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Operators are introduced, which make up the kernels of all N-body Faddeev-type scattering
equations. The hierarchy of these operators, and the equations they satisfy, are shown to
provide the minimal description of all Faddeev-type formalisms. By means of this hier-
archy, the N-body formalisms proposed by Yakubovskii and by Alt, Grassberger, and
Sandhas are shown to be equivalent. The four-body case is treated in some detail.

I. INTRODUCTION

After the pioneering work of Faddeev on the
formulation and solution of the three-body prob-
lem, ' several attempts have been made to obtain
viable systems of equations for N particles. Among
these, two approaches are particulaxly interesting,
namely the ones presented by Yakubovskii' and by
Alt, Grassberger, and Sandhas' (AQS).

The method of Yakubovskii relies on a powerful
index notation to handle the channel structure
arising from the separation of N particles into
subgroups. It can be understood as a repeated
application of the Faddeev procedure of removing
from the kernel of the N-body Lippmann-Schwinger
(LS) equations the pieces representing discon-
nected subprocesses.

The AGS approach is based on a scheme for
writing down three-body relations as matrix ver-
sions of two-body relations; in particular the
three-body Faddeev equations correspond to ma-
trix Lippmann-Schwinger -type equations. For the
four-body case, a matrix version of the Faddeev
procedure is applied to such LS equations, and the
resulting Faddeev-type matrix equations are again
written in two-body-like form. In this way, an
inductive prescription is established for the gen-
eration of matrices of operators for the N-body
case; their equations are obtained by simply writ-
ing down the N-body matrix version of the cor-
responding two-body relations.

In this paper we show that these two approaches
are equivalent, but that neither of them provides
the most concise description of the hierarchy of
N-body equations with Faddeev-type kernels. By

generalizing to the N-body case an alternative
formalism based on the th."ee-body K operators,
we obtain a hierarchy of equations for precisely
the operators of the kernels, and we identify these
as the minimal hierarchy for the N-body problem.

A detailed description of the Faddeev-Yakubov-
skii (FY) procedure for %=4 is given in Sec. II,
wher e, in addition to reproducing the Yakubovskii'
results, we obtain symmetric four-body M oper-
ators that form a more natural generalj. zation of
the three-body FaddeevM8 's than the operators
obtained by Yakubovskii.

The AGS formalism for N=4 is outlined in Sec.
III; M operators are also obtained within this
scheme.

In Sec. IV, the three-body K operators and their
equations are generalized to the four-body case.
In order to see the relevance of the K operators,
we show that all the four-body equations obtained
in Secs. II to IV have the same kernel, namely
maximal' subsystem K operators. In other words,
just as the two-body t operators make up the three
body Faddeev kernel, the (3+I)- and (2+2)-sub-
system K operators makeup the four-body Faddeev-
type kernel. Since they produce four-body equa-
tions with identical kernels, we conclude that the
AGS and FY four-body formalisms are equivalent.
We end Sec. IV with a detailed explanation of the
minimal characteristics of the N-body K-operator
hierarchy and its relation to other hierarchies.

The N-body scattering problem is treated in
Sec. V. The K-operator hjerarchy is constructed
within both the AGS and FY formalisms, thereby
provi. ng that the N-body equations of both formal-
isms have identical kernels. The equivalence of
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II. THE FADDEEV FORMALISM

In two-body scattering theory, the basic equation
for the transition operator t in terms of the poten-
tial v and the resolvent operator g, = (h, —z) ' is
the Lippmann-Schwinger equation

t=v —vg, t=v —tgov . (2.1)

As is well known, by removing the two-body
disconnected piece of the kernel in the three-body
version of the first of Eqs. (2.1), Faddeev obtains
operators T with equations

T = t8 —tsG» Q 58' "T (2.2)

these two formalisms is thus established for an
arbitrary number of particles.

Finally, in Sec. VI, the wave-function formula-
tion of the N-body problem is discussed, and it
is shown that the N-body K operators yield the
Faddeev-type components of the full wave function
out of the initial-state components. Their Faddeev-
type equations have as a driving term the com-
ponents of the initial-state wave function, and have,
as do all N-body equations, the maximal subsys-
tem K operators as elements of the kernel.

particles can be separated in two groups,

(123)(4), (421)(3), (341)(2), (432)(1),

(12)(34), (13)(24), (14)(23) .
(2.5)

Ys» ———tsGDQ 5syMy» r

yco
(2.6)

where y in the sum is now restricted to 0', and it
is understood that P co. The superscript dot
emphasizes the asymmetric character of Y&' as
will be seen below. From (2.4) we see that

They define channels in the four-body system when

it is understood that particles within the same
group can interact, but no interaction exists be-
tween particles belonging to different groups. The
indices n, P, and y label the six ways in which
four particles can be split into three groups
( )( )( ), i.e., they label interacting pairs as be-
fore. Pair indices will usually appear as subor-
dinate indices, in the sense that they label inter-
acting pairs within a certain channel of the type o.
In such a case we write Pc o.

When applying the Faddeev procedure at the
four-body level, it is convenient to exclude the
two-body disconnected pieces in (2.4) from the
definition of four-body operators; we thus define

and

8 8T = vs — TGOV, (2.3}
Q Y8'» ——Ms~»l —68»t8,
a3B

(2.7)

where 58& =1 —6zz. Equation (2.2) is a mathemat-
ically satisfactory three-body equation for BT,
but (2.3} is not. However, by applying the same
procedure again to (2.3), Faddeev obtains equa-
tions for operators' M8~ that are symmetric in

the sense that the counterparts of both (2.2} and

(2.3) have connected kernels:

M8»= 68» f8 —fsGp Q 58yMy»
y

Ms»=58»ts —+5yMg»yGpt».
y

(2 4)

In (2.4} the three-body indices a, P, y label pairs
of particles and run over the values 12,13,23.

If we now turn to the four-body problem —still
with pairwise potentials —we can interpret (2.4)
as being equations for a four-body operator M8',
where now P and n run over all possible values
12, 13,23, 14, 24, 34. So interpreted, (2.4) does
not form a satisfactory set of four-body equations,
since the kernel contains three-body disconnected
pieces. This problem is solved by generalizing
to the four-body level the basic Faddeev procedure
of removing disconnected parts from the kernels.

To do so, we introduce four-body indices c,7,p,
which label the seven different ways in which four

where the sum in (2.7) runs over all values of o
in (2.5) such that p co.

Continuing the generalization of the Faddeev
procedure, we now shift the Yy' piece of My~~ in
(2.6) to the left-hand side, and multiply by the
operator

~rrr Y~rB™8r)yc fy

where M8& satisfies (2.4} with u, P, y all restricted
to o. For o of the type ( ~ ~ ~ )( ~ ), MB is the famil-
iar three-body Faddeev operator. For o of the

type ( )( ), Ms„ is a "2+2"operator, discussed
for instance in Ref. 6. We thus obtain the equation

Ys = W8„6(aC &)

-g(E ~, „»;,)G.E~"r„. (28,).,
yc a yacc & p&y

where Ws = M& —51 ta is the connected part of
Mpf„, and 5(o. Co) indicates that the driving term
in (2.8) is nonzero only when ac o. Ys'» also sat-
isfies the relation

Y~» ———tsG»t»58» 6(uC o) -$ 5),r» Fg')r Got» .
y

(2.9)
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In addition to F&' it is sometimes useful to de-
fine four-body operators that do include two-body
disconnected pieces:

Fs~= P~~+ 5 58„ta . (2.10)

The operators P&~ are the ones obtained by
Yakubovskii. ' They satisfy an equation similar
to (2.8) but with 5"Ms„as driving term.

From (2.8) and (2.9) we see that I s„—and also
P&' —has an asymmetric character, as was the
case for the sT in (2.2) and (2.3). In other words,
only (2.8) is satisfactory as a four-body equation.

As in the three-body case, we proceed to con-
struct symmetric four-body operators M8„' out
of F& by an additional splitting from the opposite
side:

Mg~ 5 58~tgG0t~

Us~= '5s-„GO ' —Q Esca tyGOUy~,
y

Us„= —~s„GO ' —Q 5y„UsyGoty .
y

(3.1)

If matrices of operators T, V, and G0 are defined
according to'

T ={User} ~

"={-()saGO '}
Go={-()s GotsGO}

(3.2)

(3.1) can be recast into a form similar to (2.1),

III. THE AGS FORMALISM

Consider now the Faddeev-type equations for the
AGS three-body transition operators U8~,

with

+gaG0 58yMyyr 5yr~ G0g~,
yCO y Cv

T=V -VGo T=V- TG0V . (3.3)

Qther three-body operator relations can also be
written as matrix versions of familiar two-body
relations. For instance, Eqs. (2.4) take the form

(2.12)

Equation (2.11) clearly displays the symmetric
character of Ms'. These operators satisfy the
equations

I( 5 lv( g(Q lfy yMsy)G
yCO yrC O

)(g 7I rm"
70t

pDy

G = Go —Goy G=G0-G V G0,

where

G ={-G,us„G,}.
Moreover, M6~ is related to U&„ through

GV=G T,
VG=TG, ,

T=V-VGV .

(3.4)

(3.5)

(3.6)

M~-5 5" ~ ~ PM PG

y CO p:3y

X $y„r Myr . 2.13
y C7

%'e thus see that from a one-sided Faddeev pro-
cedure Yakubovskii obtains operators with an
asymmetric character, and that it is easy to pro-
ceed in a way that yields symmetric four-body
operators more in analogy with the three-body
case. %e finally nc~ that

~OT M OT' gOT' ~OSa Sa 8a

is the four-body connected part of M&~, and that,
if T stands for the full four-body transition op-
erator,

The AGS matrix notation clearly displays the
structural similarity of the two- and three-body
scatter ing equations.

Using a matrix version of the Faddeev procedure,
one can now construct matrix Faddeev equations
for the four-body case. However, the resulting
equations can also be obtained by direct analogy,

T(4) y(4) y(4) G(4) T(4) = V(4 —T 4 G( ) V(4)
0 0

G(4) G(4) G(4) V(4) G(4) G(4) G(4) V(4) G(4)
0 6 0 0

using (3.2) to guide the definition of appropriate
four-body matrices of operators V ' and. G04,

v(4) { d&& 0 &}

O, T gCO
nC&

(2.14) ={'5 '
()s„(GotsGO) '},

G(4) { par G Ta Gj, (3.8)
i.e., the six transition amplitudes corresponding
to two-body disconnected processes are not pres-
ent in M6„'.

={—() GotsGOUs„Got„G j
={-()"G, Ws„Gj .
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I(4) {Tat j {Uar j
G'4'={G")={-GM,"Gj,

(3.9)

we obtain from (3.7) more explicit four-body equa-
tions,

In fact, it can be shown that all four-body equa-
tions within the AGS formalism can be obtained
by analogy. %e shall always do so in the present
work. Thesuperscript(4) in(3.7), etc. indicatesthat
the matrices so labeled involve four-body oper-
ators. [A similar superscript (3) in (3.2), etc.,
has been suppressed, so it is understood that all
matrices without superscript in this section and
the next involve three-body operators. ]

With the notation

IV. THE K-OPERATOR FORMALISM7

Consider now the three-body operators K8 of
Ref. 4; they are intermediate between the oper-
atorsM8 and U8, in the sense that

Ksa = Q ~y„Msy,
y

Usa= —5p„Gp '+Q 5pyKy„,
y

(4.1)

and they satisfy Faddeev equations4

ing ones introduced by AQS in Ref. 3. The reasons
for the present choice will be explained in the next
section.

or

Q'5aP IoG IP
P

Gcn ~a7'G To G G To ~ goP GP7'
0 0 0

P

(3.10)
Ksa =58 t8a—t8 Gag 58yKya ~

y

Ksa = 6 p tp aQ 5y&Kp y Gpty
y

(4 2)

U8 =5 "5s„(GptsGp) '

+ Q Q 5 Ugy G t pGyp Uy&
p&8 ÃP

We now incorporate these operators into the AGS
scheme. Defining a matrix of operators N={N8„)
={GpK8 }and using (3.2), we can write (4.1}and

(4.2) in matrix form as

(3.11)

M8„' ——5"Ws„+t8Gp Q UsyGp Q 5 Mya,
y+0

N=G V=G~ T,
I =V (1-N),
N =Gp V (1 —N) = (1 —N) Gp V .

(4 3)

and similarly for the remaining equations in (3.7).
The operators UPS

y
in (3.11) can be obtained from

(3.1}with a, P, y all restricted to p. For p of
the type ( ~ ~ ~ )( ~ ), U8Py is the familiar three-body
AOS operator. As in the previous section, the
compatibility conditions between four- and three-
body indices must be taken into account when car-
rying out the double sums in (3.11).

The interpretation of the first of Eqs. (3.11) as
an operator relation in the four-body Hilbert
space is made dubious by the presence of the term
(Gpts G,) arising from the prescription (3.8}for
V '. However, if we formally rewrite (3.11) as
an equation for the difference

UB„—5 68„(GptaGp) ',

From (4.3) it can be seen that N is the matrix of
three-body operators that corresponds to the two-
body operator n=g0 t gv.

Proceeding as in the previous section, we can
obtain the matrix of four-body operators N ' by
generalizing (4.3). We define

N'" ={N")={G,K8„'), (4.4}

where a factor G0 has been made explicit, just as
was done for Mg„' in (3.3). Then the first of the
four -body equations,

N =Gp V (1 —N) =(1 —N) G V

(4.5)

becomes

this problem disappears. Furthermore, U8' is
eventually to be evaluated between Faddeev-type
components p~'~ of the initial and final states (y),
and inthat case the meaning of (G,ts G,) ' is clear:
Indeed, since P~~~ = —Gpv„p~'~ and pt'~ =Q„«p~„'~,
we have the on-energy-shell relation

or

N
a~ -pa~ Na —N' +pap N

p~

P

K"=5"K~ -~Ko G ~B~PK"
8n 8n ~ 8y 0 ~ yn ~

y P

(4.6}

(4.7)

(G t G ) (y~„)=—G )y~ ~).

The four-body M operators in (3.9} and the sec-
ond equation in (3.11) differ from the correspond-

With the above procedure we obtain four-body op-
erators that correspond to the three-body oper-
ators K8n. Alternatively, by directly defining
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pDn y& p

(4.8)

the same operators K&„' can be obtained within the
FY formalism. In this case we recover Eq. (4.'I)
from the Faddeev-Yakubovskii equations for Ys'„
in Sec. II.

With the aid of (4.1) and the relation Ks
= —ts G,U~, we now realize that the kernels of
the four-body equations for the M operators of
Secs. H and III are nothing but K()„operators (or
their adjoints). For example, the first of Eqs.
(2.13) and the second of Eqs. (3.11) both become

K operators, with no additional input. This fea-
ture follows from the fact that the driving term
of the K-operator equations is identical to the
kernel, and should be compared with the situation
for other P-body operators, such as the U oper-
ators. There, in order to construct the kernel,
it is necessary to evaluate products of U operators
belonging to all subsystems. For example, the
kernel in the five-body U-operator equations is
simply the adjoint of (4+1)- and (3+2)-subsystem
K operators; however, when rewritten in terms
of subsystem U operators, it becomes

Ms"= ()'"ll'() —Q &SqG, Q 5'~My~' . (4.9)
y&a p&)'

Vfe thus see that by defining a symmetric four-
body operator within the Faddeev formalism, and
by a straightforward definition of the elements of
the matrix 6 ~+ within the AGS scheme, we obtain
identical M operators in both formalisms. In addi-
tion, we note that Eq. (4.9) for M()„' and Eq. (4.7)
for Ks' have identical kernels. This is in fact
the case for all four-body equations considered
here, as is particularly evident from the matrix
formulation, where 6~0 @~4, or possibly V~4~00~ ~,

is the only kernel that occurs. That is, just as
G, V =(Go ts 5() }is the Faddeev kernel 'in the
three-body case, 6 Ot4) V(4) =(G, l(. () 5"}is the
kernel of all four-body Faddeev-type equations.

The above considerations establish the equiva-
lence between the Faddeev-Yakubovskii and the
Alt-Grassberger-Sandhas formalisms for %=4.

It should be clear that both the FY and the AGS
formalisms can be extended to the N-body case
by successive applications of the procedures de-
scribed in the previous sections. A closer look
at the kernels for all the N-body matrix equations
so obtained,

Schematically,

4 0 0

G(4)

g 0
(4.11)

N(4), . ~

where the first line corresponds to the AGS hier-
archy for the U operators as presented in Sec. III,
the second line to the equivalent hierarchy for the
M operators, and the last line to the hierarchy of
kernel operators.

The above considerations single out the K oper-
ators and their equations as forming the minimal
hierarchy for the N-body problem. This can also
be seen directly from the fact that they can be ob-
tained from a simplified version of the AGS for-
malism. Indeed, (4.5) indicates that it is not
necessary to consider separate hierarchies for
6, and V, as was done in Sec. II; instead it is
sufficient to use the simple prescription for the
product G, V suggested by (4.10),

6 V =(883() }
G(4) V(4) (N odor}

(4.12)

(4.10)

shows that their elements are simply maximal
subsystem K operators, that is, operators de-
scribing the two-cluster subsystems (N 1) +(1), -
(N-2) +(2), etc We can .thus identify the hier-
archy of K operators as being the hierarchy of
N-body Faddeev-type kernel operators. Therefore,
they will be central to any Faddeev-type N-body
theory.

%e also note that the N-body K operators are
directly obtainable from the maximal subsystem

and so on, in order to generate the complete hier-
archy of K operators and their equations.

%e thus see that the hierarchy of kernel oper-
ators in itself contains the basic structure of all
Faddeev-type N-body formalisms. On the other
hand, the more elaborate AGS scheme has the
advantage of supplying the hierarchies for all
operators needed to construct physical transition
amplitudes. '

Finally, we point out that with the matrix for-
malism one can easily define a variety of oper-
ators other than the ones considered so far, which
will also satisfy Faddeev-type equations. In fact,
the number of different N-body operators that can
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be defined from the basic G and T hierarchies
increases rapidly with increasing number of par-
ticles. As an example, instead of taking

G ( GM8 G

N'" =(G,K,"j,. . . ,

(4.13)

V. THEN-BODY CASE

For the detailed discussion of the N-body case,
we must introduce a more general subsystem
labeling than that we have used so far. Following
Yakubovskii, we will use the concept of a partition
a, of N particles into i different groups, such that
only particles within the same group are interact-
ing. For instance, a„b„... denote different pos-
sible partitions of the N particles into two groups
that do not interact with each other; a„„b„~,. ..
denote configurations of the type ( ~ ) ( )( ~ ~ ~ ) or

( ~ ) ~ ~ ~ ( ~ )( ~ )( ~ ~ )—such as o, r, . . .—and a~ „b„„.. . denote interacting pairs —such as u, P, . . .
—in the preceding sections. Partitions can be
performed one after another to form a sequence.
In such a case they will be denoted by the same
letter and symbolized by a;c a, , i&k.' Only se-
quences whose last partition is of the type ag
will be considered; they will be denoted by a Greek
letter, and their subscript will be that of the first
partition in the sequence. In this way,

u, = (a„a„... , a„,}= (a, 2 a, & ~ ~ ~ z a„,}
determines one way in which the N-body system
is ultimately separated into N-1 groups that do
not interact with each other. At times, we will
make part of a sequence explicit, as in o.', = (a„ab).
Finally, eachpossible partition a& defines a par-
ticular, disconnected N-body scattering problem,
in which specific interactions have been set equal
to zero.

The dynamical equations for N-body scattering
are now written in terms of matrices of operators
which are labeled by full sequences P„n„

as in (3.9) and (4.4), we can write

Gtdl =(—Gb M Gb) =( —Gb ttb GbMS„Gb t~ Gb}, . . . ,

(4.14}
N =(Gb K ')=( —GbtsGbK8~j, . . . ,

where MB~ forms a different set of four-body oper-
ators, in fact the ones defined by AGS. The K
operators in (4.14) will also differ from the K
operators of this section. We have preferred the
choice of Eq. (4.13) since in that case the M, K,
and U operators are related to the G, N, and T
hierarchies in a most straightforward manner,
and the hierarchy of kernel operators is obtained

dire ctfy.

~ =(~„„)=(A"+). (5.1)

In (5.1), the first bracket contains the simple
elements of the matrix of operators A, and the
second contains the submatrices obtained when
the first partition label is made explicit. Matrices
of operators related to disconnected (partitioned)
N-body systems will be denoted

(5.2)

where it is understood that a„, is included in b„.
The notation just introduced will be recognized

as the general form of the notation used in previ-
ous sections for N=4.

We can now write down the N-body generalization
of (4 6) io

N bbab fbbab Nb bN b2 QIjbbdb Ndbab (5.3)

For individual matrix elements, (5.3) takes the
form

b2a2 P b2e2 K b

Bs~ 83~

G ~ g~2d2K-4~
B,s, S3 3

s3 d2

(5.4)

where 5, denotes the sequence 5, =(d„.. . , d„,),
and Qb, stands for

dP 4 d~-1

For N = 4, by wr iting b, = a, P, = b, = b„,= P, etc.,
in (5.4), we simply recover (4.7). N'b in (5.3) is
the K-operator matrix for an N-body system
which has been split into two groups according to
the partition b, . This matrix satisfies an equation
similar to (5.3), butwitha matrix N b in the driving
term and the kernel. In general we have for any

0, 3 &k &N-1,

Nbb-] '5bbdb N bb N bb ~ $bbdb N bb b (5 5}
krak dkak

or, in component form,

K k-1 =g~k'kK~k
8k+k Bk 1' k+1

Kk s Go g~kdkK ~k-1
Bk+1b k+1 Sk ak

Sk+1~'k

(5.6}

Since fork =N IK'bN-b, „ is just Ks, -and (5.V)

is the Faddeev equation (4.2) with o.', p, &ca, we

identify K~&-1 as simply tB.
With Ktb+ —= K8 =Ksb++, we can include (5.4)
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in (5.6) by including k = 3 among the allowed values
fork I.nthisway {5.6) becomes the complete hier-
ax'chy of E-operator equations, as obtained within
the AGS scheme.

Let us now turn to the FY formalism, and con-
sider Eq. (4.1) of Ref. 3 for i =k —1, and with
a=2„3, . . . , X-1":

ybk-1 = gbk&k y bk
Sk'k k+1' k+1

k+1 k ~k+1

g ('a+g =

C bk ck+1& /k+2 ~k+2+~k+3
~k+1 «~k+1 ~k+2 ~k+2
'k+1C'k

~N-2 +~N 1 CN -1 «~N 1

The two sums in (5.V) correspond to the sums in
the concatenation of Ref. 2, but their order has
been inverted. For 0 =N Fsb" 1 equals ts by def-

x +=4a
simply the operators Fs' andMs„of Sec. II, and

(5.V) is just the FY equation for F 8'.
Consider now the following operators:

hk 1 ~ k Pbk 1
Sk ak

6kC bk

(5.8)

Summing over the indices e~ in (5.V) as indicated
in (5.8), we get

~bk-1 = gbk'k E bk
8k ak 8k+1 k+ 1

I?", (: g 5'"~f?"
8k+1-' 4+1 ~kak '

k+1 &k C bk-1

'5~&'4 y'~a
~k'k

bk-1

(5.V)

Here~ 'Y) =(ca~ ~ ~ ~ ~ cN-i)~ &) =(ca~ ~ ~ ~ ~ e)r-x)~ and

definition.
%e therefore conclude that the N-body equations

generated by the AGS formalism are equivalent to
the N-body FY equations, in the sense that both
have the same kernel.

Vl. THE WAVE-FUNCTlON FORMALISM

The E operators of Secs. IV and V are very
closely related to the Faddeev-type components
of the N-body wave function. At the three-body
level we have

$8(~) = [58„—Go(E„+i 0)K8„(E„+f0)]4)(„),
(6.1)

where the initial state Q(„) corresponds to a bound
state in the a channel and a third particle free.
As indicated in (6.1), all operators of this section
are to be taken at an energy corresponding to that
of the initial state. From (6.1) we also see that
the operator 58 —G,KSa directly yields the
Faddeev components of the scattered wave function
out of the initial-state wave function.

We now introduce column matrices [again sup-
pressing the superscript (3) in denoting three-body
operators] e(.) =(((,(„)}and e(.) =(5,.4(„)}, so
that the relation (6.1) and the Faddeev equations
for the wave-function components take the form

4 (~) = (1 —N ) 4 (~),

+(a) @(a) Go (j +(a) ~

As in previous sections, these results can be
generalized to the N-body case. For the four-body
Faddeev-type components we get

(4) @(~) (1 N (4)) (4) @(~)

(6.3)
(4) y(V') (4) @(V) 0(4) y (4) (4) y(V')

0

The initial state in (6.3), labeled by (r), is con-
sidered to be either a three-body bound state and

a free particle, or a pair of two-body bound states.
%ith

(4) @(~) {@o(~)} {~~(~)}

Z bk-1 =Z bk-1 all 08kak 8kak ' (5.10)

(5.9)

This equation is clearly equivalent to the original
FY equation (5.V), since the summation over the
parameter index ck leaves the kernel of the equa-
tion unchanged.

A comparison of (5.9) and (5.6) now shows that

(4) @(~)—f5«c, (&)} (()«4 (~)}

we can write (6.3) in explicit form:

ga(r) 6« ~(r) G ~ ff «P(r)
8 8 0 ~ 8Y 'Y

')('CV'

,I,a(V') gaV' ~(V') G ~ ~o ~ g o p, i,p(&)

fc & p&)'

(6.4)

{6.5)

provided the operators at the bottom of the two
hierarchies, KB„"g„and I?()N „', coincide. However,
this is the case since both are identical to t8 by

where ps is a Faddeev component of the initial-
state wave function. It is not difficult to verify
that the second equation in (6.5) is identical to the
corresponding Faddeev- Yakubovskii equation,
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e.g. , as given by Kharchenko and Kuzmichev. '
The analogous relations for the N-body case

arexo

2 2 =$22@ 2 g 22@ 2

4 '2'2 = 6'2'24'2' —N'2 g 6'2'2 4'2i'2'.
d2

(6.6)

Here we again see that the operator 1-N =(6'2'2
—N'2'2) yields the Faddeev-type components of
the N-body scattered wave function out of the
Faddeev-type components of the initial-state wave
functions, and that the K operators, N'2 =(GJC82„),
form the kernel of the N-body equations.

VII. CONCLUSIONS

The different formalisms of Alt, Grassberger,
and Sandhas and of Faddeev and Yakubovskii have
been shown to be equivalent generalizations of the
Faddeev treatment of the three-body system to
the N-body case. In particular, the partition no-
tation of FY and the matrix index notation of AGS
describe the channel structure of the N-particle
system in equivalent ways. Consequently, the
advantages of the intuitively appealing AGS notation
can now b fully exploited when handling N-body
operator relations.

The structure of the Faddeev-type N-body the-

ories is best described in terms of the hierarchy
of K operators obtained by generalizing to the
N-body level the three-body K operators discussed
in Ref. 4. In fact, this hierarchy is precisely the
hierarchy of Faddeev-type kernels, and the K
operators will therefore play a central role in any
Faddeev-type treatment of the N-body problem.

By exploiting the close connection between wave
functions and this minimal hierarchy of K oper-
ators, the Faddeev-type components of the N-body
full wave function and their equations have been
obtained in a most straightforward manner. In a
subsequent paper, it will be shown that the transi-
tion amplitudes for elastic, rearrangement, and
breakup scattering —obtained in terms of Faddeev-
type N-body operators and wave-function com-
ponents —are algebraically equivalent to the well-
known expressions for these amplitudes in terms
of potentials and full wave functions.
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