
between M =0 and ~hS ~=1 charged bosons, W',

and W', . The simPlest form is

where m and P are positive constants. This form
is diagonalized by defining the physical charged
bosons through

1
W,„=—(-W„'+ W~),

with squared masses

m2( W) =m-p,

m'(W') =m+P.

Reference to (6) shows that the effective (second-
order} Lagrangian density for the usual weak inter-
actions is

L = ~ (1',„12„+[(j ')',~ l~~ + H.c.]

+r[(j')',„l' +(j')',„(j'),' +H.c.]j,

where the Fermi constant G is expressed as

fects. All of these satisfy AS =0 because the
gauge meson W,'does not mix with any others.
For ev, and ev„scattering the formulas are given
in (2.20) of Ref. 3, except that we must replace
m '(W', ) by the average of m '(W) and m '(W').
For the v+ hadron -v+ hadron reactions of recent
interest, we have the simple result

2

L,ff 2 2(z) iv y„(1+y,)vsin Qm Z

x(-cos2$ j„' + jg),
where j~ is the hadron electromagnetic current
and j~™is obtained by replacing y by y y, in j~.

Furthermore (6}contains terms which describe
the interactions of the heavy leptons.

To implement the spontaneous-breakdown mech-
anism we may introduce a set of auxiliary scalar
fields whose nonvanishing vacuum expectation
values result in nonzero masses for the gauge me-
sons. Achieving an arbitrary vector-meson mass
matrix in this way is a nontrivial problem. ' For
the present case the simplest solution is to add an
octet (Q, with P,' = 0) and a complex sextet (f, ~

~f„). We thus include in the Lagrangian density
the following SU(3)XU(1)-invariant forms:

--,' s)„P~ s„pf -(a)„f~)~m„f~,
where the gauge-covariant derivatives are

G g2 1 1
v 2 2 m'(W) m' (W') (12} ~„f~ = s„f~ 2ig'Dp~- (16)

and the strangeness suppression factor r (=&}is
given by

p m'( W')-m'( W)

m m2( W') +m ( W)
'

From (7), (12), and (13) we obtain

e2' w)= 6G(1+r)cos'P '

(13)

(14}

which establishes a lower bound for the lighter of
the two charged bosons m (W) &38.6 GeV. All in
all, (11}is the same as the Cabibbo scheme ex-
cept that the 4S =0 sernileptonic amplitudes4 have
a relative strength 1 instead of cos8~= 0.98, 6}~

being the Cabibbo angle. While the additional 2'g&

suppression' has some experimental plausibility,
it is a rather small effect and does involve the
difficult estimate of electromagnetic corrections
in addition to high-accuracy experiments. Con-
sidering the present state of flux of weak-inter-
action theory, it seems worthwhile to keep an
open mind on this question. '

In addition to (11), the basic interaction (6)
gives rise in second order to neutral-current ef-

-»g(W'I pfcs+ W Lvfc. }~

The vector-meson mass terms to lowest order
are obtained by setting Pf = ( Q~ ), and f~ = (f~),
in (15) and (16) and keeping terms bilinear in
W', ~ and D~. We choose'

(f,g, = (f„),=K/&2,

& e,').= -2 &4:).= -2 &e.'&.= C,

Q,'), =K,

(17)

where K and C are two positive constants. The
others (except for complex conjugates) are taken
to be zero. The gauge-field mass terms in L
then become

g(8K + 9C~)(W-~~W~~+ W~~W~~)

+ 12g'C Ig W~~W~~+ H.c.)
-16g2K 2WS„W~

16g K H~H~-4K [g-'D -g(—)'~ F ] (18)

The choice (17) guarantees that no ( b,S
~
=2 terms

appear in (18). From (18) we may solve for all
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the masses in terms of m'(W) and r [see (13)].
The result is

m2(W') = mm(W),
1+y

m'(A) =0,
(19}

m2(H) =6sin'Qm (Z)=2m (W,),
where Q is given in (14). The a sign corresponds
to the two possibilities in K/C = (3/4r)[1 + (1
—2r')"s]. Lower bounds are obtained on these
masses from (14) and (19):

m(W') &50.0 GeV,

m(W,') a60.9 (10.8}GeV,

m(H)&86. 2 (21.6) GeV,

m(Z}a70.5 (20.0) GeV,

where the values in parentheses correspond to
taking the minus sign in (19).

Thus the main features have been outlined for a

rather straightforward type of weak-electromag-
netic gauge scheme which is based on the usual
(left-handed) SU(3) symmetry group of the had-
rons. As a bonus the suppression of ) b8

~

= 1

amplitudes occurs by a spontaneous-breakdown
mechanism. Note that this suppression mechanism
does not affect the validity of Gell-Mann's SU(3)
xSU(3) current algebra. Hence it differs essential-
ly from early attempts to explain the suppres-
sion as a strong SU(3) violation [of order m(s)/
m(K)] of the strangeness-changing current's ma-
trix elements.

We conclude with a brief discussion of some
technical points. The present theory should be
renormaljzableio modulo anomalies xx Note that
renormalizable Yukawa couplings between the
auxiliary scalar fields (sextet and octet) and the
basic fermions of the theory cannot be constructed.
Hence if we wish the fermion masses to already
arise in lowest order, we may add, for example,
three scalar triplets to the theory. This would
modify the gauge meson masses and mixings in a
nonessential way. Further results on this model
will be reported elsewhere.

*Work supported by the U. S. Atomic Energy Com~ission.
~See, for example, H. Georgi and S. L. Glashow, Phys.

Rev. Lett. 28, 1494 (1972); J. Prentki and B. Zumino,
Nucl. Phys. B47, 99 (1972); B. W. Lee, J. R. Primack,
and S. B. Treiman, Phys. Rev. D 7, 510 (1973);
C. Itoh, T. Minamikawa, K. Miura, and T. Watanabe,
Asia Univ. (Tokyo) report (unpublished); J. Pati and
A. Salam, Phys. Rev. D 8, 1240 (1973); A. Pais, iMd.

8, 625 (1973); I. Bars, M. Halpern, andM. Yoshimura,
@id. 7, 1233 (1973); T. P. Cheng, iMd. 8, 496 (1973);
N. Chang, and E. Ma, @id. 7, 3808 (1973); T. C. Yang,
Nucl. Phys. B58, 283 (1973); M. A. B. Beg and A. Zee,
Phys. Rev. Lett. 30, 675 (1973).

2N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
3J. Schechter and Y. Ueda, Phys. Rev. D 8, 484 (1973).
4A different model leading to this result has been pro-

posed by J. Schwinger, Phys. Rev. D 8, 960 (1973).
~Discussion is given by R. Marshak, Riazuddin, and

C. Ryan, Theory of Weak Interactions in Particle
Physics'(Wiley, New York, 1969).

6Also, in unified weak-electromagnetic gauge schemes,
we expect additional corrections to the "current-
current" weak interaction.

~For example, the model of Ref. 3 appears to require,
on the basis of unpublished work done in collaboration
with A. P. Balachandran and Y. Ueda, an extremely

large number of auxiliary scalar particles. Some
general discussion of the problem has been given by
J. Lieberman, Phys. Rev. D 8, 2545 (1973).

The simplest quartic (i.e., renormalizable) polynomial
function whose stable minimum occurs when (17) is
satisfied is

1 2 1
V=-Ag I( —~2 (I)) +A2 I2 — ~ ~ (I2)

where A& and A2 are real constants and I& = (f,~)*f,~,
I2= Q~ Pg. However, this choice leads to some pseudo-
Goldstone bosons or Higgs particles which will only
receive mass beyond zeroth order. See S. Weinberg,
Phys. Rev. D 7, 2887 (1973); 8, 605 (1973).

9These attempts appear to contradict the Adler-Weis-
berger-type sum rules for

~
nS~ ~ 1 axial-vector

currents which follow from SU(3) &&SU(3) algebra. A
review of the situation is given in Ref. 5.
G. 't Hooft, Nucl. Phys. B35, 167 (1971); S. Weinberg,
Phys. Rev. Lett. 27, 1688 (1971); B. W. Lee and
J. Zinn-Justin, Phys. Rev. D 5, 3121 (1972).

~~C. Bouchiat, J. Iliopoulos, and P. Meyer, Phys. Lett.
38B, 519 (1972); H. Georgi and S. L. Glashow, Phys.
Rev. D 6, 429 (1972); D. Gross and R. Jackiw, ibid.
6, 477 (1972).


