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The production of multiparticle final states on nuclear targets via multiple coherent excitation of the
projectile is developed. By coherent excitation we mean that class of production models including
fragmentation models or diffractive excitation models. It is found that both the rapidity distribution of
secondaries in inclusive reactions and the multiplicities can be calculated, and new features of the
excitation models are revealed. The calculable quantities are found to depend only weakly on the
atomic number of the target; in particular, the single-particle distribution in the target fragmentation
region grows roughly as 4 '/*. An amusing possibility of boosting effective beam energy for resonance

production by using nuclear targets emerges.

I. INTRODUCTION

The idea that we can learn a great deal from
the study of the production of multiparticle final
states on nuclear targets has been put forward
many times.!* The general approach is to point
out that in production on a nucleus the multipar-
ticle final state can interact with downstream nu-
cleons in that nucleus, so that relatively direct
knowledge of its interactions can be obtained.

Such knowledge is not, of course, obtainable from
the use of conventional hydrogen targets.

Previous proposals?® along these lines have been
primarily concerned with the properties of the
final-state particle per se (for example, with the
determination of unstable particle-nucleon cross
sections) and hence have been involved primarily
with coherent reactions on nuclei. We intend to
concentrate instead on the complementary problem
of using the nucleus to investigate the production
mechanism itself, rather than the properties of
the final state, and hence will discuss only in-
coherent nuclear reactions.

In general, we can think of current models for
multiparticle production and inclusive reactions
as falling into two general classes: coherent-pro-
duction models (CPM), in which the final state re-
sults as a decay of some long-lived excited inter-
mediate state (such as a “fireball”), and the inco-
herent-production models (IPM), in which the par-
ticles in the final state appear without the presence
of any long-lived intermediate excited state. Ex-
amples of CPM might be diffractive excitation,*
nova,® or fragmentation® models, while examples
of IPM might include multiperipheral? or dual res-
onance® models. It is obvious that in the case of
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the IPM, any of the particles which are produced
in the first inelastic collision in a nucleus can
initiate another inelastic collision downstream,
thereby setting up an intranuclear cascade. In
CPM, on the other hand, such cascades will not
develop so long as the lifetime is greater than a
nuclear radius. In Refs. 1 and 2, CPM were
treated by assuming that the intermediate “fire-
ball” would leave the nucleus unscathed except
for possible elastic scatterings. This difference
between the two classes of models was the basis
for the claim that a study of nuclear production
could provide information about the multiparticle
production process.

In a recent series of papers,®™! the authors
have extended the Glauber theory for inclusive
reactions on nuclei to the problem of the develop-
ment of the intranuclear cascade corresponding
to pure IPM production on the nucleons. In this
note, we do the same for the CPM, taking into
account the fragmentation of downstream nucleons
by the “fireball” and the possibility of further ex-
citation of the fireball itself. Our aim is to pro-
vide the best possible theoretical predictions for
the inclusive nuclear reaction, so that when ex-
periments of this type are completed clear state-
ments about the nature of multiparticle final states
will be possible.

Accelerator experiments of this type are, of
course, very desirable, but it should also be noted
that in order to test asymptotic concepts such as
scaling it will be immensely helpful to go to cos-
mic-ray data to get meaningful increases in en-
ergy. Because of the relative scarcity of cosmic
rays of the highest energies, nuclear targets are
used routinely in cosmic-ray work, either as
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emulsions or in measuring reactions in the atmo-
sphere itself. Thus, a further motivation for our
work is that adequate description of particle-nu-
cleus production processes will enable us to in-
terpret!?:!* high-energy cosmic-ray data as well
as lower-energy accelerator data. We expect that
rules for distinguishing IPM and CPM will not be
the only result of our work.

Finally, the authors feel that the particle-nucle-
us interaction forms a useful theoretical labora-
tory in which to study scaling in composite sys-
tems, since we are dealing with a composite sys-
tem (the nucleus) whose properties are well known
(a benefit which we do not enjoy in working with
partons or quarks, for example).

With this motivation, we turn to the problem of
describing nuclear processes involving the CPM.
In Sec. II we work out the kinematics of multistep
processes, deriving some results which could also
be applied to simple high-mass resonance produc-
tion as well as to inclusive reactions. In Sec. III
we discuss various models for the interactions of
“fireballs” with nuclei, while in Sec. IV we de-
scribe the general inclusive nuclear process in
the CPM picture. In Sec. V we discuss nuclear
scattering weights on actual nuclei, using the
multistep incoherent formalism developed pre-
viously,* and finally in Sec. VI we present some
distributions and multiplicity results.

II. EXCLUSIVE SCATTERING:
MASS BUILDUP IN RESONANCE PRODUCTION

Coherent-production models all involve the for-
mation of hadronic resonances in one form or an-
other. Moreover, the production and study of had-
ronic resonances per se has always been one of
the primary interests of high-energy physics. The
possibility of using nuclear targets to study such
properties of the resonant state as its elastic
cross section (e.g., in p photoproduction) has of
course been widely discussed elsewhere.® There-
fore in this section we restrict our attention to
some very simple kinematic aspects of resonant
production on nuclear targets. We shall in par-
ticular show that for an incident beam of given
energy it is possible to produce resonant states
of much higher mass than is possible on a hydro-
gen target. This statement is independent of the
Fermi motion of the nucleons (which can itself be
used to boost the effective energy of the incident
beam). Our results depend only on the kinematics
of the multiple scattering process, which, as we
shall see, converts the available s in a reaction
from that appropriate to a nucleon to that appro-
priate to a target with up to A nucleons. While this
general idea has been discussed previously,15 to

our knowledge the detailed kinematics has not ap-
peared in the literature until now. The possible
use of rescattering in nuclei to build up discrete
quantum numbers in final states has been dis-
cussed previously.™

The results of this section could therefore be
applied to processes in which high-mass reso-
nances are to be produced from beams whose en-
ergy is insufficient to produce the desired final
state from hydrogen targets alone. We shall, of
course, also use the results in our studies of in-
clusive reactions in subsequent sections.

Suppose that we consider the two-body collision
1+2-~3+4, where particle 2 is a constituent of
the composite system and we consider particle 3
as an excitation of the projectile 1. Let sV =(p,
+p,)? be available in this initial collision. In a
kinematic extreme of this collision, these par-
ticles are at rest in the center-of-mass frame, so
so that (m,+m,)?=sY. We assign the individual
excitations 3 and 4 a fractional division x, of the
momentum,

m,=(1-x,)(s)/2, (2.1)

In this limit, the momentum transfer in the ini-
tial collision is

t(l) =(p1—p3)2

= sWx (x, =1)+m 2(1=x)+m,>x, . (2.2)

my=x, (S(l))l/z,

By computing the energy E, of the initial exci-
tation in the laboratory frame, one can find s=s'?
available for a second collision of particle 3 on
constituents of mass m,, as in Fig. 1; the second
collision produces particles 5 and 6. We have

s(2)=m22+m32—m12 —m42+s(‘)+ (1)
= sWy (1+x,) + m2(1+x,) =m 2%, . (2.3)

Note that for large s¥ if x,=1, so that the pro-
jectile is excited to its kinematic limit, then

(2)

t

FIG. 1. Labeling of kinematic variables for two suc-
cessive collisions: 1+2— 3 +4 and then 3+2—~5+6.
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s =25V thus the s available for the second
collision has been doubled. Only if x,(1+x,)>1 do
we have s‘ >s(?) so that a buildup is effected.
For s'*)>>m 2 m,?, the boundary of this region,
determined by x,(1+x,) =1, is given by x,
=3(-1+V5), which is just the first Fibonacci
number, associated with the golden mean.

We can now determine the energy variable s®
available for scattering of particle 5 on another
target 2. If we write

my=x,(sPN2 ) mg=(1-x,)(s?)V2, (2.4)
then ignoring m ,® and m,? terms
s = x,(14x,) =m 2x,
= sy (142,) xy(14x,) =2,%8,). (2.5)

This result can easily be generalized to the en-
ergy variable s available for an nth collision
on a target of (finite) mass m,,

s =gy (14x,) o+ %, 5(14+%,5)
X {xn-2(1+xn~2)xn-1(1+xn-l) _xn-lxn-zz}' '
(2.6)

By taking x,=x,= *++ =x,.,=1, so that the pro-
jectile is excited to its kinematic limit in each
successive collision, we find

{25‘”, n=2

3x2m 31 p>2,

s(n)_>

e (2.7)

This allows us a healthy increase on s, Break-
even points on the s{*) of successive collisions
are easily computed. :

To complete the picture, we can also express
the momentum transfer for the nth collision in
terms of s‘*? and the x;. Ignoring m,? terms,

t("):.xn(x" -1)sm +x"2(1—x")s("'1) . (2.8)

We further note that the projectile excitation
mass m,,,, resulting from the nth collision is

Mopsr =% ()2, (2.9)
Setting all the x; =1 maximizes m,,,, at its kine-
matic limit,

(s(x))llz’ n=1
(23(1))1/2, n=2

(3X22n-1 s(l))l/z’ n>2.

(2.10)

max _
Mops1=

III. EXCITATION SPECTRUM IN
ELEMENTARY COLLISIONS

In this section we will discuss the reactions
which take place on individual nucleons in a multi-
step process. We can think of the initial projec-
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tile as being excited by an initial collision to a
state of mass m g from an initial mass m,, with
a mass spectrum for inelastic collisions
p,(m4,m,), in accordance with the notation of
Sec. II.

We can make some very general statements
about the form of p,. First, p, should be non-
zero for m from m, to the kinematic limit V's . In
addition, in order to produce a pion multiplicity
which grows as Ins, p, must fall as 1/m 2 at large
m,.

A function which fits these requirements was
suggested by Jacob and Slansky®:

pimy,m) =pesp(f - oe) fiomy -,y

Koo )/ menrs

p, is normalized to 1, with a maximum at m ;-m,
-1
=1g.

The distribution p, is formed of the superposi-
tion of many resonances, which are thought to de-
cay by stepwise cascade. Thus resonances at
higher m, produce more stable particles (“pions”).

If n is the number of produced pions,
n(mg)=clmg—m,) . (3.2)

This allows us to compute the average pion multi-
plicity,

Vs
(n>=f dmgyp,(mg,m)n(mg) ~ 3cBlns,
m‘ s —»o0
(3.3)

the logarithmic term arising from the region of
p, which is ~(m,-m ) 2.

When we turn to the problem of dealing with a
nuclear process involving the formation of these
excitations, however, a new problem develops.
Basically, this is because the mass spectrum
py(m 4, m,) describes the excitation of an incident
stable particle mass m,, and hence could be used
to describe the first inelastic collision in a multi-
step process. In subsequent collisions, however,
the incident particle is itself an excitation from
a previous collision.

There are two reasonable models for the spec-
trum resulting from such a collision, and we
shall consider them in turn after some prelimi-
nary work is carried out. Let us call the sec-
ondary spectrum p’(m,,m,), where m, lies within
the spectrum of a primary excitation p,(m,,m,).
In general we expect that m  can run from m, (i.e.,
a deexcitation of the projectile) up to v2s [as in
Eq. (2.10)]. In addition we expect that p’(mg,m ;)



9 PRODUCTION OF MULTIPARTICLE FINAL STATES BY... 17

~my? for large values of m,, where p’ should be
similar to p, .

The measured mass spectrum after two colli-
sions will then be

Vs
pz(m5’m1)= f dmapl(msyma)pl(mayml)-
! (3.4)

p, will be normalized to unity when p, and p’ are.
In addition, p,~m "2 for large values of m,, so
that the logarithmic growth in multiplicity will be
retained.

These expressions are easily generalized. After
N collisions the measured distribution will be giv-
en recursively as

max

2N -1
PyMoy oy, my) = f AMoy .1 p' Moy sy May.y)

my

Xpy-1May-y,my),
(3.5)

which will remain normalized. This spectrum
also falls as 1/m,,, %, so that logarithmic growth
of multiplicity remains. The Ins terms now get an
additional additive contribution from the increased
upper limit of m,y,,, as in Eq. (2.10). In partic-
ular, for N>2,

max
m v1d
oy~ A
,_ln[(sxzzh'-ls)l/z]

~ 3 [Ins +1n(3x22¥ - 1)], (3.6)

where (n), is the average number of produced
(projectile) pions after exactly N collisions.

As a final general remark we may speculate on
the properties of py as N becomes large. One
would not expect a systematic effect on py as N
increases other than the kinematic change in its
limit. It is very tempting to go one step further
and say that after many collisions the excitation
spectrum reaches an equilibrium which is com-~
pletely independent of the original projectile. This
spectrum would then become just a universal func-
tion for all projectiles, i.e., pions, protons, etc.
We shall discuss in the next section experimental
tests of this idea.

We now turn to discussion of models.

Model I. In this model the production of m  “re-
members” the initiating mass m,, and p’ is taken
to have a maximum at m,=m,. Thus, for exam-
ple, a propagating N’(1470) which is the excitation
of a nucleon would prefer to scatter elastically
rather than make a transition back to a nucleon in

a second collision. A possible form for p’ might
be

-a
e mag = o ()
P'Moys 1y Moy .y Moy er="M,

1
X
Moy yr=Mmay )2+ T7

(3.7)

where C is a normalization constant and I is
some width parameter for the spectrum (not to be
confused with a resonance decay width).

Model II. One may argue that the incoming ex-
citation of mass m, and its own excitation of mass
mg are each “complicated” systems in a quantum-
mechanical sense, as opposed to the stable config-
uration of mass m, or of other low masses. We
might then say that the overlap of two complicated
systems (e.g., of ms with m,) is in general much
smaller than the overlap of a complicated system
with a simple system (e.g., of m, with low mass-
es). This is an argument for taking p’ to be ba-
sically similar to the initial distribution p,, save
that the upper limit on p’ should be adjusted to its
appropriate kinematic limit,

p,(mztl+1’m2h'-_1)=p1(m2N+1’m1;N)‘ (3.8)

We have added the argument N on p to indicate
that its kinematic upper limit for m,, ,, is not
(s‘)!/2 put instead is given according to Eq. (2.10)
by (3%x22V-15(1)1/2 for N> 2,

While we do not feel strongly impelled to choose
either model on theoretical grounds, a task which
for the present we can leave to experiment, model
II does have the advantage that various integrals,
etc. are more tractable. Therefore for purposes
of exposition we use this model throughout the re-
mainder of this paper.

In particular, we have from Eq. (3.5) the dis-
tribution after N collisions

pa(May .1, m)=py(myy .y, my;N), (3.9)

and from Eq. (3.6) the multiplicity after N colli-
sions (N >2)

<">N ~ CBln(3x22N'ls(1))1/a_

8§ =00

(3.10)

It is important to note, however, that an extra
assumption has been introduced into our work at
this point. Such an assumption was not necessary
in considering the intranuclear cascade in the IPM
results, since in that case downstream reaction
is initiated by a pion or some other elementary
particle whose cross section for a given final
state can be independently measured.



172 P. M. FISHBANE AND J. S. TREFIL

IV. INCLUSIVE SCATTERING:
GENERAL PROPERTIES

In order to explore the features of inclusive
scattering on nuclear targets when an incoherent
production process is the primary dyamical mod-
el, no assumptions were required beyond those
already given by the model. By contrast, when
the primary model is a coherent model we require
one additional assumption for the qualitative dis-
cussion and still another assumption for more de-
tailed quantitative calculations. These assump-
tions are, respectively, the following.

(i) The lifetime of the projectile excitation
which propagates through the nucleus is greater
than the time required to cross the nucleus. This
means that the excitation must have a lifetime
comparable to (or greater than) the ordinary low-
mass hadronic resonances, i.e., 7=0(10"%° sec).
This last statement provides the main support for
this assumption, since, as discussed in Sec. III,
the excitation is regarded in some sense as a
superposition of hadronic resonances.

(ii) The cross section of the projectile excita-
tion for further collisions with nucleons is com-
parable to the known hadronic cross sections. The
main argument for this is again given by the fact
that where low-mass resonance cross sections
have been measured in nuclear scattering experi-
ments, their cross sections have been in the range
of tens of mb, i.e., typically hadronic.” We em-
phasize that, while we have included this assump-
tion here for completeness, only assumption (i)
is required for the general properties we are dis-
cussing in this section.

The qualitative picture of the scattering process
is shown in Fig. 2. The projectile proceeds
through the nucleus, reaching a new stage of ex-
citation with each inelastic collision. After N col-
lisions it leaves the nucleus, with an excitation
spectrum pi® (m,y, ,,m,). It then decays, giving
an inclusive distribution characteristic of p§® in
the rapidity region characteristic of the projectile
(i.e., the Feynman variable x >0). In the case of
model II described in Sec. III, this will take the
form of the projectile distribution in the primary
collision.

While the projectile excitation proceeds through
the nucleus, it produces a target excitation char-
acteristic of a target nucleon for each inelastic
collision. (We continue to assume the factorization
property, so that the target excitation is indepen-
dent of the projectile.) Thus when there are N col-
lisions, there are N target excitations. These N
excitations then begin to decay, producing (see
below) a single-particle inclusive distribution in
the target rapidity region (i.e., x<0) equal to N

times a single-target nucleon distribution. We
should note at this point that, plotted as a function
of the Feynman variable x for projectile-nucleus
scattering, the distribution for x < 0 will be N
times the nucleon distribution as seen in projec-
tile-nucleon scattering but compressed into the
region —A~1<x <0 rather than - 1<x<0. This is
because each nucleon carries only A”?! of the nu-
cleus’ center-of-mass momentum,*®

The target excitations range from those nearly
at rest in the nucleus (in the target-fragmentation
region) to those moving relatively fast (near x =0).
The latter come from the high-mass excitations
producing many pions. We would argue that the
low-velocity excitations produce an observed sin-
gle-particle distribution not very different from
N times a target-nucleon distribution because the
slow stepwise decay never produces very energetic
particles relative to the nucleus within the nucleus;
these low-energy products either leave the nucleus
by elastic-scattering propagation or are actually
produced outside the nucleus when the decaying ex-
citation diffuses out of the nucleus before its de-
cay process is completed. On the other hand, a
high-mass target excitation may be moving fast
enough relative to the remainder of the target to
itself have significant inelastic collisions. This
will then contribute to a blurring or smoothing of
the observed distribution. Numerical calculations
of such effects are in the general class of final-
state interactions and are ignored in the present
work. Note also that there are no scale-breaking
effects in this description, in contrast with the
incoherent -production-process case. Thus the in-
clusive distribution from a nuclear reaction will
scale when the primary distribution does.

On the average, N will be given by the number
of mean free paths in the nucleus for inelastic col-
lision.!** Thus the height of the target distribution
will grow as A3, This also suggests that a test
of the equilibrium hypothesis of the previous sec-

FIG. 2. Qualitative picture of inelastic nuclear scatter-
ing. The projectile proceeds through the nucleus, under-
going excitation and at the same time exciting target
nucleons. The projectile excitations do not decay within
the nucleus.
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tion is the growing independence of the x>0 dis-
tribution form the nature of the incoming projec-
tile as A increases.

This optical approximation for the propagation
through the nucleus is in fact only good when a sin-
gle particle (in this case, the excitation) propa-
gates through the nucleus. Mean-free-path ap-
proximations fail badly when many particles prop-
agate through the nucleus, as in incoherent pro-
duction processes. (See Refs. 9'and 18.)

If we are to proceed from this point, it is nec-
essary to describe the primary collision further.
Figure 3 shows that the primary collision can be
(a) single-projectile excitation, (b) simple target
excitation, or (c) double excitation, with respec-
tive (constant) probabilities P, @, and R=1-P-@Q.
In accordance with assumption (ii), we take P, @,
and R to be the same for an excitation-induced re-
action as for the primary induced reaction. In N
inelastic collisions within a nucleus, the proba-
bility @5, , of p of type (a), ¢ of type (b), and r
of type (c), N=p+q+7, is

N1
N -—  pPn
bar=51grrT PR (4.1)
The average number (), of collisions of type

P is

Rp)y=NP, (4.2)

etc. Let the single-particle distribution of a tar-
get excitation be 7% and let the single distribu-
tion of a projectile excitation characteristic of M
successive collisions be 7 J'’. Then the single-
particle distribution from exactly N inelastic col-
lisions in a nucleus would be

jectile
T=N(Q+R) ™" + 15 . 4.3
(Q ) T (sz)”+(fnn)” ( )

In the model where the projectile excitation spec-
trum for M collisions is just the spectrum for one
collision save for the upper limit, then essentially
T "projectile - ,Ttprojectile .

Finally, we must average over N. Let o4 be the
cross section for N inelastic collisions and any
number of elastic collisions in a nucleus A. (We
discuss this quantity in more detail in Sec. V.)
Then the average number (), of P-type colli-
sions is

@H=3 o @p)y/ 20
N=0 N=0

P Not/ Dot =P, (4.4

etc. This gives for the observed single-particle
distribution

7=(N), (Q+R) T™""+ o reR) - (4.5)

We conclude this section with values for P, @,
and R. These quantities were studied by the au-
thors of Ref. 5 for 7-p scattering, which is the
case of primary interest to us; they found P~ 0.4,
Q=~0.4, and R~0.2. We now need only to deter-
mine (N), to complete the picture.

V. NUCLEAR SCATTERING WEIGHTS

In this section we study o4, the cross section
for exactly N inelastic collisions in a nucleus of
size A. This quantity was of importance for the
study of the observed single-particle distributions
on nuclear targets, as discussed in the previous
section. For simplicity, we take the inelastic
cross section g, of all hadrons (i.e., of both the
incident projectile and its entire excitation spec-
trum) to be the same. The computations of this
section can easily be done with any values for the
inelastic cross sections, but since we do not know
the values of the excitation cross sections, it is
economical to simply take one value. [If all the
cross sections are constant and if scaling is ob-
served in nuclear scattering experiments so that
a coherent rather than incoherent production pro-
cess is deduced to be dominant, then further nu-
clear scattering experiments and further calcula-

7
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FIG. 3. Three types of excitation: (a) simple pro-

jectile excitation, (b) simple target excitation, (c)
double excitation.
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tions can be combined to measure the excitation
cross sections.]

To calculate the ¢4, we rely heavily on the
previous work of Trefil and von Hippel,** and we
refer the interested reader there (see especially
Sec. V) for more detail. We have in the optical
approximation

w 1 )
a;=zwfo BaB - [HB)Y e, (5.1)

where the weighted nuclear thickness ¢(B) is
t(B)=Aoi,.dep(B, z), (5.2)

and we take the (normalized) nuclear density func-
tion p(B, z) as a Gaussian form,

p(B, 2) = <7;lﬁ>sexp (—EI:—.‘,% (5.3)

The radius parameter R of this Gaussian distribu-
tion is taken from the root-mean-square radius
{r :ms) Of electron scattering experiments,

R=3Y2(rmg . (5.4)

If we insert Eq. (5.3) into (5.2), the z integration
can be explicitly done, giving

) 2
t(B) =%§1 exp <—%> . (5.5)

Inserting Eq. (5.5) in turn into Eq. (5.1), we can
recognize an incomplete y function y(n, x),

v(n, x) = x" f do exp(=na -xe~ %) .
(1]
Thus

A_ TR? ( AO’m)
ov=31 Y\mogr) - (5.6)

TABLE I, Average number (N) , of inelastic colli-
sions in various nuclei. We have set oin equal to both22
and 30 mb, appropriate for pions and protons, respec-
tively.

A Vs (E) o,, m?) Y4
14 2.5 2.2 1.61
24 2.98 2.2 1.73
40 3.52 2.2 1.88
115 4.5 2.2 2.52
208 5.42 2.2 2.88
14 2.5 3.0 1.83
24 2.98 3.0 2.00
40 3.52 3.0 2.19
115 4.5 3.0 3.04
208 5.42 3.0 3.50

This is the final result for general values of A.
However, there is a very interesting limit to this
function. We know that A/R%~A'/3, Thus the sec-
ond argument of y becomes large as A becomes
large, and we can use an asymptotic form. We
find to leading order

A TR® _mR? (Aoin)”" (_ Aam)
o NN TNt \#r2) P \"7R®)-
(5.7

This result is striking in that it shows that, for
large A, o7 becomes independent of 0. Thus
for example 07 is independent of the nature of the
projectile, leaving the projectile dependence en-
tirely within the excitation properties.

Finally, we shall give some numerical results
for (N),, using Egs. (5.6) and (4.4), o, =22 mb
and 30 mb (appropriate for pion and proton projec-
tiles, respectively), and values for R taken from
electron scattering tables. Table I summarizes
the results of this calculation. In addition, we
plot (N), vs A on a semilog scale in Fig. 4. The
heavy black points in this figure are the computed
values of (N),. For purposes of comparison we
have drawn alongside the functions (N),=CA'/*

200

i
&8
50
40

T T Trr1T
1 1 11111

<]

|
A—>
1

T

20

4:0pp=22mb

X :0j=30mb

——— ~ pV3

<N>A A
—: <N>, ~ A4
< N; —>

1 L 1 1 1 1
1.0 1.5 20 25 30 35 4.0

FIG. 4. Average number of inelastic collisions in a
nucleus A, V),, plotted for 0;, =22 and 30 mb. For
comparison, the dashed and solid lines represent (N),
=C AY? and CAYV¢, respectively.
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(dashed line) and (N) ,=CA'/*(solid line). Realis-
tic nuclei seem to be described more accurately
by the A'/* curve. With these values of (N), in
hand, and some model for 7J*"  the distribu-
tions are completely determined.

VI. DISTRIBUTIONS

In this section, which is intended to be an ex-
perimental guide, we combine our results with
some experimental input for the distribution of
p+p—7* +x to give distributions for p +4 -~ 7*+x.
At 30 GeV the charged-pion single-particle dis-
tribution 0, 'do/dx = f(x) as a function of the
Feynman parameter x is well described!® by

f(x)=0.48 exp(- 7.4 x%) + 0.38 exp(- 12.1x%) .
(6.1)

In the neighborhood of x =0 (|x|<0.15) a scaling
limit has not been reached, and at ISR (CERN In-
tersecting Storage Rings) energies the distribution
is more accurately given by f(x) +f(5x). For illus-
trative purposes we shall use Eq. (6.1); it is triv-
ial to work out the second case. With @ +R=0.6
and (N), given as in the previous section, Fig. 5
shows a plot in x space of the distribution f,(x) for
various nuclei, according to Eq. (4.5). We have
assumed that the multiply excited projectile dis-

tribution is identical with Eq. (6.1). Note also that
the compression of the scale for x <0 varies as a
function of A. The apparent discontinuity at x=0
is due entirely to the nonlinearity of the relation
between x and the rapidity. In reality, the curve
is not discontinuous and interpolates smoothly in
rapidity. We would expect our result to be blurred
in practice for the particles with the most negative
x, because of the difficulty of escape for those
particles produced nearly at rest with respect to the
the nucleus.

To compute the average multiplicity one need
only integrate the distribution over rapidity. With
a definite model it is straightforward to perform
the necessary integrals. However, the interpola-
tion between zero lab rapidity (x < 0) and maximum
lab rapidity (essentially x = 0) requires knowledge
of the multiple projectile excitation at its kinematic
limit. Since maximum excitation mass and hence
maximum multiplicity events populate the x = 0 re-
gion, detailed calculation would be highly model-
dependent. To get a reasonable estimate it suffices
to interpolate linearly between the =0 and r =7
values. This procedure has the virtue that the in-
tegral can be analytically performed. We find

(4= 3[(N Q@+ R)+1]n Yy, (6.2)

where (n*), is the measured charged-pion multi-

.6

A

2

Nl o

o 1 1 1 1 1 1 1 1
I/A -8A -6/A -4/A -2/A (o) .2 4 .6 .8 l

x>

FIG. 5. Realistic scaling function for p +A— 7* + X on various nuclei. The function is taken from Ref. 19. The curve
for x>0 is taken to be the input for the (symmetrical) reaction p +p — n* + X. Note the compression of the scale for

x<0.
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FIG. 6. Ratio of charged-pion multiplicity in p +A4 — 7* + X to multiplicity in p +p —7* + X, computed by integrating

the distribution of Fig. 5 weighted with x™!

plicity in p+ p~#* +x. In Fig. 6 we plot the ratio
of (n*), to (n*,. Of course, the logarithmic en-
ergy increase is retained. That the ratio is not
enormous even for lead is a consequence of the
size of (N) ,, the number of mean free paths for
inelastic collision. According to our previous dis-
cussion of {N),, the ratio for realistic nuclei rises
roughly as A'”. This sort of result has been ob-

served previously'* in the context of resonance ex-
citation in nuclei.
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Test of Cabibbo’s model in hyperon semileptonic decays
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The experimental rates and angular correlation and symmetry coefficients are used to test
Cabibbo’s model in semileptonic hyperon decays. The data indicate that the one-angle model
should be relaxed. We consider the possibility that 6, = 6,, and we investigate the influence
of the g% dependence of the form factors. We find that the present data are sufficiently accu-

rate to detect symmetry-breaking effects.

I. INTRODUCTION

The experimental evidence in hyperon semi-
leptonic decays has increased lately, so that one
can expect to have a better test of Cabibbo’s mod-
el.! Previous recent tests?~* seem to favor the
one -angle Cabibbo’s model. Our present analysis
aims at performing a more detailed test of this
model and at investigating whether the current
experimental evidence makes it worthwhile to
consider symmetry-breaking corrections in semi-
leptonic hyperon decays.

Instead of the experimental V/A ratios of the
different decays, which have been used in the
other tests, we prefer to use the available ex-
perimental angular correlation and asymmetry
coefficients, because, otherwise, one would be
losing information. In our opinion, this provides
a more stringent test of the model.

In Sec. II, we review the parametrization in
J

(AlJ,|B) = (’;ﬁ"

Cabibbo’s model of the different hyperon semi-
leptonic decays. In Sec. III, we use these parame-
ters to fit the available data in this type of decays
and we consider also the possibility that there

be different vector and axial-vector Cabibbo an-
gles. In Sec. IV we make some final comments.

II. PARAMETERS IN CABIBBO’S MODEL

We assume that the semileptonic decays of
hyperons are all described by the V -A theory,
with time -reversal invariance, and electron-muon
universality. For the internal-symmetry proper -
ties of these decays we take Cabibbo’s model.®
In the spirit of this model symmetry -breaking
effects are assumed to be small enough to be
neglected, except for the difference in the masses
of the different hyperons. Also, only first-class
currents are assumed.® The hadronic part of
the transition amplitude is

1z | P q
) uA(P'){fl(q’)y,, +f,@?) Mi“q,, +f3(@®) Iflt

+ [gl(qz)y,, +g2(q2)x—f;qu +£4a?) f—,l‘:] 75}"8(1’), (1)

where B and A are the decaying and decay baryons,
Jy=V,-A,, ¢=p -p’, and My is the mass of bar-
yon B. According to Cabibbo’s model, the form
factors g, and f,; can only contribute as symmetry-
breaking effects. These effects are assumed to

be small enough so that the contribution of these
form factors can be neglected. For the electron-

mode decays, the contribution of g, will be mul-
tiplied by the electron mass. Therefore it can

be ignored, unless g, turned out to be unreason-
ably large. Since the range of variation for ¢?

is small in all of these decays, the g% dependence
of the form factors that contribute can be account-
ed for by keeping the linear term in a ¢ expan-



