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By use of the path-integral formulation of quantum mechanics, a series expansion for the

effective potential is derived. Each order of the series corresponds to an infinite set of con-
ventiona1 Feynman diagrams, with a fixed number of loops. As an application of the formal-
ism, three calculations are performed. For a set of n self-interacting scalar fields, the

effective potential is computed to the two-loop approximation. Also, all loops are summed

in the leading-logarithmic approximation when n gets large. Finally, the effective potential

for scalar, massless electrodynamics is derived in an arbitrary gauge. It is found that the

potential is gauge-dependent, and a specific gauge is exhibited in which a11 one-loop effects
disappear.

I. INTRODUCTION

The effective potential for a field theory (that is
the generating functional for zero-momentum sin-
gle-particle irreducible Green's functions'), intro-
duced by Euler, Heisenberg, and Schwinger, is
useful in studies of spontaneous symmetry break-
ing, as was first pointed out by Jona-Lasinio, '
and more recently by several authors. '4 Calcu-
lation of this object has proceeded by summing
infinite series of Feynman graphs at zero momen-
tum. " Obviously this is an onerous task, espe-
cially when several interactions are present which

complicate the combinatorial factors that multiply
each graph. Moreover, the calculation has been
only performed in the one-loop approximation,
since higher-loop contributions appear extremely
difficult to evaluate.

However, it is important to be able to study the
higher-order multiloop graphs, if not explicitly,
at least in general terms. Two circumstances
can be envisioned where multiloop graphs are

needed. The one-loop approximation is very sim-
ple; indeed it will be seen that it is not typical of
the higher-order terms. Thus it may be that rel-
evant effects do not set in until the two-loop level.
More importantly, bound states which, as has
been recently suggested, can provide a mechanism
for spontaneous mass generation' can never be ob-
served in a finite order of the loop expansion.
Necessarily they require at least an infinite sub-
set of all orders.

In this paper, I shall use the Feynman path-in-
tegral method to obtain a simple formula for the
effective potential. The formula has the advantage
of summing all the relevant Feynman graphs to a
given order of the loop expansion. Furthermore,
in a natural way it generates all orders of the
loop expansion, representing each order by a
finite number of graphs. Before stating the re-
sult, some notation must be introduced.

Consider a theory described by a Lagrangian 2
depending on a set of fields &P,(x) and construct
the classical action,
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[We work exclusively with Bose fields. For gauge
fields Z(P) contains a gauge term. ] Next define
another Lagrangian by the following procedure:

1(0+0)-1(4)—J&'xe.(*),

d'xZ{j„y,(x)) . (1.2)

In the above, the shifting field P, is a constant,
x-independent object. Assuming that the original
Lagrangian 2 was composed of terms quadratic,
cubic, and quartic in P,(x), the new Lagrangian
2 wiQ similarly have quadratic and higher terms
in P,(x). The quadratic terms define a new prop-
agator for the fields, while the higher powers
comprise an interaction Lagrangian $1, with

"coupling constants" which depend on Q, . Thus

(1.2) may be written as

=
I,

d'xd4y-,'y, (x)fr&-'„Q; x, yjy, (y)

+ d'x Z, {y„y,(x)) .

The propagator, denoted by &~{@;x,yj, also
satisfies

62f(y)
ah{ I ~ 3] 6y ( }6y ( }

Since P, is a constant, the propagator is a func-
tion of relative coordinates only, and may be
Four ier transformed:

d'xe'"i~ '.,{j; x, 0) -.

2' exy I d 'x k,((., (.(x))) ,
4

using conventional Feynman rules, with &,(,{(Im(; k}
as the propagator; keep only connected single-
partiele irreducible graphs; delete an over-all
factor of space-time volume fd'x. This gives

exp — d xgI ~ gx

I have retained the factor h in the definition of
the S matrix (though not in the parameters of the
Lagrangian). The reason is that an expansion ln

k is equivalent to the loop expansion. ' The tree
contribution, Vo(P), is independent of I; the one-

loop determinant is proportional to k. The re-
maining term is of order O'. This is seen by re-
scaling the field: P,(x) (g) mg, (x). Since Sz may

contain a term cubic in P,(x), (i/K)Z, is at least
of order S~'. Fractional powers of 8 cannot occur
in perturbation theory; thus (i/g)Zz begins with

order I, and the additional factor I m (1.6) makes
the last term O(K').

After rescaling by (k)~', one can expand the ex-
ponential and evaluate

exp — d4xgI ., kl/2 .x

in powers of S. Ordinary diagrammatic analysis
of the vacuum amplitude can be applied, and the
graphical series given in Fig. 1 is found for V(y).
The dot is the free term; the single unadorned
circle is the logarithm of the determinant. The
remaining terms are conventional: Lines repre-
sent the propagator Q„gi; k), and two kinds of
vertices occur, cubic and quartic. These are
vertices of the shifted Lagrangian Z~; the cubic
vertex in general depends on P,. (We deal with a

[In my convention the free-field spin-zero propa-
gator is i/(k~ - i(, '+ ie).]

The formula for the effective potential V(P) is

"dk
V(y)=Vo(j) ,'fa,-l-ndetfm-'. ,{j;u)

+it exp —
~~

d4x, "„.x . 1.6

The first term is the classical tree approximation.
The second term is the contribution of all graphs
with one closed loop, where the determinant op-
erates on the indices (a, 5) which can refer to in-
ternal or spin degrees of freedom. The last term
summarizes the following operation. Compute the
vacuum expectation value of FIG. 1. Series expansion for the effective potential.
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renormalizable theory where no higher field poly-
nomials are present in the Lagrangian. )

Thus the problem of computing the effective po-
tential to a definite order in k is reduced to finite
analytic operations. The two-loop contribution in-
volves two graphs; even the three-loop terms
comprise a still manageable six graphs. %8 have
not given the combinatorial factors that multiply
each graph; these depend on the model and can be
deduced with Nick's theorem. Note that the one-
loop te1 m ls stx1kingly diffex ent from all the
othex"s; it involves a logarithm. '

The remainder of this payer is organized as
follows. In Sec. II, the formula (1.6) is derived by
functional methods. As an explicit exercise, in
Sec. III we evaluate the effective potential V(P) for
a set of self-interacting spin-zero fields. Pre-
vious results" of the one-loop calculation are re-
gained, and the two-loop contribution is given.
Also a formula for V(P) is obtained which is exact
in the leading logarithmic approximation as the
number of fields gets large. In Sec. IV, me repeat
the Coleman-Weinberg' calculation for massless
electrodynamics. These authors computed the
one-loop potential in the Landau gauge, since in
that gauge the infinite set of Feynman graphs sim-
plifies considerably. As our formalism dispenses
with infinite summations, we are in a position to
compute in arbitrary gauges. We find that V(P}
is gauge-dePendent on the one-looP level. This
raises questions, discussed in Sec. IV, about the
physical significance of the mathematical proper-
ties, of V(P) in a gauge theory. Section V is de-
voted to conclud1ng remarks.

II. PATH-iNTEGRAL DERIVATION

OF THE EFFECTIVE POTENTIAL

We derive the formula (1.6) by an application of
Feynman's path integral. Many of the steps mill
be obvious to those practiced in this technique.
Nevertheless, they are included here for com-
pleteness. The argument mill proceed in tmo

stages. First, we shall give a very explicit dem-
onstration, valid to order O'. Then a more gen-
eral argument will establish the result to all or-
ders.

source J', (x), i.e., a term J,(x)P'(x) is added to
ZQ, (x)). The effective action I'(P) is obtained
from W(J) by a Legendre transform:

1(y) = W(J) — d'x J.(x),

6W(J)
( )

=-y.(x) .
(2.2)

I'(P) generates single-particle irreducible con-
nected graphs. Note in particular that the con-
nected, single-particle irreducible vacuum graphs
are given by I'(0), which is W(J) evaluated at
that value of J,(x) where 6W(J)/6J, (x), or equiv-
alently 5Z(J')/5J', (x}, vanishes. We record this
expression here, since me shall need it later:

1(j}=-V(j) d'x. (2.4)

The path-integral representation for Z(J') is
'I

Z(Z) =
I dp ezp —(l(Q)+QJ}) . (2.5)

For notational simplicity, we shall suppress all
indices, and space-time variables will be treated
as suppressed indices as well. Thus PJ stands
for jd xg, (x}1,(x). Similarly, all differentiation
is functional. Also me ignore a J-independent nor-
malization factor, which is present in (2.5).

B. First stage of the proof to order 82

It is well known that an expansion of W(J) in
powers of h is the loop expansion. ' Moreover, in
the functional integral this corresponds to a sta-
tionary-phase evaluation, ' which is achieved by
translating P in (2.5) by P', where P' is chosen
to satisfy the classical equations of motion:

IV(J) I sx(~~ /ar. (*) =

=irreducible, connected vacuum graphs. (2.3)

The effective potential V(P) is defined from I'(P)
by setting P,(x) to be a constant field P, . An
over-all factor of space-time volume must be re-
moved, and me have

A. Preliminary definitions
sr(y)

8$ @ ~0
(2 6)

For a field theory described by a Lagrangian
2(Q, (x}},the connected generating functional
W(J) is defined by

This defines qP as a functional of J. Also we have

f(y+y') =r(y') -Jy+-,'y~m-'y+fQ; y}, (2."I)

where
Z(J) =exp -W(J) =(0'io-), . (2.1)

Z(J) is the vacuum persistence amplitude in the
presence of a linear intex action with an external

s'l(y)

[compare (1.4)]. Hence

(2.6)
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W, (J) = -@lnZ, (J) . (2.10b)

In the above, we have used the fundamental path
integral

dQ exp —-(t)i[fg = (DetM) ~' .
5 2

=exp —[i(i')+i'Z]) De) ~*(ii) ')Z, (Z),

(2.9a}

fdic

exp((i/g)[lti& '0+iiI'; 0 }j )
z,(J)= , (2.9b)f+ exp[(i/h)( ,'pi-& 'p) J

W(J) =1(P )+(t) J'+ —'iNn Det(i 5) )+ W (J), (2.10a)

plicitly only in the second term goth iS-x and

W, (J) are in fact functionals only of [t)', as is seen
from (2.8), (2.9b), and (2.10b). Moreover, (2.6)
can be taken to define J as a functional of P',
rather than vice versa, a fact which we make ex-
plicit by writing J((I[)'}. Thus eliminating J' in

favor of (T) in (2.10a) is equivalent to eliminating
Q' in favor of (t, a task easily achieved with the
help of (2.11). Consequently, we arrive at the re-
sult

=I(g+ Q')+ P'J'(P+Q')+I', (Q+ P') . (2.12)

Here I;(p') stands for the last two terms in

(2.10a), and the subscript reminds us that I", is
first order in K. Next we use (2.6) again to find to
order 5'

The determinant is taken in the functional sense.
W, (J'} is of order II' (hence the subscript). The

argument for this is the same as in the Introduc-
tion. Observe also that W2(J) is the connected
vacuum amplitude for a theory described by the
action ,'Qi & 'P+ Ijg'; Q}. It—isnot single-particle
irreducible. The denominator in (2.9b) ensures
proper normalization and indicates that the propa-
gator in this theory is S. This is a translationally
noninvariant propagator, since it depends on P';
see (2.6). Furthermore, the "coupling constants"
of this theory also involve P'; they represent posi-
tion-dependent, nonlocal "interactions. "

If we were computing W(J), (2.10a) would pro-
vide a loop expansion in powers of k. However,
we are interested in I'(([])), and a Legendre trans-
form must be performed. %e need to evaluate
s W(J)/BJ. If h were zero, it would simply follow

from (2.6) and (2. 10) that

BW(J) 81($ ) Bg
&J 8(j) BJ BJ

Hence we shall set

8 W(J'}

(2.11)

where P' is a functional of $, to be determined
later. It is of order k. To complete the evaluation
of I"(P) from W(J') given by (2.10a), J must be
eliminated in favor of Q. This is to be done from
(2.11)which defines, via the dependence of (t)' on

J [see (2.6)J, a relationship between J' and j.
Fortunately, we need not solve this very im-

plicit equation. Observe that (2.10a}shows that
W(J) depends on J' implicitly through P' and ex-

eW(J), sr, (f) ey
BJ 8(T) BJ

1 sl'l(4') e4" + O(S2)+OS
(2.iS)

=1(y)+r, (y)+ ,'y"1 S-'y'—

+ yl ~4 } yl yl 1(4+ + O(6.3) (2 13)
B(J[) 8$

Equation (2.13) shows that to order h, I'(P) is
simply given by

I'(P) =I(([]))+-,'ihlnDet(i& ')+O(II') . (2.14)

This result, which is known, "summarizes all
one-loop calculations. The terms of order S2

are of two distinct types First, . there are the
last three terms in (2.13) which arise from the
fact that (I)' does not coincide with T(). Second,
there is the order-h' contribution to I', (T()) itself.
From (2.10a) this is seen to be W„ the sum of all
connected vacuum graphs in the theory governed

by the action

Q i & '[t + I+i; Q}= 1(Q + Q ) —I(@) —Q
ss(y)
8$

(Since W, is itself of order I', we may freely set
Q' equal to Q in W, .) To complete the argument
to order k', it will now be shown that the single-
particle reducible graphs in W, cancel against the
last three terms in (2.13}involving P'.

First, we seek a formula for ft)'. It is sufficient
to determine P' to lowest order in R. Prom
(2.10a) and (2.11) it follows that



From (2.6) we have, upon differentiation with re-
spect to g',

a*i(y') sz(y')
Bp 9$

or, equivalently,

sy0
8J'

(2.16a)

(2.16b)

FIG. 2. Single-particle reducible vacuum graph con-
tributing to 8'&P) but not to I'&(Q).

It is this quantity which wiH cancel against the
single-particle reducible term in V,. Note that
(2.10a) implies

(2.1V)

'arT-ra ' '+0(a)
8$ Bg

(2.19)

Order of factors does not matter since & is sym-
metric. Therefore, the last three terms in (2.13)
are given to lowest order by

~(P )y y
~ (P )

3 ed 0 syO

The trace operation, indicated by Tr, is function-
al.

%e now turn to a computation of $V, to order S~.
Continuing the expansion (2.V), we see that

1 8gS 1 8 g5)
0 + (y ~ . (2.20)s 4 8$

. », (y') ~ »,(4'), 0(z,)8/0 ' 8$

»,(y')», (y')
2 sy' s4' (2.19)

e shall assume that no higher-order terms are
present; it is easy to check that they do not matter
in any case. ) Thus we are led by (2.9b) and (2.10b)
to an evaluation of

(2.21)
8S) ' 1 8'gS'' "*'

S S ("
8(,

' 4( (" s( - ')=
Rescaiing the field p (g')+~y, expanding the exponential, and keeping nonvamshmg, connected terms
through order k, we are left with

gk 0 2'—'0 -'A 0 T' —' —' 0 (2

The first term has no single-particle reducible graphs. The only connected structure is the single-particle
irreducible contribution, pictured as the third diagram in Fig. 1. The second term contains the irreducible
graph pictured as the second diagram of Fig. 1. Also there is a single-pgrticle reducible diagram given in
Fig. 2. To evaluate it, we reintroduce all the suppressed indices in (2.22a):

x (0~ rg.(«,)y,(x,)y,(x,)y, (x,)y, (x,)y,(x,))0) . (2.22b)

The "vertices" are symmetric in all their arguments. Consequently, %ick's theorem gives, for the re-
ducible part,
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W» is -iX times the above; using (2.19) finally
gives

i Bi,(y')~ Bi",(y') (2.22d)
2 B(t) Bg

As promised, this cancels (2.18).
The following assertion has noir been proved, to

order k'. The effective action I'((]])) is given by the
free term, by the functional determinant, and by
the set of connected, single-particle irreducible
vacuum graphs in a theory described by the action

f(y+P) -f(y) —y,—»(y)

For arbitrary, space-time-dependent fields P, no

practical computation can be performed. However,
as we spell out explicitly below, for constant
fields, the calculations can be simply carried out.

C. Second stage of the proof to all orders in I'

The above tediously explicit argument clearly
cannot be extended profitably to higher orders. I
shall now give a much simpler, albeit nonexplicit,
proof which makes no perturbative approximation.
We again translate the field (])) in the functional in-
tegral (2.5}by the quantity P'; however, we no

longer impose the condition that p' satisfy the
classical equations of motion. Rather it is some
functional of J; whose properties will be deter-
mined presently. It is trivially true that

»(Z)=exp»[l((')+( Z])»,(J),

It ~ould appear that to evaluate P, as a function-
al of P would require the solution of the terribly
implicit set of equations (2.24} and (2.26). Pro-
gress can be made by substituting (2.26) into
(2.24):

W, =-i@in df exp — I(P+ P') -I(P')

Bl(yo) Bw,
B4'-

W(Q'; K) = iklnZ($-0; K) .

Bf(y ')so+4K

(2.29a)

(2.29b}

Clearly, W, = W((][)'; K) ~» ~)»iaido. Recall also that
apart from an over-all normalization factor, the
connected single-particle irreducible vacuum

graphs for the theory governed by the action

1(y+y') -l(y')-0, .Bf(y')

(2.26)

All reference to J has disappeared and W, is found
to satisfy the above functional, integro-differential
equation.

Let us next introduce the objects

(4»'; )=»J( (eeI-e»r»(yey') z(t')-

», (Z)= +ee» [t(y+y') t(y')+yJ—]), -

w(z) =f([t')+ y'~+ w, (z),

W, (Z) = -ia Inz, (J) .
We compute Bw(J)/BZ in order to effect the
Legendre transform which defines I'($):

(2.23)

(2.24)

are given by W((I[); K}, evaluated at that value of
K which makes BZ((]])';K}/aK vanish [see (2.3}].

We now show that BZ((]])';K)/BK at K= -B~,/By'
does indeed vanish. Since this is the value of E at
which we seek W(g';K), this establishes

~i = W(4" K) I»= aw,yaeo-
to be the sum of all connected single-particle ir-
reducible vacuum graphs in the theory governed by
the action

(2.25)

As before, we view 8 as a functional of $0, hence

W, depends on J through its dependence on (}e)'."
We now demand that (t)' be that functional of 4 (or
vice versa, that J' be that functiona1 of $0) which

makes it true that

Bl((t) ) B~x
( o)

yO gyO

In that case Q = Q' and I'((][)) is simply

BI '
1(y + yo) 1{go)

(apart from the afore-mentioned normalization
factor).

The derivative of Z($0; K) is

BZ(y'; K} i
E S~

= —' dP (Q)) exp — 1(P + f'}-I((t) )S

I'($}=l(y)+ w, .

(2.26)

(2.2V)

&(0'),~»
IB(]))'

(2.30a)
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Hence the principal result will follow if we can show that

O= '4(4~~
k (4(~ 4 ) r'(4')--4

To establish the validity of (2.30b), differentiate (2.28) with respect to P':

BI 82 BZ '

(2.30b)

(2.3 la)

The first term in the first set of curly brackets may also be written in the following way:

, z(y + y '}exp — z(p+ p'} -z(p'} -p

= -Nd(((( —'(exp — I(Q + P') -I(g') -Q
Bz(y') Bw,

BQ k BP BP

The first integral vanishes due to a functional integration by parts. Reinserting the remainder into (2.3la),
we find

82 BI
o
--—

(

d(t(
B

', -p
B

„[I(p') W, ] e p — I(p+p')-I(f')-Q
Z~

or
92

o=, „[z(y'}+w,]

I

Now it is possible to convert the functional ex-
pressions to ordinary integrals. Clearly, the
classical contribution is

x dg (((( exp — I(Q + Q ) -I(Q )

r
I(4) =-&.(P)J d'~. (2.32)

(2 3«)

The first factor clearly is not zero (it is the in-
verse propagator), hence the second factor van-
ishes as is wanted.

Finally, we come to the matter of the normaliza-
tion. Perturbation theory conventionally assumes
that a purely kinetic term (a quadratic action) does
not yield a vacuum-to-vacuum transition. This is
not true of Z(P'; K), as defined by (2.29a). To
make it so, Z(Q'; K) should be divided by

hence W„when evaluated in conventional pertur-
bation theory, acquires the additional term
2ihlnDetiS '. The argument is now complete and
the assertion at the end of Sec. IIB is established
to all orders.

D. Final step of the argument

To complete the evaluation of the effective po-
tential, we set P in I'(P} to a constant field P.

The propagator 5){g;x, y} becomes translation-in-
variant, and diagonal in the momentum representa-
tion. Thus the functional determinant is easily
evaluated:

ln Deti S ' =Tr Lni S '

= Tr(2v)454(k- l)lniS '{((((;k) .(2.33a)

. d4k
4 ln deti5) '{((((;kj d4x .

1T
(2.33b)

Finally the vacuum graphs are now easy to eval-
uate, since the vertices are no longer x-depen-
dent, though they do still depend on fII). Transla-

The logarithm on the right-hand side in the first line
is functional; however, since iS ' is proportional to
the unit operator in the momentum representation,
(2s)45(k- l), the logarithm in the second equality
is an ordinary function of the matrix iQ '{p, k) .
Evaluating the remaining functional trace leaves

Tr(2v) 5'(k —l) lni K) '{g; k]

d k
4 (2n)454(k —l) Tr lni I) '{P;k)2F (=k
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tion invariance ensures that an over-all factor
Jd4x will be present in all these graphs; this fac-
tor is removed in the definition of V(Q). Thus Eq.
(1.6) for V((f) } is proved.

Although a complete evaluation of r(()) ) for arbi-
trary (t)(x) is not in general possible, even in the

one-loop approximation, due to the intractability
of the functional determinant, it is possible, with

additional effort, to give an expansion of r((t)) in

terms of derivatives of P (Ref. 3):

r(y) = — d'x V{y(x))

,'y-, [-{5q'+~(~+ 5~)j')5„+,'j,—j,]y,

A +5k ~ 2 X+5K
v'a I (3.2)

It is known that z~ = 0,' and to the order we are
working z, plays no role; hence we ignore the en-
tire wave-function renormalization counterterm.
The shifted Lagrangian is

+ d'x V."{y(x))s„y.(x)+ ~ ~ ~ . (2.34a)

This determines the propagator; in momentum

space it is

py setting y, (x) =y, + x„y,", y, and y," constant,
iu-'„[j;n}=[@'—{5p.'+~(Z+ m. )y')]5„

—,'(X+ 5~)p. p, ,

+ V"(j}j d'x+ ~ ~ ~ (2.34b)
5q' -,'(~+-u—)++i.e P

When this form of (())(x) is substituted in our ex-
pression for r(p), (2.14) for the one-loop term or
(1.6) for the complete loop series, an expansion in

f" can be evaluated, and equated term by term
with (2.34b). This gives a determination of V ((f)),

and the procedure can be continued with an attend-

ing increase of computational tedium.

III. SELF-INTERACTING SPIN-ZERO FIELDS

A. Preliminaries

As an example of the general procedure, I shall
calculate the effective potential for a theory of n

spinless fields p„with an OQ)-invariant interac-
tion. For simplicity, the fields are taken to be
massless. The computation is performed exactly
in the two-loop approximation. Also the contribu-
tion of leading logarithms to all loops is summed

in the limit n-~.
The Lagrangian is

gQ, (x)}=~8)($, 8"Q, —
4 )

Q

5p, 2 N. 40 —4, 4 +r&s) 4. s (f).

y'=y. y, , y'= (y'}'. (3.1a}

The counterterms 5]Lt,', N., and z are given by

power series in 5, beginning with order h:

(3 3)

The field shift gives rise to a nondiagonal "mass
term" (X+5k.)(+~85,(, + —,'$,(f)~). Also a cubic inter-
action~8(X+ Q, )g,P,g' is induced; the "coupling con-
stant" depends on g, .

B. The eNective potential in the hvo-loop

approximation

The zeroth-order effective potential is just the
classical expression

(3.4)

In first order, according to (1.6), we have

V~(P) = ——
(

4 ln deti &,(,$$; k}

~ in[A -m, +is]ih dk
2w'

X [k -mm + iE]

m~ =5i(, + ~(X+5K)(f)

m~ =5p +~~(X+5K) P .

(3.1b)
The integration contour is rotated, the integral is
evaluated with a cutoff at k'=A', and the final re-
sult is
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2 A
V,(Q)= 54+ A ln 1+ ~ -m~4ln, +1 +A~m, 2

+ 64' Aln 1+, ™,ln 2+1 +Am2
}f(n-1) 4 m, ' 4 A'

2 2
64g2 m, ' (3.5b)

2A2e~'&
6A, ~

= ~ ln (3 5)

+-t(n-1) ln +%~ .

Here 6X, is an unspecified but finite quantity. The
effective potential now becomes

2

V(j)=, j'+ 5~'j'+,+[1+-',(n-1)]j'in''

A constant of order A', independent of all param-
eters, has been dropped. In the present formalism
no infrared divergences are encountered since a
mass term in induced by the shift of the field.

Renormalization is carried out as follows. We
substitute (3.1b} into (3.5b} and expand to order
O'. It is demanded that as A'- ~, the effective
potential be finite and that the mass remain zero
to order S. This forces the following conditions,
in the limit A'-~:

A'Z
5g,' = —,, [1+—,'(n —1)],1 25 2

This can be done, since at the present stage, they
are still undetermined. The important point is
that a and 5 are fixed in terms of other param-
eters:

A, As n 4 [1+3(s 1)]

b = +' [1+~ (n —1)]2'I'
3A.

+ „,[1+~(n-1)]

xI ln + ~~(n —1)ln (3.7b)

For the renormalization program to be successful,
the two-loop contribution must cancel the infinite
parts of a and b.

Now for the two-loop effects: According to (1.6)
and (3.2) we seek the order-k' connected, single-
particle irreducible graphs of

+g'ap'1np'+ g'bp'1ng'+ O(R'},

6p =S'6p,
(3.'la)

5X=MX, +5'u, .
We have adjusted 6p, ~' and 6A,, by adding various
infinite constants so that (3.7a} is true as written.

(3.8)
We have deleted the counterterms, since they play
no role in this approximation. Upon rescaling
P - (k) 'Q, expanding the exponential to the rele-
vant order, and applying Wick's theorem, we are
left with the two integrals

" d40d4L
I, = ~K'X 2, [&„(g;k) 5)„(g;1}+2&„{P;k)S (y; &)], (3.9a)

" d44d4L
I, =- „ik A P,P, (2 )8 [S,~g&; k+L)S~(g; k)S~,(y; I}+2&„{P;k)S~(g; k+l)&~~(Q; l)] . (3.9b)

The first corresponds to the double bubble of Fig. 1, while the second is the "radiatively" corrected sin-
gle bubble. After a rotation to Euclidean space, we find

'4 (2s)' k'+m, ' k'+m ' " „(2s)' k'+m, ' " „' (2w)' k'+m, '

n-1
J (2w)8 (0*+m,')(I'+ m, ')([0+l]~+m,~) (k'+m, ')(f2+m~ )([k+l]~+m,m),

(3.10a)

(3.10b)

Note that I, is negative, and that I, always dominates over I, for sufficiently large n.
A straightforward calculation gives, in the limit A'- ~,
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8'z'A'
I, = „~ [1+—,'(n - I)]'p'In/'+» 4 {I+—', (n-l)jln, + p; (n-1){5+(s-1)jln ~

/~in/'

+ „,[1+,—', (s —1)+,—', (s —1)']y'ln'P + ~ ~ ~, (3.1la)

2

I, = », ln, + ~(s-l)ln, +~9(n-l)ln, $41nP +», [1+g;(n-1)]$41n'P'+2"n' (3.11b)

The dots represent a quadratic polynomial in p with infinite coefficients, which I have not calculated since
it is unnecessary; it can be absorbed in the counterterms.

Upon combining I, +1, with V(p) given by (3.7), one sees that the infinite terms occurring in ag Ing and

bp4lnp cancel, as they should, and the (unrenormalized) potential, through order I', is

2 2 S

V(Q) = —
~

[A+6X- uk']P + —,'[bp, '-PF']P'+ 8, [I+-', (n —1)]ging&+», [1+-',(rg- I)]'pcln'P'

h'z6X 3k'X'
+ &,+ '[1 +'(n-l)]g In+9+ &» 4 ([1+-',(n-I}]'-~s-P(n-1)]P4lng'+O(R'}. (3.»)

The contributions involving a and P arise from
the infinite quadratic polynomial present in I,+I,.
Renormalization is effected by demanding that,
through order k', the mass remain zero. This
forces

"2 rk2 2

V(p) = —p I+ha„ ln T -~~ +X'a„' ln x2 -~e

A2

+A'5 ln -~ +A2a ' ~
M n 38

2 g2g 2 g2p

Also the potential must be finite; hence

(3.13a)

k 5%2=K @+8 N2, (3.13b}

where N2 is unspecified but finite. Consequently,
the renormalized potential becomes

(3.1V)

It is easy to verify the above is parameterization-
invariant, and that the order-5 term agrees with
previous calculations. "

V(P) = —
~

$4(1+La„lng+X'a„'In'P+'X'b„in/')

Here

+o(a') . (3.14)

(3.15a)

(3.15b}

X-Z+6X-a+h6X, +k 5X + ~ ~ (3.15c)

Note that for large n, b„/a„'-1. The remaining
counterterm, 5X, is unspecified but finite. Its
value is a matter of convenience; if one follows
Coleman and Weinberg' and requires

(3.16)

then the effective potential can be parameterized
in the following fashion:

C. The limit of many Bose fields

Exact calculation beyond two loops is clearly
prohibitively difficult. Nevertheless, the avail-
ability of an exact graphical expansion, Eq. (1.6)
and Fig. 1, permits a sensible and consistent ap-
proximation scheme, which sums manageable sub-
sets of graphs. Consider for example the limit of
large n, a limit familiar from statistical mechan-
ics. I have already remarked that in the two-loop
calculation the double bubble, given by (3.10a) and
(3.1la), dominates over the radiatively corrected
single bubble, (3.10b) or (3.11b): The former is
proportional to n', and the latter to n It is ea.sy
to see that this situation persists in every order of
the loop expansion: On the p-loop level, the p-
fold iteration of the bubble is proportional to n~,
while other graphs are at most of order n~ '.

We are thus led to the approximation of keeping
in each order of the loop expansion the term domi-
nant in n. This is a sensible approximation if n
is large; it corresponds to considering only graphs
of the form depicted in Fig. 3. Each graph gives a
contribution to V(P) proportional to a power of
in@2. If in each order of the expansion one makes
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~ + + +

+ ~ ~ ~ F!G. 4. Linearly iterated bubbles which give leading
logarithms that dominate V{/) in large-n limit.

FIG. 3. Graphs that dominate V{/) in large-n limit.

the further approximation of keeping only the lead-
ing power of the logarithm, the set of relevant
graphs simplifies further. Consider, for example,
the last two graphs of Fig. 3, which are both
fourth-order in the loop expansion. The first leads
to ln'g', while the second gives only in'P. This
is because the first diagram has four divergent
integrals, while the second has only three diver-
gent integrals since the three-vertex loop repre-
sents a convergent integral. Thus in the leading
logarithmic approximation we need sum only lin-
early iterated bubbles, i.e., graphs of the general
form given in Fig. 4. According to (1.6) and (3.2),
we seek the linearly iterated bubbles contributing
to

1 X 4 40 1'exp —, i
d'*y'(x) 0)4!n. '

ixa ~
= ik Q —, d'x, ~ d'xp

P=1

x(0jTQ (x) Q ( )jO),

factors of n can only arise from 5„=n, it is suf-
ficient to take for the propagator

To evaluate the graph of Fig. 4, observe that its
structure is the following. At either end there is
a tadpole given by

j" dk n 2 2 4+m
'

(2 ).D..(k)= 16~
A'-m'ln . . (8.20)

Between the tadpoles there are p —2 two-line bub-
bles. Each bubble is

d4k

(2 )~ D,~(k)D~, (k)

16m' m' A'+ m'

Finally, we must calculate the combinatorial fac-
tor. This is done as follows. The two tadpoles
will arise from the self-contraction by two of the
p factors of p» in (3.18}. Choose the two. This
can happen in —,'p(p -1)ways. Each of these may
be rewritten by Wick's theorem,

X =a+ m. . (3.18) d4ky'=2: y''
(2 )4 D„(k)+ ~ ~ ~, (3.22)

On the right-hand side the field has been rescaled
as usual. It is unnecessary to use the complete
propagator (3.3) in the evaluation of (3.18}. Since

where the omitted terms do not involve the de-
sired tadpole. Thus we find that for present pur-
poses

d'x, ~ d'x, (0 j Ty'(x, ) ~ y'(x, ) j0)

d'k
~2p(p —1)

2 ~D„(k) d x~' ~ 'd (xOj Tym(» )::y~(xm):y4(xs) ~ ~ y4(» )jO) . (8.23a)

In the subsequent evaluation each of the two:P'. must contract as a unit into one of the p —2 4')~ factors.
Only in this way do we arrive at the propagator combination D„(k)D„(k)which leads to the linear multiple
bubble. Consequently (3.23a) may be replaced by

2p(p —1) ', 2, D..(k) ~ d'x, ~ d'x, 2'-'(p —2)l(0jT:y (x,)::p (x,): jO) ~ ~ ~ (OjT:p ( ,x,)::y (»,):jO)

d4k
= 2 'p!

2 4 D„(k) 2 4D~,(l)D,~(l) d~x . (3.23b)

[The case p = 1 is special, but the final result (8.23b) is correct in that instance also. ]
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Thus the contribution of (3.18) to the effective
potential is found to be

A2 2 2

Xc ~ A. m.ln~+™
4t " m'

2 A 1
x 1-Xa„ ln 2 2 +

a„= 3 . (3.24)

2

+X2g„A~ln 1+ ~ + X a„p. p,

g3g 2g3(~3)
+

1 ~ ( 3)
+co118'tall't

~ (3.25)

This is to be combined with the zeroth-order (3.4)
and the one-loop (3.5b) terms in V{Q). The ap-
pearance of the formula may be simplified some-
what by rescaling the cutoff and the mass counter-
term by

5p, --,A. 5p.

A2- 6AA

The final expression is

g2 2A4
4!V(Q) =X/ +2X6!I P +

ticle irreducible Green's functions of charged
fields and these are gauge-dependent. V(P) gen-
erates the Green's functions at zero momentum.
This is a special value; indeed for massless par-
ticles it is a point on the mass shell. Thus it
might be hoped that V(p) is gauge-independent.
Nevertheless, we show that V(P) is gauge-depen-
dent on the one-loop level. The reason for this
gauge dependence may be understood when it is
recalled that the field shift, which is performed
for the evaluation of V(P), induces a "mass" term
to the Bose fields. Once the Bose fields are
massive, the zero momentum point no longer cor-
responds to the mass shell, and the Green's func-
tions are gauge-dependent.

Yet a further consideration illuminates the gauge
dependence. The equation of motion for the gauge
field in the presence of charge-bearing sources
[these are required in a computation of I'{P)]in-
volves a nonconserved current. Consequently,
gauge degrees of freedom are necessarily excited,
and the gauge cannot be fixed arbitrarily. Hence,
the effective potential, which summarizes the dy-
namics of the theory, reflects the gauge depen-
dence.

The classical action, written in terms of real
fields, apart from counterterms, is

A2 A
f(!I )=-hI —3+1 +

p, A +p,

g(!13)=A3-!131n -r + I

(3.26a)

(3.26b)

(3.26c)

1(y, x")= d'xd'y [ ,' x"(x)3-~ '„,(x -y)x'(y-)

+-,' y, (x)ID '„(x y)ItI, (y)-]

+
~

d'x[- ee.,s„t!.(x)y, (x)A"(x)

The constant is adjusted so that V(0) = 0. In the
above, 5p,

' and X are determined iteratively from
the renormalization conditions. Also wave-func-
tion renormalization must be performed. In the
leading logarithmic approximation everything
simplifies enormously. %e find"

(3.27)

IV. SCALAR, MASSLESS QUANTUM ELECTRODYNAMICS

A. Preliminaries

As a second application of the formalism, I shall
calculate V{P) to order |I in scalar, massless
quantum electrodynamics. This is the theory con-
sidered by Coleman and %einberg. ' However, in
contrast with these authors, I compute in an ar-
bitrary gauge, to expose the gauge dependence of
the various formulas.

It is clear that I'(P) is gauge-dependent: I (P) is
the generating function for connected, single-par-

(4.1)

Here e„ is the two-dimensional antisymmetric
tensor, Q'=/I'+$3', g'=($3)'. The first integral
in (4.1) contains the kinetic terms. D„(x-y) is
the free boson propagator and A„,(x-y) is the
free photon propagator. Specification of the latter
requires a choice of gauge. For the present, it is
unnecessary to exhibit explicitly this choice. For
simplicity I have assumed that the gauge is trans-
lation-invariant and does not require gauge-com-
pensating ghost fields. Hence in momentum space
we have

(4.2a)

k„k„
EPP(k) = 3, gPP — 3 . +gauge tel'1118.

+ie 0 +is
(4.2b)

To initiate the computation, the fields are to. be
shifted by a constant field. Since we seek only

V{Q), it is unnecessary to shift the photon field:
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d'x2(j„y, (x), A" (x))=1(y+j,A") 1(-j, 0) — d'xy, (x) ' — d'xA"(x)
a x A" W

d xd y[ a A"(x)iZ»($; x, y)A"(y}+ ag, (x}iQ,a{g; x, y)Pa(y}

iX '»(y; x, y) =is '„„(x-y) +e'y'g„„5'(x- y),

+A"(x}M„.(j;x, yQ, (y)]+ ~ ~ ~, (4.3)

(4.4a)

'..V;;y) = D '..(-.-y) -~('.i'5, 'i.-j.) 5'( -y),
M."(j;x, y) = ez.-,j,a"6a(x-y) .

(4.4b)

(4.4c)

The dots in (4.3) indicate that cubic and quartic
interaction terms have been dropped. They are
not required: We are computing only to order S.
It is seen that the effect of the shift is to provide
a "mass" for the photon e242 and a nondiagonal
"mass" for the boson ~akim'5„+ —,'XQ,Q, . Also a
boson-photon transition is induced by M,".

According to the general theory, we have

I'(Q) = 1(P, 0) -il lnZ, (P) + O(k'),

A A

O'A'a
k' —~iP+iz " P

det(im-'. ,g; k)) = (O' ——,'Xy')(k' -~ay'),

d4k
, indet(ia) '„{P;k)}

(4.9b)

(4.9c}

Z, (P) =Det ~'(i& ')Det ~'(iZ '+Ah . (4.6)

Here the determinants are still functional. The
matrix N is defined by

(4.5)

Z, (y) = dy.dA" exp- d'x Z(4 „P.(x), A"(x)) .
~I

Since 2{P;P„A"}is quadratic in P, and A" [see
(4.3)] the functional integral is elementary. The
answer, obtained by first integrating over P, and
then over A", is

= a—, O'I a~~ x alan I. '(4. &0)'

In Eq. (4.10), 'X =A+6X and the mass has been re-
normalized to zero.

The second integral in (4.8) describes the photon
loops and the photon-boson transitions:

jh '„„{g;k}= (-k'+ e'g')g„+ka&ka +gauge terms,

(4.11a)

N»(P; k)=
~

d xe' N" (Q; x, 0)

N""($; x, y) =
~

d'z d'wM."(y; x, z)S.,(y; z, w} =M f(j; k)&.,(j; k)M",(j;—k), (4.11b)

x M~(/;y, w) . (4. I) M."Q;k)= d'xe' M,"{P x 0)

B. The effective potential

For constant field P, there is translation invari-
ance of the theory. Consequently, in the momen-
tum representation the functional determinants are
diagonal, and we find for the effective potential

=48k

iZ -'„„(j;k)+ iN„„{j; k}

(4.11c)

(4.11d)

e "d4A
V(Q}= V,(p} —

3 3 a In det(iD '„{p;k))

ik d4k
a ln det (iZ '„„{p;k) +iN„„(p; k) )

im-'„(P; k) = k'5„~ay'6. , (4.9a)

(4.8)

The first integral accounts for the Bose loops
and has been already encountered in the previous
discussion, Sec. III:

(-k +8 P ) gpa
P k„k„

k'+ iE

~2+ gy4
kpkv '" " 'g(k2+ je)( ka +aXP +i@)

+gauge terms . (4.11e)

The Bose-photon mixing term E„„{P;k) is an ef-
fective gauge. To complete the evaluation, a
choice of gauge in (4.11) must be made. It is
straightforward to show that the most general
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choice of photon gauge which is translation-invari-
ant and does not require gauge-compensating
ghosts leads to an inverse photon propagator of the
form

id, '~, (k) = -k g„„+k~k„+d~(k) d,(-k), (4.12)

where d„(k) is an arbitrary vector which satisfies
k"d„(k)x0. Therefore it follows that

ln det(iZ '„,(Q; k)+iN»(P; k) )

=2 ln[k' —e p] -ln[k' --', Xp]+in (k' - e'p') —', e'A p —,. [k' —~eked'] ——', e'Ap d'—

d'=d"(k)d„(-k), (k d)'=[k„d "(k)][kid"(-k)] . (4.13)

As promised, there is a gauge dependence, i.e.,
a dependence on d"(k). The gauge-dependent con-
tribution is proportional to e ~~A/~, which is the

mass induced to the photon (e'P') times one of the
masses induced to the boson (~XP). To see this,
observe that if the e'&X/' term is ignored, the
logarithms in (4.13) become

d k'
3 ln[k' —e~g~] + ln

k +i&

Now the gauge term may be dropped, since it is
independent of &]&.

For an explicit evaluation of V(P), we must
specify the k dependence of d "(k). An especially
simple choice is the class of Lorentz gauges
d" (k) = (I/vn )k". In this case (4.13) becomes
(apart from unimportant constants)

3 ln[k —e P ] -ln[k —~8XQ ]

+ ln[k' —-', Zk'y'+ u~6 e'x y4]

and, apart from a polynomial in P,
& d'k

——,'ik, lndet[iZ „g'&;,k)+iN„, (f; k)]
J 27'

fi
[9e~ —ae'X] Iny' . (4.14)

41 Sm'

The effective potential thus is

V(P) = 4, X+, (~X'+9e' —ae'A) ig'n

(4.16)

This agrees with the Coleman-Weinberg calcula-
tion for o. =0, in the Landau gauge. ' [I have, of

course, dropped P and g' terms, as they are re-
normalized. However, for negative z and imagi-
nary d "(k), the P' term has a complex coefficient. ]

The gauge dependence of the effective potential
may also be seen in another way. Consider the
four-boson scattering amplitude, at zero momen-
tum. The one-loop, order-A. e' contribution is
summarized by Fig. 5. The integral representa-
tion for this quantity is proportional to

C. Discussion

The observation that V(p) is gauge-dependent
for a gauge theory raises a question concerning
the physical significance of any mathematical
properties of V(p). I have already remarked that
V(p) becomes complex for covariant Lorentz
gauges with n &0. It is also true that the whole
concept of an effective potential can be destroyed,
since one can also work with nontranslation-in-
variant gauges. In that circumstance I'(P) for con.
stant fields P is given by I'(P) = J d'x V(P; x), and

a local effective potential cannot be defined.
None of these peculiarities of V(g) are especial-

ly disturbing if one considers the symmetric solu-
tion to the theory at P =0. However, the search
for a minimum in V(P) away from P = 0 is not a
gauge-invariant procedure. Indeed, in the above
example, all one-loop effects can be made to dis-
appear by the choice

5X e'
n= —~+9—.

6 e X
(4.17)

At the present time I do not know whether the

FIG. 5. Gauge-dependent contribution to V(Q).

" d k k„k„h"'(k) o.e'X,"" dk'
„(2m)4 k4 16m' „, k' '

which is gauge-dependent. The reason for the
gauge dependence is clear: To obtain the physical,
gauge-independent scattering amplitude, one must
add wave-function renormalization graphs of the
form depicted in Fig. 6. At zero momentum they
survive; however, they are not single-particle
irreducible, hence by definition they are excluded
from V(g). (It is not difficult to show that the
single-particle irreducible e graphs contributing
to the scattering amplitude are separately gauge-
invariant at zero momentum. )
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gauge dependence of V(g} is a serious defect. If
one adopts the view that the loop expansion must
be converted to an ordinary perturbative expansion
in the coupling constant, then to order e4 there is
no gauge dependence in (4.15). ne'X is of order
ee, since X is assumed to be of order e4. In this
context a choice of gauge like (4.1V) is inadmissi-
ble since it clearly mixes up orders of perturba-
tion theory. (However, it is not always possible
to reexpand in the coupling constant. 4) Thus it is
not clear whether the physical consequence of the
Coleman-Weinberg' calculation is questioned.
Their physically interesting result is a formula
for the ratio of the spontaneously generated mass
of the Higgs particle to the vector-meson mass.
If spontaneous symmetry breaking by radiative
cox rections is a physical effect, it presumably is
gauge-independent, and the mass ratio can be
computed in any gauge. However, there is no
proof that radiative spontaneous symmetry break-
ing in gauge theories is a gauge-invariant phe-
nomenon. '4 Clearly, a calculation of V(Q) to order
ee will be illuminating. This requires a two-loop
calculation which is now in progress.

V. SUMMARY AND CONCLUSIONS

The main purpose of this paper is to develop
techniques for studying the effective potential be-
yond lowest order, so that bound-state phenom-
enon can be examined. The expansion in Sec. II
for V(g} will serve that purpose. Especially inter-
esting are zero-mass bound states in view of
their role in spontaneous mass generation. ' When
there is a zero-mass bound state, single-particle
irreducible Green's functions have a pole at zero
momentum. Yet hopefully, the effective potential
is well defined. I expect that the singularity in
momentum space becomes replaced by a singu-
larity in P space. This was observed by Coleman
and steinberg' in connection with infrared diver-
gences. Also, our computation of V($) for e Bose
fields, in the limit of large n, shows how many
loop effects sum up to produce a singularity in
V(y); see (3.25) and (3.2'I).

Although the development was confined to Bose
fields, Fermi fields can be treated analogously.
One difference, however, is that the functional
determinant which summarizes the one-loop graphs
enters with a different power: Rather than Det ~',
we have, for fermions, Det. The reason is that

FIG. 6. External wave-function renormalimation
graph which removes gauge dependence of Fig. 5.

the basic functional integral for Fermi fields is

~

~

d g d g exp —

/MAL

= DetM.

Also, ghost loops in gauge theories are handled
quite naturally by the present formalism. Of
course, one is not interested in generating Green's
functions with external ghost lines; this simply
means that the ghost field need not be shifted.

In the course of applying the formalism to vari-
ous examples, it was demonstrated that for gauge
theories V(P) is gauge-dependent. This raises the
following question about spontaneous symmetry
breaking by radiative corrections: Suppose V(P)
is found to possess a minimum at a nonzero value
of Q. Is this minimum present in all gauges, or
is it an artifact of the choice of

gaugers

Further-
more, are physical amplitudes, evaluated at non-
vanishing P, gauge-invariant2" The Coleman-
Weinberg' example of massless, scalar electro-
dynamics is inconclusive, since their calculation
is approximate: Only one-loop graphs are con-
sidered, and the answer is reliable only to order
e', while the gauge dependence appears in e'.
To be sure there is a gauge in which the one-
loop minimum disappears; see (4.17). However,
that gauge introduces inverse powers of the cou-
pling constant, which emphasize higher orders.
These have not, as yet, been computed.
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