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Multi-Regge limit of the Neveu-Schwarz model
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The structure of the Neveu-Schwarz model in multi-Regge limits is studied, with particular
emphasis on quantum-number effects on Reggeon-particle vertex functions.

I. INTRODUCTION

The Regge analysis of inclusive reactions' and

its apparent consequences in terms of decoupling
theorems for a Pomeron pole at a(0) = 1 (see Ref.
2) has led to a renewed interest in the structure
of Reggeon-particle vertex functions. ' The prime
tool in investigating these has been to exploit spe-
cific models to give clues about the general struc-
ture of multiparticle amplitudes in various limits.
Apart from the ladder-graph model and its more
sophisticated version, the Gribov calculus, ' the
most popular model to date has been the conven-
tional dual resonance model (CDRM), which has
yielded many insights into the structure of multi-
particle amplitudes. 4

In view of the above, we thought it worthwhile to
look at the Regge limits of a more complicated,
but theoretically equally successful dual resonance
model, the Neveu-Schwarz model" (NSM). A new

feature in the NSM as compared to the CORM is
that there are four leading odd-G-parity trajecto-
ries arranged in two exchange-degenerate (EXD}
pairs of opposite normality (7P). Thus quantum-
number effects on the vertices can be studied.

In Sec. II of the paper we derive the multi-Regge
limit of the Neveu-Schwarz amplitude for six
pions. In Sec. OI the odd-6-parity trajectories
are separated by explicitly summing the ~-A2 con-
tribution in the manner of Van Hove, and the Reg-
geon vertices are exhibited.

Two of us have repeatedly emphasized that the
Pomeron decoupling theorem of Brower and leis'
involves an extra assumption about the dependence
of the amplitude on the variable Q [Eq. (2.3}jthat
cannot be deduced on general grounds. However,
all the simple models studied up to date seem to
be in agreement with this assumption, and we
want to point out that the NSM does not provide
an exception. As explained in Secs. II and III, the
NSM seems to have a modified Q dependence as

compared to the CORM, but this is in fact due to
a quantum-number effect associated with ~-A,
exchange.

H. THE MULTI-REGGE LIMIT

The six-pion amplitude (Fig. 1) in the NSM is
given by'

Ae = QQ~2 dQ~3 dQ~4V67 (2.1)

where
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and V, is the integrand of the six-point function in
the CDRM. The well-known duality constraints'
express the variables u, ~ in terms of the three
variables u», u», N, 4, which we have chosen to
be independent.

The multi-Regge limit is defined by s»=- t,
=fixed, s„=-t,=fixed, s,4=-t, =fixed, s~=-sg--

$4 2 & 45 3

s s s s= fixed, g2 —= = fixed y
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As is well known, in 4-dimensional space-time
(or indeed, in any space with only one timelike
dimension), P approaches 1 in the multi-Regge
limit:

1-Q (2.4}
s~

g being a complicated function of the variables
held fixed. As was discussed in Ref. 8 it is, how-
ever, important to consider A, as a function of Q;
this corresponds to working in a space of higher
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3p )( P4 the standard way by the change of variables

X1 X X3
Q =-— Q =-~ Rlld +

s ' " s 14 S1 2 3
(2.5}
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FIG. 1. The six-particle amplitude.

dimensions and appropriate signature; or to con-
tinuing analytically into complex values of the mo-
menta P1, . . . , ~0.

The multi-Regge limit of (2.1) is calculated in

Using

2p2. p3 = s1 —2m

2p3 p4= s2- 2m

2P4 P5 = S3 —2'
2P ' P4 = S24 —S1 —S2+Pl
2P'3 &5= S35 —S2 —S3+m',
2p2 p, = S10+S2—S24- S35y

we see that the leading behavior is given by

(2.6)

A, -(-s,) &(-s,) a(-s, )+

00 ~0 00

dx, dxp dx, x, '~x, " 'x, exp(-x, -xg —x, + x,xg/q, + ax, /re —x,xsx, y/q, qg)
0 0 0

X2
x 1+ ' 1-Q s2+2m' —g, -g2 +

~1~2 g 1/2
(2.7)

In obtaining (2.7} we have written

u„= 1 —(1 —u„)

in the last term of (2.2} and used the duality con-
straint

1 2 35 1 m2 pj 2ss s sQ
1 3

S10

'-mSS S S+~
2 4 j

S35 S10

s (pj. pJ)2 84 $5S S S

(2.8)

ui~(1 —ui, )(1 —ui~) we observe that

(1 —p) s~+ 2m Q —g~ —g~ = -2p, ~ p~ . (2.9)

We see that A, has a modified Q dependence as
compared to the CDRM. Due to relation (2.4), A,
still has the normal Regge behavior (this is, how-
ever, not the case in a space with two timelike
dimensions, where the behavior would be s,""').

To understand the meaning of the second term
in (2.7) we work in the conventional 4-dimensional
space-time and impose the Gram-determinant con-
ditions. For this purpose it is convenient to intro-
duce the transverse (spacelike) momentum vectors
p; (i =2, 3, 4, 5). Noting that

In 4-dimensional space-time the angle between

p3 and p, is uniquely determined by g1
t„where

g pi2

t, = (p,'+ p,')*,

t, = (p,'+ p,'+ p,')'.
(2.10)

(In a space of more than 4 dimensions, the angle
is arbitrary. )

Simple, but messy, calculations give

(t~ —t~+ q, —m~)(t~ —t~+q~ —m )2pJ. , pj. 1 2 1

([(q, —m')'+ 2(q, m')(t, + t,) +—(t, —t,)'][(q, —m')'+ 2(g, m')(t, + t,)—+ (t, —t,)']j"'
212

(2.11)

Thus the second term in the large parentheses in (2.7}breaks up into a sum of two factorized terms. The
second involves the factor
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Z, = (-[(g, —m'}'+ 2(q, —m')(t, + t,) + (t, —t,} e]) 'ie

= [-q, + m'+ (I t, -+ v' te-)']"'[q, —m' —(E t,-4 t, )']"',
showing the thresholds and the pseudothresholds in the transverse momenta. If we reexpress Z, in terms
of the Toiler angle co„related to g, by

X(t„te, m')

2g t, 4-t2 cos~, —t, —t2+ m'

we obtain

g ~
1/2

= 2t-t, sinra, „,
~ )

and so (2.7} can be rewritten as

(2.12)

A, - (-~ i(-se) e(-se)' t dx, dx, Ck,», &x, Se
JQ Q Q

x exp(-x, —x, x, + x,—x,/q, + x,xe/g, x,x,x,—y/q, q, )

~x (t, —t, + g, —m e}(t, t y q —m e)

2t, n2

g X/2 ~ X/2,
2x sin(d 1 3 (2.13)

The interpretation of various terms in (2.13) is
as follows: In the even-t"-parity channels ng Q3

we see the exchange of the EXD p-fe trajectories,
including the eliminating of the p-tachyon poles at

0 Q3 0. The analysis of the spec trum of
states in the NSM" shows that in the odd-6-parity
channel o.2 there are four leading trajectories, all
with the trajectory function n, (t,) = e+ t„grouped
into two EXD pairs with opposite normality (7P):
the &u-Ae trajectories with rP=+1 and the v tra-
jectory and its partner, the first particle of which

occurs at a2=3, with 7P=-1. An ~-A2 exchange
in the n, channel clearly involves normality
change at the internal Reggeon-Reggeon-particle
vertices, and is thus expected to lead to a factor
since, sinco2. ' Thus we may identify the last term
in (2.18) as representing the ~-A, exchange in the

a2 channel, whereas the exchange of the m and its
partner (?) trajectory gives rise to the first three

terms. That this is indeed the case is explicitly
shown in Sec. III.

III. SEPARATING THE ODD-G-PARITY

. TRA JECTORY CONTRIBUTIONS

In the Fock space 3:„ea state on the (&u-Ae) tra-
jectories of momentum k and spin J is given by

C
[ke(g I)!p~e

&«e(k)~~ "~see &'k 'b, &b,„&,„~~ ~ a,„~O, k), (3.1)

where e(k}"&"'"~is the spin-Z polarization tensor
and C is an over-all normalization constant. Us-
ing (3.1) and the operator forms of the vertex and

the propagator, we can calculate the amplitude
A~ for the coupling of the state (3.1}to three pions
(Fig. 2) and we obtain

2C — 2 '-' 1

x(pe+»Pe)e ~ ' '
(Pe+ »Pe)e (3.2)

where m labels the different polarizations. a~(s}
is the p trajectory 1+s. We can now calculate the
contribution of the ~-A2 trajectory to A, by sum-
ming over all states (Fig. 3):

Ae *=Z J—a (t )
ZAz(Pz, Pe, Pe, k)

xA~(P„p„p„-k)*. (3.8}
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Pp

~-~, , e(k)/" — ~' FIG. 3. The (cu-A2) contribution to the six-particle
amplitude.

FIG. 2. The coupling of (co-A2) to three pions.

portional to the determinant

p asy Xpa
P1aP25 P3y 6& P6X ~sp~4a

=Det(P(. Pq) (i=1,2, 3, j=4, 5, 6).,
(3.5)

In (3.3) we replace the sum over the polarizations The sum in (3.4) can be performed explicitly, us-
ing the formula

P e(k, m}"~ P~e"'~(k, m)"~ "~

by gp'"&gp2"2 ~ ~ gp~"~. This will of course admit
states of lower spin than J into the Jth term in
(3.3), but as we will later let s,—-~, only the
highest spin states will survive, and the procedure
is thus justified. With this understanding, we see
that

dr 24 8
Af) = ] Cjt P1cxp2g p3y P6p p5pp4a

2

t 1
x (' d«x, "A&(1 —«)

~0

n=0

1 Zn

—,=( z)-'y(a, -z),n+a n!

y(a, z}= dte 't' '.
0

Thus

Ae-Az & d«« -up(tl (I «) +pal
4+2

0

1

d«, x "p"3 (1 —x }
0

where y(a, z) is the incomplete y function:

(8.6)

(3.7)

1

x dx,x, p" '(1 —x )
0

1 1+ (J —1)t J- a,(t,)

x l (P23+ «ip2) ' (P4+ «SP5))
'

~ (8 4)

The important thing to note is that (3.4) is pro-

x(-2(p, «p, ) (p. «,P.)j"~'" '

xy(1- a (t,), 2(p, i«,p, ) s(p, +«sp, )) .

(8.6)

The multi-Regge limit of the integral in (3.6) is
readily computed by observing that the incomplete
y function approaches a complete y function as

~ s, ~
-~. A tedious calculation shows that the

limiting behavior of co is given by

8rs" s, s,s, ' (( —t )s, — [m' —m'(t, ~ 2t, —t) ~ (t—t,)(t,,—t,)I, —(m' —t-t) ~ —(m',—t,,—t)- )t,4

~1~2 ~1~2 ~l ~2

81 2 3 2 SiIl(d1 QiIl(d2 (3.9}

upon using the expressions of Sec. II. Finally, I then, the contributions of the ~-A2 trajectories are given by

1/2 1/2

A, "2-C'(-s, }"&(-s,) 2(-s,}+2 sin(d, sin(t),

x dx, dx, d«, x, ").«, ~2«, +exp(-«, —x, —«, +«,«,/g, +«p, /q, —«,«p, p/rt, rl,), (8.10)
0 0 0

This corresponds exactly to the last term of Eq. (2.13}, and our claim that it was due to ~-A, exchange
has thus been justified. It is interesting to note that the term containing the factor (1- (j)))s, arises entire-
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ly from the (&u-Ag)-exchange contribution. The modification of the (j) dependence is thus attributed to the
change of normality at the Reggeon-Reggeon-particle vertices.

The remaining three terms in (2.13) are due to the exchange of the v and its partner trajectory. To
show that they collapse into one factorized term, we do the x„x„x,integrations, getting an expression in
terms of Tricomi's 4 functions':

A" '-(-s, ) 1(-s,)"2(-s,)g(-)),)' 1(-)7,)' gr(1 —a,)r(1 —n, )I'(-a,}

x 11 (1 a„2 a, ~ a„q,)%'(1 a„2 a, + n„qg)

2(a1 2 )1)(ng a2 lg)
(2n, —1))7,qg

)lr (I —n, 1 —n + a; -)) )4'(I —a„ 1 —a, + n„' -())2}1y 1» 1

a,(a, —1)
+ 4'(I —n1 —a1+ ag' -7/1)4'(1 —Qg —Qg + Qg' -g)2)

g1$2
(3.11)

Using a recursion relation between the three 4' functions of the same argument" we can factorize (3.11)
into the form

A; -(-s,)'(-s,) *(-s,)"(-S,) "(-s),) ar(1 —a)r(l-a, )r(-a,)(
2

x [(a, —Qg+ g), )%'(I —n1, 1 - Q, + ng; -(71) + (2ag —l)4'(I —o.„-a, + ag; -g)1)]

x [(n —n + ()) })Ir(1 —a, 1 —a + n; -q ) + (2a -1)%'(I —n, -a + n; -2) )], (3.12)

which explicitly shows the absence of a spin-1 state on the pion partner trajectory. The apparent pole at
a2= & is spurious. To see this, notice that as 0.2= &+1» +2= —, means t, =0. At this point a, - n2+g, =g,
+t, -m„'=0, as g)1=m„g —t, +O(t,). The same holds, of course, also for n, —ag+2)2.

We have checked that the residues of the poles of (3.12) in n, factorize into the appropriate limiting
forms of the amplitudes coupling the states on the n-P trajectory, the spin-J on-shell state of which is
given by

J
(2J-1)Z! '"1 '"2 (2J-1)(Z-2)! (3.13}

to three pions. The identification of the terms in (2.13) is thus completed.
From E(ls. (3.10) and (3.12) we can now read off the forms of the Reggeon propagators and Reggeon-

Reggeon-particle vertices. We write

A, PP„,I'(t, )Pp ~ (s„ap(t,})

[V( p-)( )(~-xg)(np( 1)s a(s)(tg)s '91)Pg)-x (sg) n~(tg))V(~-g ')(p-p )(a~(tg)s ap(tg) ) ))2 )

+ V(p y )(2 p)( p(tn) n1gstg)) ))2) Pg s ( gs ag( 2))V(g s)(p y )(ag(tg)) p(tga) g)2))]Pp g (sgs pa(t ))2(62g(tg) s

(3.14)

and find for the Reggeon propagators

Pp & (s, a) = r(1 —np)(-s) P,

P „(s,a ) =I'(1 —a )(-s)~~,

P, ,(s, n„) = (1 —a„)(1—2n, )I'(-a, )(-s)"g .
(3.15)

The vertex functions take the simplest form when they are written down in terms of complex (helicity) in-
tegrals:

-2tp "' 1 1

~(t„t, m') r(1 —a, ) r(1 —n }

y+ j~
x . dm 1 (-m)r(m —ap+ 1)r(m —a + 1)(-)7)

217Z
(3.16)
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1 ')f+ 5
V(p q,)(„,)(ap, a„,q) = —(, , , dm I'(-m)(-)I) I'(m —a~) I'(m —a„)0 r1-Qp)ri1 er) 2'

(m —a, }(m —a„) m(a, —a, ) m(m —a„}X. "+ ' '+ (3.11}

Finally, as in the CDRM

P~ (f) =1 . (3.18)

As has been mentioned previously, only the (e)-A,}-
exchange contribution contains factors modifying
the Q dependence. However, this modification is
associated with the change of normality and comes
from the determinant &u (3.5). In the limit relevant
for the inclusive reactions, P, =P„and this deter-
minant vanishes and thus decouples the (e-A, ) con-
tribution. A straightforward analysis along the
lines of Ref. 8 shows that in this limit only the

m-7 trajectory contribution survives. As its Q

dependence is essentially of the standard form,
this contribution does not provide a counterex-
ample to the decoupling theorems.
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