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Eikonal expansion as the high-energy limit of the Born series*
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The Glauber version of the eikonal expansion in potential theory is shown to be the unique
result of calculating the high-energy, fixed-momentum-transfer limit of the Born series.
Correction terms are systematically calculated and agree';with the form proposed by Wallace.
These results are used to understand the fact that the Glauber eikonal is an accurate approx-
imation to the exact scattering amplitude at all energies.

I. INTRODUCTION

The eikonal representation for potential-theory
scattering amplitudes has been used innumerable
times in atomic and nuclear physics problems. It
has even been a subject of recent interest in ap-
proximations to high-energy amplitudes in particle
physics. Among the various versions of the eikonal
representation that have been proposed, the orig-
inal form derived by Glauber, '

f(P, P') =2„ d2b s~~ b(e~«o(»~» l)

where q = p —p' and the eikonal function y,(b) is re-
lated to the potential V(r) by

(b) = -m J, dz v(b, z), (2)

has proved to be the simplest and most accurate in
actual applications. The z direction in (2) is chosen
parallel to the average momentum P =(p+p')/2,
and the impact-parameter vector 5 lies in a plane
perpendicular to P. All derivations of (2) have in-
volved one or more heuristic steps which have
made it difficult to calculate correction terms."
Moreover, previous derivations lead to the con-
clusion that the Glauber eikonal should be accurate
only at small angles, yet it does a surprisingly
good job of approximating the exact amplitude at
large angles for many potentials. ' There exist a
number of rigorous derivations of impact-param-
eter representations of the scattering amplitude
which agree with the Glauber version at small
angles. ' Invariably, these other forms are worse
than Glauber's at large angles or are too com-
plicated to evaluate.

Clearly what is missing in all attempts to derive
the eikonal representation is an understanding of
the appropriate expansion parameter. In other
words, in what limit does the Glauber eikonal be-
come exact? Most derivations contain one or two
approximations whose justification is one of con-
venience. The method used by Abarbanel and

Itzykson', on one hand, that of Levy and Sucher, '
on the other, are examples of this approach. The
eikonal representations derived by them turn out
to be either too complicated or less accurate than
the Glauber eikonal at large angles. Wallace' has
systematically calculated correction terms to the
Glauber eikonal. In his early work he used the
approach developed by Abarbanel and Itzykson' and
noted that if a certain function of the scattering
angle is dropped, the Glauber form together with
correction terms is obtained. He then showed that
the correction terms are calculable in practice
and improve the agreement with the exact ampli-
tude at all angles. In his most recent paper
Wallace' has shown that the eikonal expansion to-
gether with corrections can be obtained from the
high-energy limit of the analytic continuation in
angular momentum of the partial-wave expansion.

In this paper we show that if the high-energy
limit at fixed momentum transfer of each term of
the Born series is calculated and the resulting
series is summed, the Glauber eikonal is the
unique result. Moreover, it is possible to cal-
culate and sum nonleading terms in the Born
series and obtain the conjectured correction terms
proposed by Wallace. Thus, the Glauber eikonal
amplitude is shown to be the high-energy limit of
the Born series at fixed momentum transfer, in-
dependent of the strength of the energy-independent
potential. ' The range of the potential R sets the
energy scale in the sense that high energy implies
that AP»1, where P is the incident momentum.
Using p ' as the appropriate expansion parameter,
we systematically calculate corrections to the
Glauber amplitude. Although conceptually simple,
calculation of these terms quickly becomes alge-
braically very complicated. However, the first
few correction terms can be used to understand
the empirically observed fact that the eikonal is
accurate at all angles. When the momentum trans-
fer squared q' becomes large, the Glauber eikonal
goes to zero like a power of q

' or faster. Since
the ratio of the correction term to the leading
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term is of order P ', the condition for validity of
the eikonal at large angles is that the correction
terms must vanish as q-~ at least as rapidly as
does the leading term. Moreover, the large-q
behavior of the eikonal amplitude is controlled by
the b -0 limit of the eikonal function g,(b). Hence,
it is possible to relate the criteria of large-angle
validity to y,(b), and thus to the potential itself.
The conclusion is that the Glauber eikonal expan-
sion should be useful at all angles for all smooth
potentials except those for which y,(b) is analytic
at b =0. A basic assumption in this discussion is
that the fixed-angle limit of the Born series is
obtained when first P -~, then q -~. This point
is discussed in detail in the Appendix, where it
is shown that the P, q-~ limit is independent of
the order in which the limits are taken. More-
over, for the second Born term, the limits agree
withthe P, q-~, q/P-fixed limit.

In Sec. II a brief outline is presented to show

how the standard tools of high-energy perturbation
theory are combined with the summation proce-
dure of Levy and Sucher' to calculate the high-
energy limit of each term in the Born series. The
results are then written down and used to discuss
the properties of the eikonal representation. Ex-
amples are discussed. Section III contains the
details of the derivation for the more dedicated
reader.

II. RESULTS AND DISCUSSION

A. Outline of derivation

The starting point in the systematic derivation
of the eikonal expansion is the Born series in mo-
mentum space

f(p, p') =P f.„(p,p'),
n=p

where

m d'k, d'k,
2s (2v)' (2s)'

x V(k, —p) G(%,) V(R2 —K, ) G(%„)

x V(p'-%„), (4)

('(%) = Id'r v(r) e'~'.

The Green'd function G(K) is given by

P2 k2 -j,
G(k) = — +i@

2m 2m (6)

In the limit p= Ipl = Ip'I-~ and q= Ip —p'I is fixed,
each term of the Born series has the expansion

(6)

00

V(k) = dhp(x) e-'" . (9)
p

Most potentials have such a representation, and,
in any case, the weight function p(x) is never
needed explicitly. When (8) and (9) are used in

(4), the momentum integrations can be easily per-
formed to provide a representation for f„+,(p, p')
as an integral over Feynman parameters. The
similarity to a ladder diagram amplitude in field
theory becomes manifest at this point. Calculation
of f!+!,(q) is straightforward, but the answers so
obtained are complicated, multidimensional in-
tegrals which are impossible to evaluate directly.
The eikonal form emerges from the fact that

gi OQ I

g~p I Z 0 p

(10)
where 1„„(q,o, a)) is exactly the function that is
obtained if f„„(p,p ) is calculated with

p =—(sin8, 0, cos8),

p' = —(- sin8, 0, cos8),

where sin8 = qo/2a). In addition the parameters y,
conjugate to the propagators G(k, ) are restricted
by y( =&gq, g,"y~ =1. Thus, the momentum inte-
grations can be reintroduced to write

(- -,
)

f'+'~(q) f."'~(q) f'+'~(q) (7)

When f„',,/p" is summed over n, the Glauber eiko-
nal, E(I. (1), is obtained. Similar summations of
the second, third, and higher, terms in (7) lead
to the correction terms whose form was conjec-
tured by Wallace. ' The details of the derivation are
given in Sec. III. A brief outline is presented here.

The first step is to use techniques developed
for calculating the high-energy limits of field-the-
ory diagrams. ' To do this we introduce a set of
Feynman parameters by the identity

1
. =i dye '&' ""

9-ZE'
p

and the ansatz

f (q)= —— —. w" ds) 5 1- y dy d k' ' ~ d k' V(k')'''V(k')m —2m'" i a' "
„+&,

(2v)' f! So' f f n 1 ff

p p 1

x V q-~ k' e '«'~ ~~ "~&
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The integration momenta in (12) and (4) are re-
lated by %& =%& —%;,. The explicit form of the ex-
ponential factor in (12) is

d
dz —[rr(r)])8 „dr

W2

(I(k, Vr Wl $) =o Q yl (Kk —p}
(15d

+g y; (K,'+ p')' ——,(l3)

where p and p' are defined in (11). The 1th rung
in the ladder diagram corresponding to (18)
carries momentum q-pi%,'; moreover, K,
=Q,'k&, K,'=Q", %z E.quation (12}has exactly the
form studied by Levy and Sucher. ' Their analysis,
with technical complications for the correction
terms, converts (12) to an expression which sums
to give the eikonal amplitude. In particular, the
(n!) ' necessary to generate the exponential func-
tion comes from averaging over the equivalent
ways of maintaining momentum conservation and
labeling the momenta k& in (12).

B. Results

Although written in a different form, these ex-
pressions are those calculated by Wallace. ' The
derivation here makes clear their significance
as high-energy limits of the Born series. The
presence of [(n+1)!] ' in (14a) compared with

[(n-1)!] ' in (14b) means that the inequality

f„+2,(q)/p") f„l+,(q)/p"" cannot be maintained for
all n. In the discussion below on the large-P and

large-q limits of the eikonal amplitude, we assur
the complete Born series converges rapidly at
high energy. In this case the contribution to the
total amplitude of the terms violating this inequal

ity is negligible. Admittedly, this procedure is
not very rigorous. When (14) is summed over n,

we find the amplitude

f(p, p')= d'be' ' [e'"() 2G(b) —1] „

f(0) (q) — d2b e((['X X())

2s (n+1)! '

f."',(q) =—d'b e" "' (ix,),—i, g(i -)." '
2s ()2 —1}!

(14a}

(14b)

f(2) ( )
2 d2b (([ K

~ (ix.}" ' (ixl}'
(n —2)! 2!

,(ix.)" ',. (ix.)" '

()2 2}! ( X2}
( 1}t( l} 4

where

4 (4)=-m J dz V(r),

(14c)

(15a)

The discussion here is restricted to spherically
symmetric potentials V(r), 2 =(b2+z2)'i2. The
impact-parameter vector 5 is perpendicular to the
z direction, the direction of p+p . The procedure
outlined above leads to the following expressions:

where

G(b) —1 +M +1 Xl + X2

P P' P' P'

4)
=exp 4 +'

p p-p.
Exponentiation of G(b) is a conjecture based on th
suggestive manner in which X,(b} appears.

Having obtained the Glauber eikonal expansion
as the high-energy limit of the Born series, we

are in a position to discuss the extent to which
the eikonal representation is an accurate approx-
imation to the exact amplitude. In the limit P -~
and a weak potential, it is no better than the first
few Born terms. However, the eikonal expansion
should also be accurate when the energy is large
and the potential is strong so that X,(b)/P is of
order unity. As a measure of accuracy we requi~
that the first correction term be small compared
to the leading term,

1 d
X,(b) = -222' dz ——[rV(r)]2,2r dy

(15b} pf( ),(q)

-m' " 1 d 2 d
Z, (4)=, 4 4* ——r' —[ V(r)]')24@ „ydy dy

dz —rV r (15c)

Neglecting a factor of n(n+1), we then find that a
sufficient condition for this to happen is

X.(b) ((1
p[x.(b)] '
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For a Yukawa potential V(r) =ge ""/r, this con-
dition becomes

where Z, (qb) is a zero-order Bessel function. Then
lf

y, K(2pb)
p [K,(gb)]'

lim H(b) = c ln b
(21)

or the momentum P should be large compared to
p, , the inverse range of the potential. More gen-
erally the Glauber eikonal will be an accurate
representation of the scattering amplitude when

we find that

lim E(q) = c'(lnq) q' ', e x 0

gp» $, =c'(lnq) '/q', e =0. (22)

where 8 is the range of the potential and P is the
incident momentum. This condition is independent
of the strength of the potential and is in agreement
with what one expects on the basis of semiclassi-
cal, intuitive derivations of the eikonal expan-
sion. ' ' A better test of the accuracy of the
Glauber eikonal would be a numerical comparison
with the corrected form in (16). This approach
would be particularly useful when exact solutions
are not available.

C. The eikonal amplitude at large angles

The derivation of the Glauber eikonal was car»-
ried out in the P -~, fixed-q limit. To investigate
the large-angle behavior, we let q become large.
This procedure is justified in detail in the Appen-
dix. For the eikonal to be useful at large angles,
correction terms should remain small compared
to the leading terms in the q-~ limit. As a gen-
eral rule, the leading term goes to zero at least
as fast as some power of q '. Since in the back-
ward direction q' =P' and the ratio of the leading
term to the first correction term is of order P ',
the correction terms themselves must vanish for
large q at least as fast as the leading term. For
potentials where this condition is satisfied, the
eikonal expansion will remain roughly equally
accurate at all angles contrary to expectations
based on semiclassical derivations. Implicit in
this discussion is the requirement that the Born
series converges rapidly in the high-energy limit
so that factors of n(n+1) are unimportant. The
large-angle validity of the eikonal representation
has been discovered empirically by several
workers. ' '

The q-~ limit of (16) is determined by the b -0
limit of the integrand. In particular we must study
integrals of the type

E(q) fd'( e' "H((='

If H(b) is constant at b =0, then E(q) = c'q ' ",
where d "H(b)/db" is the first singular derivative
of H(b). If H(b) has no singular derivatives, as
for a Gaussian potential, F(q) vanishes exponen-
tially with q. Since for the leading term in the
eikonal expansion H(b) -[X,(b)]"", X0(b) can have
no more than a logarithmic divergence at b =0. A
power divergence at b = 0 in x,(b) would mean that
there exists an I(I for which f~', i, (q) is undefined for
n& N. [There is an interesting question related to
the validity of the eikonal expansion for situations
where f„"„(q)may not be defined for n&N, yet the
full integral in (16) exists. ] Since a lnb behavior
for Xo(b) is generated by an r singularity in the
potential V(r), the derivation of the eikonal ex-
pansion presented here is restricted to potentials
for which Ilm„(& r V(r) Oq e & 0.

Since H(b) for the first correction term is given
by

H(b) - [xo(b)1" ' xi(b)

a necessary condition for the large-angle validity
of the leading eikonal term is that

x (b).-. [x(b)1'

where the constant c may be zero. If we test the
Yukawa, potential, we find from (15) that X, X„X„
and ~, are all proportional to lnb in the b = 0 limit.
Hence, the leading term and all correction terms
fall off like (lnq) /q'. The leading eikonal am-
plitude should be accurate in the backward direc-
tion. Numerical calculations support this conclu-
sion. s'7

If the potential is less singular than r ', Xo(b)
is a constant in the b = 0 limit and, as indicated
above, the large-q' behavior depends on a more
detailed knowledge of the potential. Hence, for
a Gaussian potential V(r) =ye

=2m bdb Jo qb H b (20) e-x52 (b) (&+ Pb2) e-2k(P
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Both )('s are analytic at b =0 so that f(+),(q) van-
ishes faster than any power of q:

f(o) (q) e-oo/s&II

f(z) (q) qo e e /4XII

in this case, the correction term dominates in
the backward direction, although both go to zero
rapidly. For a polarization potential of the form
V(r) =g(r'+ o, ') ", both leading and correction
terms are proportional to e '. Again the cor-
rection term dominates at large angles. In fact,
from the cases considered, it appears that the
leading term dominates at all angles for potentials
where )(o(b) has a singularity at b = 0, so that
f(o), (q) vanishes only as an inverse power of q.
If )(o(b) is analytic at b =0, f(o), (q) vanishes ex-
ponentially with q-~, and the correction terms
dominate at large q. It is interesting to note that
in all cases the absolute accuracy of the Glauber
eikonal is approximately independent of angle. In
other words,

~f „-f,a,„e ~
is small at all angles.

However, for some potentials the relative accu-
racy

~f.„„(/f~,~ ~

—1 is strongly angle-dependent.
The Gaussian potential is an example of this latter
situation. The relative error is large in the back-
ward direction, but the amplitudes are very small
in this region. Most comparisons" of the ampli-
tudes are presented on logarithmic plots which are
sensitive to the relative accuracy.

III. DERIVATION OF THE EIKONAL EXPANSION

The n+1 term in the Born series is given by (4).
After parametrization by (8) and (9), the momen-
tum integrations are carried out to yield

X QX1 ~Xn+1 ~ +1 P + +1
0

X tf ~

0 &n

The function P„ is given by

n

(((„=-p ' + q —i e P y,
&n

(23)

(24}

then f„(y )(=o'f„(y„o) and f„(yq, 0) w0. The p-~
limit of (23} is calculated by means of standard
Mellin transform techniques. ' First, one defines

f.„(c,d) = J ddd ' 'f- (d d)
0

and then finds the poles of f„+,(a, q) in the a plane.
If

f.„(~,q)= ""'
0

then

f:i(p, q)=p "».„(q) .
Thus, making the change of variables in (25), we
have

The only property of the functions f„, g„, and 6„
which is needed here is that f„ is a quadratic func-
tion of the parameters y&, which are conjugate to
the propagators G(k&}Po By quadratic is meant the
fact that if a change of variables is made

y& =oy( g y(=1

oo oo 1 nf „(d,d)=c„„dc, dc„, d, p„, c" dc dd, dd„d I-Pd)
0 0 0 1

// )Id/oxi.(--'a)(-i)"/'o" "" „e" (

n
(26)

Poles at u=-n, —n-1, —n-2, ... are generated
by divergences of the integration over a at the end
point o =0. The residues are calculated by doing
the integration by parts for a& —n and analytically
continuing the resulting expression. For example,
to calculate the residue at u = —n-2, one inte-
grates by parts three times:

J ( 1)3On+ Ix 1 ~ O (f(7
(n+ o}(n+ a+ I) (n+ a+2)

In the neighborhood of u = —n-2, this becomes

oII+Ix 1y(~ o) do
n+ m+2 21

oo 83
x do, g-n 2, o')—

0

1 1 , E(- n —2, o)n+n+2 2t ao'

0

(2V)

The residues at the other poles are calculated in
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the same way. Hence, from (26) we obtain

x
~ ~ ~ ~ ~ ~~+I ~+n+ I A. Pn+ I

0

tion is maintained by having one of the n+i rungs
carry the momentum q —g%, . The amplitude is
averaged over the n+i ways of doing this. Con-
sider f~oi, as the simplest case:

(0), m -2mi " 1
2 (2 }' +1

n+I
x g d'k, ~ ~ ~ d'k„V(k ) ~ ~ V(k„}V(q-gk, )

2 6(1 -gy )dy f -(22+2)IK
xl~-&(e s„/g)

g 3/2
0 n ll

00 I
x gg gw 4f yI cfy

0 0

x 6(1 —g y, ) e '~2,

This equation can be rewritten in the form of (10},
where

2m n ~ sn/2

I„(q (T w) = —
( )

(-1)

with

l -I 2

i((, = lim ~ o g y, (K, —p)' ——,
fy~o ] 2

0'

(30}

' 6(1 —Qy, ) dy,x dx, p(xi)
0 0 n

(31)

x &-$(q g„/g ) +i(e /a ) (a f„/b, „)

(29)

As discussed in Sec. II, (29) is just (23) with the
momentum

~ p) = w/e, q fixed at its physical value,
all the y& =ay„and the 0 integral removed. This
observation permits us to reintroduce the mo-
mentum integrals in (28) and obtain (12).

The method of Levy and Sucher' is now used. The
momenta are chosen so that momentum conserva-

The momenta p and p' are given by (11}. Hence,
the limit o -0 in (31}yields

n

wy, (-2K,

n)+dewy,

(2K( n), (32)

where n is a unit vector in the z direction, the
direction of p+p'. The vectors Ki and K,' are ex-
actly those of Levy and Sucher' (Sec. II of their
paper), K, =Q,'%& and Ki =g,"%&. The integrals
over zo and y& are combined to give

m —2mi " i "+'

(2s) (2z}K 1 ~ d're' ' V(r)
1=1

A Ig) l-I n

xll d'k, V(k~)e
' '

dy, dy exp -2( I yeK~ e ~ keg yeK&. 2) (33)
k~1 0 1 l

The Fourier transform of V(q —Q k, }, Eq. (8}, has been used in (33}. The next step is to change variables
from y, to z; and z& where

Zi=g yiy Zi g yi
/=i j=l

The integral over the y parameters becomes

~ ~ ~
~

~ ~ ~ ~
~

~

00 gI g l-2 l-I 00 g
N

g l+ I n

dz, dz, ~ ~ dz, , exp —2i P z&%& n dz„' dz„, ~ ~ ~ dz,'exp 2ig z&%& n
0 o o 0 0 0 g=l

Next, as shown by Levy and Sucher, ' the first l —i
momenta can be relabeled in (I —1)f equivalent
ways, and the corresponding integrals added to-
gether. This has the effect of dividing (33}by
(l —1)l and changing all the z; integrations to the
interval 0 to ~. The final n+i -l momenta are
treated similarly to give

n+2 (F )2-2 (F )22+2

(I —1)i (n+1 —l)i '
l= I

(34}
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where

dz d'k V(k)e ' ''"' '
-0

When (34) is summed over l, it yields

The expression is just (14a} and completes the
derivation of the Glauber eikonal.

The correction terms are calculated in exactly
the same manner. We sketch the procedure for
the first correction term. To obtain f!+&&(q)y we
start from (30) with

with

m —2mi "
3 jg'r F.' (q) = -2„(2,). ( ) („,1)!,

(35)

e '~& -—(e 'w&)

a=0 8& a=0

Since

~ ~4l -jg
8Q'

0=0

F-=F, +F 4 =&+y (&«'&2su-K &ncos8 oK—
& q)

=-,' (2w)' dz V(r},
+g y& («&"+2«(K& ncos8 —&rK&"q), (36)

and r= (b'+z')' '. Incorporating the factor of 2m/
(2w)' and using the definition (15a) for !I,(b) to-
gether with the fact that q n = 0, we find that (35)
becomes

f(0) ( } d2b ' q'!( [&}(dy(b)]
"+

2w (n+1}!

and cos8=(1+q'o'/4«(')' '
n

80'
=g y, (K&' —K; q) + g y& (K&" —K& q) .

0=Q

Thus~

(), im -2mi " I
(2 w) (2w)' n + 1

n+1 00 llxP d re'r'P(r) d ny(n&)e '
,. " dy, dy exp —y'„Py, w, n+2(gy, r,"n)

1=1 1=1 0 1 f

(37)x g y&(K&' —K& q)+Pyz(K,". —K& q)
f=i f= l

When the integration variables are changed from y& to z; as before, the first term in the square brackets
becomes

P z, (k,'-q k,)+2+ g %, R z
f= 1 ta=f+ 1

When (37) is averaged over the permutations of the %&, it has the form

i m -2mi " 1 ' d're&q'y V(r)
2w} (2w)' n+ 1, , (l -1)!(n+1-l}!

x OF )"'' '[(l-1)(G;-G;)(F,)' ' + —',(1-1}(l-2}G;(F,)' ']+(+ -)]
gtl 1 FN 2

I ~ n
(38)

where

G,'= zdz d k V k k e &k1' ~2&ck ~ n

0

G2+= zdz d'k V k q ~ ke &k ~ r!+2&ck ~ n

0

OO g

G,'= 2 dz, z, dz,
0 0

x
) d k, d kqV(k, )V(km)2k, km

-4( k1+ k2) ~ I e 4(1k1+ ~2ke2 ~ 6

(38)
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There is cancellation between G, and the other two
terms. To see this we write the G, in the form

d're'~' V(r)( i-q 77„G)F"

G,=G', +G,

z'dz'[V(r+nz')+ V(r-nz')]
(2]z)'

0

2Q

GH=ig ~ v)zv G

(2)i)HG3=- dz]
2 p

x z,'dz,'[ V„V(r+nz,'} V „V(r+nzz}
0

+ f„v(r-nz,') zd', V(r-nz, ')] .
(4o)

Next, integration by parts is used to rearrange
the G, terin in (38):

d're' ' V„2GVr F" '

+ V„G V, V(r)F"-'

+ V„G V, F(n-l)V(r)FH ']. (41)

The first term on the right in (41) cancels Gz. The
second term is evaluated by use of the relation,
valid for central potentials,

r dz V„V(r)~ V„w dw [V(r +nw) + V(r-nw)]
~Op 0

=-2 dz V(r) +2b', V(r) d
v(r)r dr

= -2 dz ——[rV(r)]2 = -2H(b) .1 d
r dr

The third term in (41) combines with the G, part
of (38) according to

r dz V(r) J d, [VV(r+ nw, ) rrV(r-nw, )] w, dw, [VV(r+nw, ) +VVir-nw, )]~ dZCZ 0 0

-2 dw, w, dw, [VV(r+nw, ) VV(r+n, ) ~ VV( —,) VV( -n, )] = JdzV(r)-H(Z).
0 0 ~ ~ 0

With these results f (z]„(q) becomes APPENDIX

or

(g) z m -2m'f "+' q (2]z) (2zz)' n+1

(2m)H 2F' 'H(b) F" 'H(b)
4 (n-1)! (n-2)l

f (z] ( )
z dHb z(( b (zXQ)

n+ I 2+ (n-1}!

The discussion of the large-angle validity of the
eikonal representation is based on a calculation
of the P-~ followed by q-~ limit of the Born
series. Here we show that for a Yukawa potential
this limit is independent of the order in which

q, P-~ and, for the second Born term, is identical
to the P, q-~, q/P-fixed limit. These results
indicate that the Glauber eikonal with q- does
indeed generate the high energy, fixed-angle limit
of the Born series.

We start with

x [i(--', m'H(b)}] . (42) (Al)

This is just (14b) with (15b) for Xz(b).
The derivation of the second correction term

proceeds in much the same way although the
algebraic details are far more complicated. De-
tails are available.

The expression for f i'~
z (q) in (14a) can be written

xn the form

(A2)

J,(qb) is a Bessel function. If V(r) =ge ""/r,
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X,(b) = -2 rrgKo(!zb) (A3)
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where Ko(x) is a modified Bessel function. Hence,
we have
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K(P)
3' -4))(-P-4t)"d

Dy

1 ( 2-mig)" +' r(--', a)
(n+1)! 2"'r(-,'u+2}

b""[K (p, b)]" 'db (A4)

(AQ)

From (A8} and (A9) we find the large-q' limit of
f„„(P,q) to be

The integral in (A4) has an (n+2)-order pole at
a = -2 arising from a combination of the diver-
gence at b = 0 of b "and the fact that
lim~ OK, (p, b)-lnb+c. Isolating this pole, we
find

1 (-2mig)"+' 2I'(1) (m+1)!
i (I+1)! I'(-,'a+2) (a+2)""

1 . „+, 1. (-2mig)
( 2)n+1 (A5)

f„~,(p, a) =A„„I'(-a)(i )"

The large-q behavior of f s+, (q) is determined
from (A5) to be proportional to (inq)"/q'. Thus,
we have

lim lim f„„(P,q)- —.
1 (-2mig)"+' (lnq)"

a~~ p~m
'

Z nl Pe'
(A6)

The calculation of the q-~ limit of f„,(P, q)
amounts to the standard perturbation theory cal-
culation of a Regge trajectory. ' The Mellin
transform of (23) with respect to q' is

-m -2milim f„,&(P,q)-, —. (4vig)"+'
))2~m 271 2 1T

1 (lnq')"
I i x

i n[q' p i

1 (-mig)"" (lnq')"
i n! P q'

The identity of (A10) and (A6) suggests that they
also represent the q, P-~, gP-fixed limit.

Additional support for the above statement is
provided by a calculation of f2(P, q) with q'
=!)p', P-~, X fixed. Starting again from (23) and
transforming with respect to P', we have

f,(u, X) =A,l'(-u)(-i}"

x dy ch, ch,
(y'-Xx, x,)"

0 $ +Xg +X2

X e fP (xy+xp) (All)

If X=p(I-x)~ x, =pxw, x,=px(l-w), the p integration
can be performed to yield

( „A,r(-u)(-i) r(u+-', )
2 )

(
~ +2)a+ 3/2

where

dgj '&»+ g xg x»+ J
0

dP1' ' ' dP» ]q
g 3/2

0 »
(A7)

x ' ' dw [(1-x)'
0 0

-Xx'w (1-w)]

(A12)

The integral in (A12) has a pole at a =-—', from
divergences at I = 1-x= 0, re= 0 or se = 1. The
residue is obtained from an evaluation of

Q„=-p~ ~ + p Q x( ME+ yg ieg xg-
I 1

We have used the fact that

p(x)=4vige '"+

A I i-'. ~~-i }-s~2
f, (a, X) = ' "", 2 dN dw(u'-Xw)

0 0

(A13)

Wherever possible, we used @=1 and a= -2. From
(A13) we find

for a Yukawa potential. There is an (n+ I)-order
pole at a =1 coming from a divergence at each
x; =0. Isolating the pole, we find Thus

(A14)

r(I) [K(P)]"f. ,(p, u)=A„„,)„„,(Q+ 1

where

(A8) (A15)
1 (-2 mig)' inp'

»nce p & =q', (A15) is identical to (A6) with n =1.
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In a variation of the Weinberg SU(2)XSU(2))(U(1) gauge model of the weak and electromagnetic

interactions, we study the proton-neutron mass difference, which is calculable, and investigate the

appetence of pions as part of the Higgs system. We find that the proton-neutron mass difference is a
function of the way in which the s~rrtetry is broken. We exhibit a possible sytrt~etry breaking which

produces the correct sign for the mass difference. In the Higgs sector, we have a mass-degenerate

pseudoscalar triplet which interacts with nucleons as pions do in the SU(2)XSU(2) cr model. Therefore

we identify this triplet with pions. They are massive in zeroth order, but we can calculate the mass

difference Sm'. We find that Sm is of order ap, which is too large. If we impose a reflection

syrrt~etry on the Lagrangian, the symmetry group of the potential is enlarged and we find that the

theory contains three pseudo-Goldstone bosons. These are the pion triplet, which are now massless in

zeroth order. When we calculate the pion mass in the one-loop approximation, the II remains massless

while the charged pions pick up mass of order m -ap, '. This may perhaps be damped numerically to
give a suitable estimate of the pion mass, but the mass difference is still too large.

I. INTRODUCTION

One of the most promising features of gauge the-
ories of the weak and electromagnetic interactions
is the possibility of calculating masses and mass
differences. Previously, in renormalizable field
theories, if a bare mass or mass difference van-
ished, then either it remained zero to all orders
because of an underlying symmetry of the Lagran-
gian or it was infinite in higher orders. In a spon-
taneously broken gauge theory, if a mass difference
or mass is zero in zeroth order for all possible
coupling constants even after the symmetry is
broken, then that quantity is necessarily finite and
calculable. Since there are no possible counter-
terms to cancel infinities if the zeroth-order rela-

tion holds in the presence of all coupling constants
not subject to artificial constraints, all higher cor-
rections must be finite because the theory is re-
normalizable. '

This paper studies particular questions in the
domain of this new calculability in the framework
of an SU(2)xSU(2)XU(1) model of the weak and
electromagnetic interactions. The model is ba-
sically due to Weinberg, but our interpretation of
it is quite different. ' One of the aims of this paper
is to study the proton-neutron mass difference
which is calculable in this model. The second
aim is to investigate mechanisms for incorporat-
ing pions into gauge theories.

If a gauge theory is to describe the weak and
electromagnetic interactions, the gauge symmetry


