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The patterns of symmetry breaking in the gauge theories are investigated systematically
in the general rotation groups and unitary groups, with Higgs scalars in the various repre-
sentations up to second-rank tenors. The occurrences of the fermion mass relations and
pseudo-Goldstone bosons are also discussed in various cases.

I. INTRODUCTION

Recently, it has been shown that it is possible
to construct a renormalizable field theory to unify
the weak and electromagnetic interactions. ' In
this class of theories, one starts from the usual
renormalizable Yang-Mills Lagrangian based on
certain symmetry groups, where all the vector
gauge bosons are massless, and then breaks the
symmetry spontaneously to give masses to the
gauge bosons in such a way as to preserve the re-
normalizability of the theory. This solves the
long-standing problem in the high-order weak
interactions. In the conventional theory of weak
interactions, the high-order effects have no mean-
ing because of the uncontrollable divergences pres-
ent in the nonrenormalizable field theory. ' If a
cutoff A is introduced in the theory to define these
divergent quantities, it turns out that this cutoff
A is embarrassingly small (-5 GeV) in order to
be consistent with the known facts in the weak in-
teractions. The renormalizability of this new type
of theory guarantees that the higher-order con-
tributions are finite and calculable and presumably
smaQ. This opens the possibilities of constructing
more realistic models to describe the weak inter-
actions of the leptons and hadrons. Here one has
to choose an appropriate gauge group, and one
assigns leptons and hadrons to some representa-
tions of the group in such a way that the known

facts of the weak interactions are not violated. 3

However, owing to the limitation of the presently
available experimental data, there is a large de-
gree of freedom as regards the choice of the group
in constructing models. In this paper we attempt
to examine systematically the pattern of the sym-
metry breaking in the general rotation group O(s}
and unitary groups SU(n), and various aspects
concerning the group structure of the theory. We
hope that this approach will provide some useful
information as to what to expect in various situa-
tions.

First we give a simple example to set up the

framework to study this problem. Take the most
familiar isospin O($) group and choose a triplet
of scalar bosons, interacting with Yang-Mills
fields X„. The Lagrangian is given by

~ F~+-'[(8 -gt A )y]'

+-.'u'(7 y) '~(y- -y)*,.
where

(t }yy =f&gyy ~
i

This Lagrangian is invariant under the gauge
transformation

X& X&+Zx X& + 8& t,-
+exp

The spontaneous symmetry breaking is realized
by letting the third component of the scalar fieM
have a nonzero vacuum expectation value,

&oI tiIo) =«3& ~

Redefine the fields such that new fields have zero
vacuum expectation values,

&AI& =o ~

The Lagrangian then becomes

Z=R +Z, ,

z, = --,'(e „X„-s,X„)'+—,'go*(A,„'+x,„*)+ —,'(s „y')'

+[-,'(p,*-XP)(y' ~ y') —Xv'y,"]!+(p*—Xv'}ey,',

where ~t contains all the cubic and quartic terms
in the Lagrangian. In the tree approximations, we
have to eliminate the linear term in p' in order to
ensure the condition &f,') =0. Hence we can choose
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(1.4)

From the free Lagrangian in (1.3), we see that
the gauge bosons P„y P„g get masses gv', and

A,„remains massless. Hence gauge symmetry of
the Lagrangian has been reduced from SU(2) to
U(1) with corresponding gauge boson A». With
the value (1.4) for v, the quadratic term in (1.3}
becomes

[2(p' —Xv')(p' ~ Q') —Xv'Q,"]=Xv $3

Hence p', and P,' are the massless Goldstone bo-
sons. Notice that the number of the Goldstone
bosons is the same as the number of the massive
gauge bosons. This is due to the fact that these
massless Goldstone bosons play the role of pro-
viding the extra degrees of freedom needed for
the gauge boson to go from the massless state
with two degrees of freedom to the massive state
with three degrees of freedom. So the general fea-
ture of this type of symmetry breaking is to have
as many zero-mass scalar bosons as massive
gauge bosons.

This kind of symmetry breaking has a very sim-
ple classical interpretation. We can consider the
meson self-interaction and the meson mass terms
as the classical potential

is completely determined by the scalar-boson
potentials. Therefore, to find out the symmetry-
breaking pattern in any given group we can follow
these procedures:

(a) Choose a particular representation for the
scalar boson and write down the most general
group-invariant potential V(p) which is a fourth-
order polynomial of the scalar fields.

(b) Find the minimum of V(p) by solving the
equation sV/sy =0.

(c} Calculate the number of the massless gauge
bosons which determine the unbroken symmetry.

In Secs. II and III, we discuss the symmetry
breaking in the general O(s) and SU(n) groups. For
simplicity we consider all the representations up
to the second-rank tensors. In Sec. IV we discuss
briefly the situation with products of groups such
as O(s}xO(m) or SU(s}xSU(m}.

There are several very interesting phenomena
which come out as a byproduct in this class of the
renormalizable theories, e.g. , zeroth-order fer-
mion mass relations4 and pseudo-Goldstone bo-
sons. ' These two kinds of phenomena are purely
group-theoretical in nature. We discuss them in
Sec. V in the context of the groups we are interest-
ed in.

Section VI summarizes the results obtained and
discusses the implications.

V(y) = !~'(y -y)+'~(~ y y)', »0. (1 6)

If p'& 0, the minimum of V(p), the state of the
lowest energy, is at the origin p =0. However,
for p, '& 0, the minimum is at

Q
~

Q
= p, '/x, (1.6)

&Q

FIG. 1. The classical potential for the spontaneously
broken symmetry.

as shown in Fig. 1. Equation (1.6} contains an
infinite number of solutions, related to each other
by rotation in O(3) space. Without loss of general-
ity, we can choose p, = (p, '/X)'", p, = p, = 0, which
is invariant under the rotation in (p„p,) space.
The syminetry is broken from O(3) to O(2) = U(1).
Since the minimum is not at the origin we have to
shift the origin to the position of the minimum by
defining P', =—P, —5„(p,'/a)"' such that the perturba-
tion expansion corresponds to Taylor expansion
around the ground state.

It is perfectly clear that the symmetry breaking

II. SYMMETRY BREAKING IN THE O(n) GROUP

As is well known, ' in O(n} there are —',n(n —1)
generators, which can be represented by

a a
L&& =X& —X&, i, j=&, . ~ . , n ~

8X) 8X&
(2.1)

Hence we have —,'n(s —1}vector gauge bosons, de-
noted by W~, with the transformation law

W,"q —W,"~ + a, ~ W$~ + eq~W & ~

(2.3)

W~]~ = -W~~],

where ~„=-~„are the infinitesimal parameters
which characterized the infinitesimal rotations in
O(n). Under the gauge transformation of second
kind,

v
'

uW(q Wgq+egqW()+e)„W", + s"a,q. — (2.4)

The Yang-Mills Lagrangian is then

The commutation relation among the generators,
the Lie algebra, can be worked out by using the
representation (2.1}with the obvious rule
[s/sX„X,]=6„;

[L,)& L„]=6(,L„+6„L,~ —6(,L~, —5~,L„. (2.2)
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with

1»f (2.5)

A. Vector representation

From the transformation law of this representa-
tion, it is easy to see that the most general fourth-
order invariant potential is of the form

V(4) = k(('4(A-+~&(6(}(}'~ (2.7)

where X&0 such that V(P) is bounded below. To
get the minimum of this potential, we calculate
its first derivative:

BV =(-y,'+Xyqpq}y( =0, i=1, . . . , s. (2.8)
(

The spontaneously-broken-symmetry solution is
then given by

(2.9)

E(f a~W(, (—) W(f +g(W( W ( W-"„W,"(). (2.6)

The irreducible representations in O(n) can be
classified into two categories, single-valued and
double-valued representations [except O(2)j. The
single-valued representations have the same trans-
formation properties as the ordinary vectors in
the real n-dimensional space and their symme-
trized or antisymmetrized tensor products. The
double-valued representations, sometime called
spinor representations, ' transform like spinors
in n-dimensional coordinate space. These spinors
have the property that they return to their original
positions under the rotation of angle 4g instead of
2m. They can be constructed along the same line
as the familiar Dirac spinors in the Lorentz group.
For completeness, we give a very brief descrip-
tion of these spinors in Appendix A. In this section
we discuss the choice of the scalar bosons as vec-
tor, second-rank tensor, or spinor representa-
tions. First we list their transformation laws and
their covariant derivatives, which couple the sca-
lars to the gauge bosons (see Table I).

=+4'* (W(.)'((('/&) ~

=1
(2.10)

So there are n-1 massive vector bosons W„&,
i=1, . . ., ((-1, and ~(((-1)(s—2) massless gauge
bosons W&&, i, j=1, ... , n-1, corresponding to
the gauge bosons of the unbroken O(((-1) symme-
try. The mass-squared matrix of the scalar bo-
sons can be calculated from the formula

I 8 V
p

2

2 ()A()4, ().&())

= (-q'+ ~(y')) 5„+2k(y()(y, )
2= P &»nays ~ (2.11)

There are (((- I) zero-mass Goldstone bosons,
the same as the number of massive vector bosons,
as expected.

The pattern of the symmetry breaking in this
simple case can be understood as follows. Since
the invariant potential (2.7} only depends on the
vector through its length g, the minimum must
be a condition on the length PI as in (2.9). There-
fore by choosing the solution with all components
zero except one, we get the O(((-1) unbroken sym-
metry. It is then very easy to deduce the results
in the case where we have two sets of vector rep-
resentations, p, and p, . The invariant potential
can depend on the length of each vector and the
angle between them, I/xi, liI), l, and Ip, ~ $2I.
The solutions for the minimum must be conditions
on these three variables. We can choose the first
vector with only first component nonzero and the
second vector with first two components nonzero

We can choose the solution to be P
={0,0, 0, ..., 0, (i('/A)' '}or P(=5(„(i(,'/l)P '. All
the other solutions are related to this one by an
0((() rotation. It is easy to see that this solution
is invariant under those rotations which leave the
nth axis unchanged, which is the subgroup O(n-1).
The symmetry is broken from O(s) to 0(((—1).
The gauge-boson mass term is given by

Z& =+-.'g'W(', (y, )W(',(y, )

TABLE I. Properties of various representations in O(I).

Hepresentation

vector

2nd-rank tensor
(symmetric)

2nd-rank tensor
(antisymmetric)

spinor

Dimension

2n(n +1) —1

—,'n(n —i)

2l

(n =2l or n =21+1)

Transformation law

4»- 4»+ ~»y4y

Ky+ ~ »k'qI'kI + ~gk~»k

@»j @»j ik~kj fk~ ik

x»- x; -~~&»(0 "x)»

Covariant derivatives D&@

a~y» -gw}»'y,

8 P»& -gW»kg& —gW&~@»k

() "0'(( swed'((( s-~ja4()-
a"x —&'gw&, (, x)
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in order to satisfy these conditions. The symme-
try is then reduced from O(s) to O(s-2). We can
generalize this argument to any number of vector
representations, with the result that for m sets
of vector repxesentations the symmetry is broken
from O(s) to O(s -m), where m & n.

In the case of unifying the weak and electromag-
netic interactions, we need (n-2) sets of vectors
to reduce to the U(l} symmetry of electromagnetic
interaction. If one wants to construct a strong-
interaction theory from this type of gauge theory,
one needs (n —1) sets of vectors in order io get
rid of all the infrared singularities.

(2.14)

The minimum of this potential is then

=2a, -p +2k., ez +%2', =0,
8aq

i=1, .. ., /. (2.15)

From these equations, me look for solutions where
not all a&'s are zero. Suppose that u& 40, for
i =1, ..., k. Then from Eq. (2.15}we must have

B. Antisymmetric second-rank tensor

For this representation, the most general
fourth-order invariant potential is of the form

V(Q) = —~leap('ypgy+~Q(pggQl)}

0( Aft jhow'414 0) ' (2.12)

By introducing matrix notation (Q')~z = Pf» with
=-P', we can write the potential as

V(y) =-,'p' Try" + —,'A, (Try")'+~X, Try".
(2.18)

Notice that the absence of the cubic term Trg"
is due to the antisymmetric nature of P'. Since
p' is real and antisymmetric, it can be trans-
formed into following standard form by a rotation,

+2~g +g +%2+) =0 j l= ~» e o

/=i ~sl

@which gives
2

cf 2~ P ~ » z Ij ~ ~ ~ j (2.16)

With this solution, the potential at minimum is
given by

kg,'
2A. ~k + A, 2

(2.17)

As a function of k, the number of nonzero a, 's,
this potential is monotonically increasing vrhen
A., &0 and monotonically decreasing vrhen A., &0,
with A. ,A+A, , &0. Hence for X, &0 the solution for
P is of the form

A,

A2 0

0

(' ')
, e =2&+&,

with

The potential can then be vrritten as arith



GROUP THEORY OF THE SPONTANEOUSLY BROKEN GAUGE. . .

2)Xq+Aa

From the coupling of scalar bosons to the gauge
bosons, it can be shown that there are /' massless
gauge bosons for pg =21 or pg =2)+1. Therefore the
symmetry-breaking pattern is

Q(2f)-U(f),

O(21+1)-U(f).

For the case X,& 0, the solution for p is given by

+4~I 4»'-g
=1

The condition for the minimum is then

(2.19)

, =0.

BV' 8

s»t'»
=-v 4i+~ 4i) 6+~ 4i -s=o

f =1,. .. , n (2.20)

0

for both even and odd e, with

%e give the detailed calculation of the solutions
to this set of equations in Appendix B. Without
solving these equations, we can still get some
general features. Because all of the p»'s satisfy
the same cubic equation, (2.20), these p»'s can
take at most three ~Hferent values, say

The solution for P can be written in
the form

2&x+&s

By calculating the masses of the vector gauge
bosons, one can see that

0(»») -U(l) x 0(»» —2) .

C. Symmetric second-rank tensor

l (»t ) - -2V (4»4»' J)»+ 4~ (4»»4»' )»»

+ i&s(»t»»»»t»»»»»t»»»»t»»») ~

with

(2.18)

0'»» =0'»»»

4»» =0 ~

Here we could have the cubic term Trp~, but to
make the discussion simpler we leave it out by
imposing a discrete symmetry 8: p- - p. We
will discuss the case with the cubic term in Ap-
pendix B. Again we introduce the matrix notation

(p)»» = p»z, with»t»"= p and Trg =0. We can diago-
nalize this real and symmetric p by an orthogonal
transformation to write (p)»» =p»» =5»»P». How-

ever, these components are not all independent
because of the trace condition Trp =0. Vfe can
use the Lagrange multiplier to take this condition
into account by writing

The invariant potential in this case has the same
structure as the antisymmetric tensor, ' where there are n, »t», 's, s p, 's, and n»t», 's al'ong

the diagonal, with n, +n~+n, =n. The most gener-
al symmetry breaking in this case is

O(s) -O(s, )xo(~)xo(n, ),
i.e., at most Q(»») reduces to products of three
smaller rotation groups. However, the detailed
calculation shows that it only breaks into two

pieces;

Q(»») Q(n») xO(»» —n»), X»& 0, X~) 0

where

»», =-,'»» (s even}

= —,'(n+1) (»» odd)

O(s}-O(s-1}, ~,&0, X,«.
D. Spinor representation

As explained in Appendix A, this class of rep-
resentations has dimension 2',for & = 2l and n = 2l + j..



i%28 LING-FONG LI

However, due to the existence of the 2' X2' gen-
eralized Dirac matrices, the number of the in-
dependent quartic invariants increases with l.
The problem of minimization of the invariant po-
tential becomes very hard to solve in a general
way because the number of terms in the potential
increases with the dimension of the space. ' So
far, we have not been able to overcome this dif-
ficulty. However, we can still work out the solu-
tions for the rotation group with given dimension.
Here we give an example in the case of spinor
representation in O(5). It turns out that the in-
variant potential is of the form

There are n' -1 vector gauge bosons denoted by

W~&( (i,j =I, . . . , n), with W(( =(W(()* and W„', =Q.

The transformation law for these vector gauge bo-
sons is given by

with

~ ~» +~~»~ ~»
—~~k~ ~»

f ~ f f f k (3.2)

~( - (~i) e

W „(-W(„(+if(W(„, ie(—W „,+ e„z—(((x). (3.3)
g P

Under the gauge transformation of second kind, we
have

2&'x'x + lg((x'x}*+lg. (x'r( x}(x'r(x»
=1

(2.21)

The Yang-Mills Lagrangian is of the form

glV 1g f y pv»
0 4 pv» f

where

(3.4)

where X is a column vector with four components

X„X„X„X4,and r, (i =1,. . . , 5) are the generalized
Dirac matrices which satisfy the Clifford algebra;

I' (
(

=8 qW (( —s „W (( + ig(W q(W ~ —W „(W ~) .
(3.5)

The minimum is given by

8V
e

2P X( 2gl(x X}X(+Zra(x r( x)(r( x}(

=0

and

(2.22}

(2.23)

In contrast with the case of 0(((), all the irre-
ducible representations in SU((() are single-valued
representations and can be obtained by taking ap-
propriate tensor products of the basic vectors in
the n-dimensional complex spaces. In this section
we consider the vector representations and all the
second- rank 'tensor representations. First we list
their transformation laws and their couplings to
the vector gauge bosons (see Table II).

1 1 y 1 f g 1

~X»
a(( X( + 2gl(X X}X( + 2ga(x r(x)(x r(}(

=0 (2.24)

t-(('+(g, +g )Zb( =o

-P Z +g(Z +g g y(y( -0.
(2.25)

(2.26}

The solutions for z and yf are

If we define z -=XtX, yf =-X yfg, we can rewrite
Eqs. (2.23) and (2.24) as

av (('+X(.4-(4'))A = o (3.7)

with the spontaneously-broken-symmetry solution

A. Vector representation

From the transformation law of this representa-
tion it is easy to construct the invariant potential,

'V($) = z(( g(p-+4K(p(p'), p, x real. (3.6)

The minimum is given by

g1 +As 4(W =('&x ~ (3.8)
4

y y(yf ( + }2'

om the representations of the y, 's given in Ap-
pendix A, it can be shown that the symmetry
breaking is of the form

O(5) —U(1) xU(1) xU(1) .

III. SYMMETRY BREAKING IN THE SU(n) GROUP

This solution gives rise to 2n-1 massive and

((( —1)' —1 massless gauge bosons. The symmetry
is then reduced from SU((() to SU(n —1). This is
very similar to the case of the vector representa-
tion in the 0((() group. By analogy, we can see
that the case with two sets of the vector represen-
tations will reduce the symmetry from SU(n) to
SU(n —2). To break the SU((() symmetry completely
we need ~ —1 sets of vector representations.

Groups of this class have n~ —1 generators,
U(( (i,j = 1, . . . , n), with U,

' =(U((},

[U'„Ut] = 5",U(( —5'(U', . (3.1)

B. Symmetric second-rank tensor representation

The invariant potential in this case can be easily
written down:
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TABLE II. Properties of various representations in SU(n).

Representation Dimension

vector

Transformation law

tt -4 +i&'0

pc —
(p )g ~f (~ j)g

Covariant derivatives D& p

Bp fj -igW~p jgg

2nd-rank tensor
(symmetric)

2n (n + 1) yjy yjg +i~ jgyg +i~ fgjit 8&|I)'j& -igW
p jury igW py&'jj

2nd-rank tensor
(antisymmetric)

2n (n — ) Pj) /a +i;t/rgg+iE ~gg, , 8~ Pj~ -igW~ jgj~ -igW~~P;]

Pj's =-4~j

ad joint
representation

n —12 t'&-e';+i "jv& -i~&t"

yj (yj)g yj 0

8&g~& —igW& jg~&+igW~&&g~&

1 (4) 2P 4iy4 + 4~1(klfl } + 4~a(Olfe Pall }t

(3.9) or
g =Conj

with

Ay =Ai =(4"}*.
To calculate the minimum, we have

1 ~2y&J + 1y (y yl ss)pj's + jy (yike y1l)
j)

|I) =cl =c

1 0

0 1

(3.15}

=0, ~ ~

1y ~ ~ ~ yg e (3.10}

It is very convenient to introduce a Hermitian
matrix X defined by

Xk y yak

Equation (3.10) can then be written as

—p g'~+X (X')g'~ X(+X~)P'' =0

(3.11)

(3.12)

-p +A~ X~ +A~Xj gj~ —0,

Since the matrix X is Hermitian, it can be di-
agonalized by a unitary transformation, which
corresponds to a change of basis vector in the
space. Therefore, without loss of generality, we
can take X to be diagonal to rewrite Eq. (3.12):

This form for g exhibits O(n) symmetry, because
the group transformation g- U re = UrUp = g if
U is orthogonal. This can also be checked by cal-
culating the masses of the vector gauge bosons.
Therefore the symmetry is broken from SU(s) to
O(n).

For the case X, & 0, the minimum is at

1

~+a &0
X +X '

1

j =1,. . . , n. (3.13}

Hence if some element g„x 0, then
0

+Xq X~ +Xqgj =0. (3.14}

This equation has the same structure as Eq. (2.15),
the tensor representation in the O(s) group. Fol-
lowing the same argument, it is not hard to see
that for X, &0 the minimum is at X=c'1, where
c =p /(X, n+ X~) and 1 is the nx n identity matrix.
It is shown in Appendix C that for this solution g
can be chosen to be

0

the symmetry is reduced from SU(n) to SU(n —1).
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C. Antisymmetric second-rank tensor representations

The invariant potential in this representation has
the same form as the symmetric representation,

for both even and odd I, with the symmetry break-
ing

SU{n)—SU(n —2) .

I'(4} = 2-~'{4o4")+4~i(A~I")'+'~24 i~d'4. it' »
(3.16)

with Po =-P&, =(g'~)* T.herefore we get the same
solution for X—= gg~. However, the solutions for p
are different due to the antisymmetric property of

It is shown in Appendix C that for x, & 0 we can
choose g of the form

D. Adjoint representation

For simplicity, we impose the extra symmetry
With this restriction, the invariant poten-

tial is given by

I'= lu'-~l~l +-'~,Ql4,'}'+!44 lilt@ t»
(3.17)

with

yi 0

%e can take it to be in the diagonal form

=5(pg, p( real

because p~ is Hermitian and can be diagonalized
by a unitary matrix. The potential (3.17}can be
written as

(")
for n = 2I, c' = p'/(2A. ,I + A ), and

)'+-'&x

+-'&a (3.18)

(")
0

where g is the Lagrange multiplier. This potential
has exactly the same structure as the symmetric
tensor in the O(n} group. Therefore we can take
over what we have learned there, with some ob-
vious substitution. The results are as follows:

If ),&0,

U(n) - U(n, )x U(n —n, ),
where

n, =-,'n {n even),

n, =-,'(n+1) (n odd).

for n=2E+1; the symmetry breaking i's

U(2i) - Sp(2&),

SU(2I + 1)-Sp(21) .

For X~&0, we can choose p to be of the form

U(n) - U(n - 1) .

IV. PRODUCTS OF SIMPLE GROUPS

The gauge theories based on products of simple
groups are very important in constructing models,
because of the necessity of including both lepton
and hadron symmetries in the theory.

For the product of the simple groups, the gen-
erators and irreducible representations can be
constructed very easily from those of the groups
in the product. If we have Q = Q, x G~, then the
generators in Q are simply the direct sum of those
generators in 0, and C„and the irreducible rep-
resentations in 6 are just the product of the irre-
ducible representations in Q, and Q~. In this sec-
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tion we study the groups O(~}x O(M) and SU(g)
x O(M).

A. O(N) XO(N)

From the properties of the generators, we need
two sets of gauge vector mesons, W»„'»'» (i, j
=1, . . . , N) and W'„'~

»» (a, P=1, . . . ,M), with the
transformation la%'

w, »»
-w»»» +(&»}»p',a» +(&»)»p' g»a

(») (») (»)

1
+ —(s„e,)»»,

ric, and can be diagonalized by an orthogonal
transformation. %e can choose X„=5„X~to re-
write Eq. (4.5) as

(4 7)

This equation has the same structure as Eq. (2.19)
for the O(n) group F. ollowing the same argument,
vie get

X«pgyesayk
X» +12

w„„,-w„., +(e,)„„w„„,+(~,),„w„„„(&) h) (s) (&)

1
+ —(s„e,), .

(4.1) X, =0, ~=@+&,.. . , X

(4.8}

For those irreducible representations which
transform like a vector or a tensor with respect
to one group but like a scalar with respect to the
other group, the symmetry-breaking pattern is
the same as those considered in previous sections,
e.g. , for the representation {N, 1), O(N)xO(M)
—O(N —1)x O(M). The simplest new representation
to consider is the representation (N, M), which
transforms like an N-dimensional vector with
respect to O(N) and like an M-dimensional vector
with respect to O(M}, i.e. ,

For X~& 0, the potential is a monotonically increas-
ing function of k. The minimum is at k =1, and
the X takes the form

(4.9)

A»a 4»n (~1}»»4»&c ('4)»»»»k» 8 p (4.2) 0

Ij 0 4 ~ )Pfy Q,) P 1$ ~ ~ ~ )Af 0

Their coupling to the vector gauge bosons is of
the form

&w» =k(s» 4» -8'»w»'»»4a -g'p"a'84»8)(»)

For X, & 0, the potential is a monotonically de-
creasing function of Q. Hence the minimum is
at the largest value of Q allow&ed, which should be

However, this would imply that X is a multiple
of the NxN identity matrix

x{s 0» -s'»W»«4» -gnaw, a„4;y}(»3 (a)

(4.3)

X=c~l =c (4.10)

The invariant potential can be easily seen to be

(4.4)

But X is constructed from the +xM matrix (%~M)
by

The minimum is then given by

8V
s»t'»n

(4.5)

Equation {4.10) implies that if we consider each
roar as an ~=component vector, all these N vectors
are orthogonal to each other, which is impossible
for +&M. Therefore the largest value of k allowed
is M, not pf, and the solutions for X and p are

It is convenient to introduce the matrix X, defined

X«y =
«8 ys =44 (4.6)

X=c g

Pf A, »+X~

The matrix X defined this way is real and symmet-



1'132 LING- FONG LI

V. OTHER RELATED TOPICS

By calculating the masses of the vector gauge bo-
sons, we can see that the symmetry is reduced
from O(N)xO(M)-O(M}xO(N M-) for X, &0. For
the case ),& 0, it is easy to see that

1 0 ~ ~ ~ 0
0 0

0 0 ~ ~ ~ 0

The symmetry is reduced from O(N) x O(M)
—O(N 1)x —O(M —1).

B. SU(N) X SU(N)

There are also two sets of vector gauge bosons
with the transformation laws

W(i)i W(1)i+i(E )kW(1)i +i(f )iW(ok y (s k )i
1

pf pi 1 k j1k lk p$ ji 1 $&
gi

iy) 1) ~ ~ ~ y N

g2
Qy P 1 p ~ ~ ~ y~

Here we consider the representation (N, M) which
has the transformation property

mfa 4n i(el)i kin i(~k)nli8 &

i,j =I, . ~ ~, N; 0, p =1, . . . , M

and the complex conjugate transforms like the
(N, M) representation

gin ~in (& )i~in (& )a~ia

Their coupling to the vector gauge bosons is of
the form

~W(i k(ep 4a igiW parka- ZgkW p a Pi 8
(i)k (a) 8

X (8 "gin +ig W( (Iii a +ig W k a/i'()

The invariant potential can be written down as

It was pointed out by Weinberg' that in some
cases the restriction of the invariant potential to
the fourth-order polynomials forces the potential
to have symmetry which is higher than the rest
of the Lagrangian. Under that circumstance, there
are more zero-mass Goldstone bosons than mgs-
sive vector gauge bosons, because the number of
Goldstone bosons is determined by the potential.
These extra Goldstone bosons, called pseudo-
Goldstone bosons by Weinberg, have vanishing
masses in zeroth order and will pick up masses
in the higher-order correction because the other
interactions do not respect the accidental high

symmetry. These masses, coming solely from
the higher-order interaction, should be finite and

calculable if the theory is renormalizable. This is
due to the fact that there is no mass term in the'

zeroth-order Lagrangian to absorb the divergent
masses coming from the higher-order corrections.
These finite masses are presumably small if the
coupling constants are weak. Hopefully these
pseudo-Goldstone bosons can be identified as the
pions or the whole pseudoscalar octets. This
phenomena provides a very interesting mechanism
to explain the approximate symmetries like SU(2)
x SU(2), or SU(3)x SU(3), seen in the strong inter-
actions. Hence it is very useful to find all the
cases where this phenomena can take place.

For all the representations we have considered
in the previous sections, it turns out that only in

a very special case can we have pseudo-Goldstone
bosons. For the case where there is only one ir-
reducible representation, we have found that the
symmetric second-rank tensor in O(3) and the
adjoint representation in SU(3) can serve the pur-
pose.

Let us illustrate this in the case of O(3). As we

have seen in Sec. II, the most general invariant
potential of the second-rank symmetric tensor is
of the form

V(iji) = --,'(i,' Triji'+-,' X,(Triji')' ~ —,
'

X, Triji'.

V=--,'(k'((Ii, P' )+-,'X, ((j(, (ji' }''.(4'"4is)(4-i A"),
with the minimum given by

-k( Aa+. k.(4iS4 )An+. ~.AS(lind }-o~

~4(a

However, in O(3) it happens that

(Trijik)k = 2Trp, Trp =0.

The potential is then simplified to

V(Q) = ——,g (Triji ) + —' X'(Trp )

(5.1}

(5.2)

The detailed analysis runs parallel to the case of
O(N)x O(M). The results are the following.

X, &0: SU(N)xSU(M)-SU(M) xSU(N- M),
N&M

k,,& 0: SU(N}x SU(M)- SU(N-1) x SU(M —1).

k. ' = X, +-', X, . (5.3)

This form has the same structure as the vector
representation in O(n), with the feature that the
quartic term is proportional to the square of the
quadratic term. Since there are five independent
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components in p, the potential in (5.3) has the
O(5} symmetry, which is higher than O(3). As we
know, for the vector representation in O(5) the
symmetry is broken to O(4} and there are four
zero-mass Goldstone bosons. But the O(3) sym-
metry can break into either U(1} or no symmetry,
which requires two or three Goldstone bosons.
Therefore there are one or two pseudo-Goldstone
bosons. The coupling of p's to the vector gauge
bosons is of'.the form

&W e
= a(sprig -g&pia&4y -8~qga Aia)' ~ (5.4}

which has only O(3) symmetry. The higher order
will then break the O(5) symmetry of V(p) to give
these pseudo-Goldstone bosons masses. Notice
that it is the relation (5.2) which is responsible
for the appearance of the pseudo-Goldstone bosons.
It is easy to see that the relation cannot hold for
values of g other than 3.

For the unitarity group SU(n), relation (5.2) also
holds in the case n =3 for the adjoint representa-
tion, the octet representation. In this case the
higher symmetry is O(8), and the number of
pseudo-Goldstone bosons is either three or one.
These are the only cases we have found so far if
one uses only one irreducible representation.
Suppose we have two representations p, and p, of
some group G, such that the potential V(P„P,) is
invariant under G transformations on p, or P,
separately. Then V necessarily has higher sym-
metry Qx G, consisting of independent transforma-
tion on p, and p, . This is called unlocking of rep-
resentations. We have found that in the case of
O(N) group, if we have spinor representation p,
and a vector representation X,. and if we impose
a discrete symmetry X- -X then the only coupling
between X and p is of the form (ptp)(y, y, ). This
is invariant under rotation on p or y separately
We then have unlocking of the spinor representa-
tion and the vector representation.

So far we have talked only about scalar and vec-
tor bosons. The fermions can be included very

easily. The most general Lagrangian of the fer-
mion is of the form

&o =&7~"D„0+m44+fP'i44i

where the last term is the Yukawa coupling be-
tween the fermion and the scalars. This term is
the one which is responsible for splitting up the
fermion multiplet when the system undergoes
spontaneous symmetry breaking. If the represen-
tation content of (t} and g is such that this term is
not present, the fermion multiplet will not know
the symmetry breaking in the zeroth order, and
the p and p masses will have higher symmetries.
Since this higher symmetry is only special to the
fermions, it will be broken by higher-order cor-
rections. Again the renormalizability forces the
mass difference generated from the higher-order
effect to be finite and calculable.

In the O(n) and SU(n) groups, this term is absent
if both the fermions and the scalars belong to the
vector representation except in O(3).

VI. DISCUSSIONS

We have studied all the symmetry-breaking pat-
terns in the general O(n) and SU(n) groups for all
the representations up to the second-rank tensors.
The results are summarized in Table III.

Among the results we have obtained so far is
that the familiar groups O(3) and SU(3) seem to
have a special feature in the appearance of the
pseudo-Goldstone bosons. For this reason, it
seems to be very promising to construct models
based on groups which are products of O(3) or
SU(3) and some other groups.

This paper, which deals with the most general
group structure of the gauge theories, can be
looked upon as the first step toward building the
models. To go further, one has to assign the
fermions, both leptons and quarks, to some rep-
resentations of the groups and study their selection
rules. Of course, there must be a large degree
of freedom in the choices within the present data.

TABLE III. Summary of the pattern of symmetry breaking.

Representation O(n) SU(n)

vector

k vectors

2nd-rank
symmetric tensor

2nd-rank
antisymmetric tensor

ad joint
representation

O(n)

O(n —k )

O(n —1)
or O(l ) x O(n —l ), l = [2n ]

U(L )

or U(1) xO(n —2)

SU(n —1)

SU(n —k )

SU(n —1)
or O(n)

O(2L +1)
or SU(n —2), L =[~~n]

SU(l) x SU(n —l) x U(1)
or SU(n —1), L =[~~n]
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Before the future experiments can nail down the
correct group to use, the sensible criterion is
whether the models offer any insight into the
mysteries in the weak interactions, such as the
origin of the Cabibbo angle, the ratio of the muon

mass to the electron mass, etc.
In nature, only the U(1) gauge symmetry, cor-

responding to the electromagnetic interactions, is
exact. So one would like to break the symmetry
down to U(1). As seen in Table III, this situation
does not happen very often. However, from the
work of Coleman and E. %'einberg, ' the symmetry
can also be broken spontaneously by the higher-
order radiative corrections. This gives the pos-
sibility of breaking the symmetry in two stages;
one starts from a big group 6, and breaks down to
a smaller group G, through Higgs mechanism, and
then breaks further down to the final U(1) symme-
try in the manner of Coleman and E. %'einberg.
This kind of scheme is very attractive because in
the first stage the symmetry-breaking effect is
usually very large and the second-stage symmetry
breaking, due to the radiative corxection, is usual-
ly small, so that the G2 group can be used to ex-
plain the approximate symmetries, such as SU(2)
or SU(3) seen in nature. It would be very int:crest-
ing to see how this scheme -an be carried out.

y» =O' XC X ~ ~ ~ Xg, Xg X1X)X~ ~ ~ X1

g 1}~ i 0 }

where there are i 0 matrices and 3 matrices in

all, and

y» &
=g Xo X ~ ~ ~ Xo Xg X1X1X ~ ~ X1,

i=1, . . . , l (A2)

with

It is easy to check that these expressions for the

y, 's satisfy the anticommutation relations (Al) by

using the rule (A, xfl, )(A, x 8,) =(A,p, ) x (II,II2).
It can be shown that these y's form a complete
matrix algebra in the space of dimension 2'. Now

consider a rotation in the coordinate space

X» 0»k Xk }

where 0 is an orthogonal matrix, i.e. , 00~=1.
This rotation induces a transformation on the y»

matrix,

ACKNOVfI. EDGMENTS

I want to thank J. D. Bjorken for initiating this
investigation and for his encouragement. I am

grateful for many helpful discussions with M. -S.
Chen, E. Eichten, W. Kinzelbach, and R. Pettorino.

In this appendix, we discuss some general as-
pects of the spinor representation. This class of
representations can be understood most easily in

terms of Dirac spinors.
The rotation group O(n) can be considered as

those linear transformations on the coordinates
g„~2, . . . , x„, such that the quadratic form x, +x2'
+. ~ ~ +x„'is invariant. Now if we want to write this
quadratic form as the square of a linear form of

x» s,

It is easy to see that the anticommutation relations
remain unchanged, i.e.,

~&y)+rg~& =0&.0(i(~i~)+r)r;) =»&) (A4)

ol

(A5)

The correspondence 0-S(0) serves as a represen-
tation of the rotation group. This is called the
spinor representation of O(n). The quantities g„,
which transform like

Because the original set of y matrices form a com-
plete matrix algebx a, the new set of y matrices.
must be related to the original set by a similarity
transformation,

&i +&2 +' ' '+&n =4'i&x+'Ye&2+' ' +&n~n»2 ... 2= ~ ~ ~

we have to require

Yfyj YjY» 2~»j ' (A1)

are called covariant spinors. Their complex con-
jugate g,*. which has the transformation property

1 (0)

Clearly these y,. 's have to be matrices in order to
anticommute with each other. These are the gen-
eralized Dirac matrices. The algebra of (Al) is
known as Clifford algebra. First we discuss the
case where pg is even, pg =2(. One particular rep-
resentation is of the form

are called contravariant spinors. From Eqs.
(A5)-(A7) we can construct the following bilinears
just as we construct the Dirac spinors, "which
have the same transformation properties as the
tensors seen in Table IV. For an infinitesimal
rotation we can parametrize O„and $(0)by
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TABLE IV. List of the bilinear spinors.

scalar

vector

2nd-rank anti symmetric
tensor

3rd-rank antisymmetric
tensor

r. . =t.
«, «,

=0 v«, v«, 0

«f«23 ~ 'f'2'3~

r;=r,
r,'=o«, r,

«k kk ~ 2 f 2tft2 ~f f ~22 f2

'« 'k '~ 'k kkk Zf 2 3f23 f f '22 33 f23

~ n th-rank antisymmetric
tensor

v (t~ ~ ~ 5 tf 42 «
r. . =o. o. o. r ...

f

0«k = &«k+~«»

S(O) =1+iS»»e'».

Then Eq. (A5) implies that

2[Sk» Y») 2(5k» Y» 5»r»k) ' (A8)

BP 2 3=-»» 4»+&» 4»»t»»+&24» -a=0
-1

with

, =0.

(Bl}

It is not hard to see that

1 ~

k» ok» B»[rk Y1)

and

S(e) =1 '2 [rk r»-)~" ~

If one expresses the parameter &«k in terms of ro-
tation angle, one can see that S(4»») =1, i.e. , S(O)
is a double-valued representation of O(n). From
these transformation properties, we can work out
the covariant derivative as

s „A —~4gli'»Bk(&»kl);.

For the construction of the fourth-order invariant
potential, we can contract the vector with vector, or
second-rank tensor with second-rank tensor, etc. ,
just as in the case of the four-fermion weak-inter-
action Lagrangian. In general we would have
(»»+1) quartic terms in the potential. However,
because all the four spinors are identical, not all
these (n+1) terms are independent, in contrast
with the case of weak interactions. It turns out
the number of independent quartic terms increases
with the dimension of the space. '

APPENDIX 8

In this appendix we give the details of the solu-
tions of the minimum in the case of the second-
rank symmetric tensor in the O(n) group and also
consider the case with the cubic term Trft)'.

The minimum for the case without the cubic term
is given by

As we mentioned in the text, these p's, which
satisfy (Bl), can take at most three different val-
ues. This can be seen as follows. Suppose there
are three different »j»'s, say»j»„»»»»„»t»B. They have
to satisfy Eq. (Al):

n

goi) 4 '~ 4

uo '~ -oi') 4"u 4.' —o=o
-1

(B2)

-u, '4, ~ ~, (g 4,') 4, +~,4,'-4=o.

By subtracting one equation from the others, we
get

I 1 4» ~2(41 II»42 42 )
=1'

-v'+&i g' +&2 4i'+Asks+(t)'3

+»j2 +QB =0. (B4)

If we have another solution, p4, which is different
from ft)„$2, and p~, by using the same subtrac-
tion procedure among p„(IJ)„and p4 we get

$2 + (f)3 + Q4 =0 .
This implies p, =(Ie)4, contradicting the assumption
that »t», 44»j»4. So there can be only three different
»j»»'s which sum to zero Let us w.rite the»jo matrix
in the form

where we have used the fact that »j», oo»j»B. Subtract-
ing again one equation from the other, we get
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n1$1+n3$3+n3$3 =0 ~

The last equation is due to the trace condition
Trp =0. From (B6) and (BV) we can solve p3 and

p3 in terms of p:

n3 n$
43= „nQ n3

(B8)

nQ ng
3 n

41'
ns na

(B9)

where there are n, p, 's, n, p3's, aud n, p3's along
the diagonal, with

Now we can go back to the potential V(P) to express
every term in terms of P, and minimize with re-
spect to p„'

n~+ng+ns =n,

41 43 43 (B6)

V=-ag, +bP, ,

with

(B10)

1
a = —

3 n, (n, —n3)'+n, (n, —n,)'+n, (n, —n, )'Y (n3-n3)

1
-2

b= « ~4 X, n, (n3-n3)'+n3(n, —n, ) +n, (n, —n, )' +&3 n, (n, —n3)'+n3(n, —n, ) +n3(n, —n3)
3/

(B11)

(B12)

It is very easy to see that the potential at the min-
imum is

f(x, y) =f(n„n3, n3)

1
V 4 Z, + X3f (n„n„n3) (B13)

3y'+ (3x —2n)'
(8n —9x)y'+ x(3x —2n)' (B16)

with

n, (n, —n, )'+n, (n, -n, )'+n, (n, —n3)

[n, (n, —n,)'+n3(n, —n,)' +n, (n, —n, )']' '

(B14)

Now we look for the values of n„n„n„which give
the smallest minimu~, corresponding to the ground
state of the system. From the expression (B12) we
see that if X,&0, X, &0, the smallest V corre-
sponds to the minimum of f(n„n„n,}, and if X,&0,
X, & 0, the smallest V corresponds to the maximum
of f(n„n„n,). By using the identity

n, (n3 —n, )'+n, (n, —n, )'+n, (n, —n3)

= 3[n,(n3 —n3) +n, (n, —n3)'+n3(n, —n3)']

&& [(n3 - n, )'+(n, —n, )'+ (n, - n3)']

we can reduce f(n„n, n ) to a simpler form,

(n, —n, )'+(n, —n,)'+(n, —n, )'

This is an even function of y,' we can consider
positive y only. The allowed domains for x, y are

0&x ~n,

0&y &n,

«x-y &n.

The derivative with respect to y is as shown in
Fig. 2:

Qs 8y (3» —2n)'
sy [(8n —9x)y*+x(3x —2n}']'

Hence, for »41 3n, f is a monotonically increasing
or decreasing function of y, and the extremum
must be the boundaries, y =0 or y =x. Since sf/sy
has the same sign as (3» —2n), the minimum must
be on the lines y=g for x& 3n and y=0 for -', n& x&n.
Along the line y = x f is given by

X= 0=2
3

(B15}

We introduce the variables x-=n, +n, and y=- n, —n,
to rewrite f(n„n3, n3) as

= X
I 0
I

FIG. 2. The domain for the function f(x,y) in Eq. (B16).
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3x —3nx+n
(x, x) =

xn(n —x)

and has a minimum at x= —,'n with value f=1/n.
Along the other line Y =0, we have f= 1/x with
minimum at x=n with the same value f=1/n. Ac-
tually these two points x=y = —,'n and x=n, y =0,
which correspondto ny=gn n, =o n3= n and n,
= —,'n, n~ = —,'n, n3 =0, respectively, are equivalent
because the function f(n„n„n,) is symmetric in

n2, and n, . Therefore for the case n even the
minimum for f(n„n„n,) is at n, =n, =-',n. For the
case n odd, since n, =n, =

~2 is not allowed we have
to look at the nearby points. It turns out that the
minimum is at n, = -,'(n + 1), n, = -', (n —I), and n, =0.
To get the maximum of f( „n„nn)s, the analysis
is very similar. %e get the results that for n,
=n —1, n, =l, n, =0, f is the maximum; hence V
is at minimum.

Now let us consider the invariant potential with
the cubic term

%e have to solve this cubic equation for p, and
substitute it in the potential V(P,) to find the value
of n„n„~ where V(P) is the smallest. This com-
putation is straightforward but very tedious. %e
only give the results here.

(a) For X,&0, X, &0, we consider the variation
with respect to X,. At X, =0, we know that O(n)
splits into two "almost"-even pieces, i.e.,

O(n) O-(n, ) x O(n —n,),
n, =2n (n even),

n, =-,'(n+1) (n odd).

As we increase X3, either in the positive or the
negative direction, the minimum starts to shift
toward the pattern where O(n) splits into two most
uneven pieces, i.e.,

O(n) —O(n —1).

(b) For X,&0, X,&0, the minimum is very stable
against the variation of X„ i.e. ,

O(n)-O(n —I) for all X, .

+~~a1 3

!=1

The condition for the minimum is then

BV 2 3 2=-v 4i+&x 4'~ 0'+&24 +~sA -gsf' j-1

(B17)

(BIS)

APPENDIX C

In this appendix we show how to get the solution
for the second-rank tensor p, either symmetric
or antisymmetric, if we know that X=gg*=cI,
where I is the nxn matrix.

1. Symmetric tensor

+p +p =-X/X (B19)

instead of the simple relation {B4). Combining
this equation with the trace condition (B7), we
solve for p, and p, in terms of p, :

We still have only three values for P, 's, p„p„p„
which satisfy the condition

We have g =P and gg*=cI. Since the matrix P
is in general complex, we express g in terms of
its real and imaginary parts, p =A +iB, where
A and B are real matrices. Because p is symmet-
ric g = g . A and 8 are also symmetric, A =A, B

In terms of A and B, the condition that Pg* =cI
becomes

[~n, +(n, —n, )y,],
n3 n2

(820)
A +jP=cI,

AB =BA ~

{C1)

(C2)

with

1
[Xn, +(n, —n, )y, ],

nQ n3

X —= XB/X~ .
Because these relations are not homogeneous, the
calculation becomes very complicated. Instead of
a simple form like (B10), we have

~=+Ax +&4i +&4'x +d4i+e y

where a, b, c, d, and e are iunctions of n, 's and

X,. 's. Its derivative is of the form

BP
=4ap~ +3bp~ +2 Q~ cd=0+.

So A and B commute with each other, and we can
diagonalize these two real and symmetric matrices
by a real orthogonal transformation, which is
automatically unitary in the complex space. There-
fore A and B can be chosen to be of the form

, (C3)
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Then the matrix g is of the form

g =A+iB
P+

Qj +Sgj

IA = U(IA, )U',

Ia =U(IA, )U',

with

(CV)

(iA), =

(C4)

a

(C8)

where we have defined a~+i, b~ =v ce' s Rem.ember
that under the group transformation of U(n), p
-U/Ur. We can use this property to write

P =Up'U

(fa)„=

for g =2/. The eigenvalues, mhich are real, have
to occur in pairs, because det

~
M iA—

~

=0 implies
det

~

—xI-iA
~

=0 if A =-Ar and if n is even. To
get to the standard antisymmetric form, me can
use the matrix

Hence g' = cI is the most general solution.

2. Antisymmetric tensor

For even n, n =2l, we have g"=-P and Pg" = cI.
Again we define two real matrices A. and g by

g =- A. +i&, and Q, & ax e antisymmetric, Q = -Q ~, p
= -B~. They satisfy the same conditions as before:

which has the property that

(' ')"=(' '.)
So ~e can ~rite A and gg in the form

A =(m)A, (UZ)',

a = (m)a, (m)',
with

(Ci0)

A +EP =cI,

AS=BR.

(Cs)

(C6) 1(1 -1)

%e want to transform A. and jp to the standard form
for the real antisymmetric matrix. Since A and

g are antisymmetric, (iA) and (iB) are Hermitian
and commute with each other because of (C6). We
can diagonalize them simultaneously by a unitary
transformation:

1
(1 -1)
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A s

"-10
Just as in the previous case, this matrix g' can
be written as

yl U/pl iUI T

where

-1 0

bl 10
(C11)

Bs
0 1
-1 0

(C13)

But we know that any real antisymmetric matrix
can be brought into the standard form (C11) by a
real orthogonal transformation. This means that
the combination (UQ) must be real, i.e. , (UQ)
= (UIf') r, and the matrix p can be written as

P= Vg'V,

where

U'=

1/2

So the g can be written as the standard form up to
a group rotation.

For the case of g odd, g = 2)+1, we can use the
same analysis with the obvious modification of
adding a zero in the diagonal.

(a, +ii, ) (' ')

(C12)
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