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Introducing the Lagx'angian multip1ier field g (x), a canonical formalism for the Yang-Mills
fields f &(x) with mass M —0 is proposed within the framework of an indefinite-metric quantum
fie1d theory. The formalism for the massive f& has a mell-defined zero-mass limit, and the
reduction of the physical components of f& as M 0 is embodied in an elegant way. Using
the field equation for g (x) and the path integral, we find that the "extra" factox in the am-
plitude due to the interaction of g(s) in the intermediate states is [det(1+ (CI+ Mt) tgf„x Q) ~~t

=-D&"~ 2 for the massive f&, a~d that the extra factor is D& 0 for the massless f because of
tf

their different degrees of observable freedom. Thus, the ~es~lt~nt ~«s for the Feynman dia-
grams for M &0 and M = 0 ax'e not smoothly connected. The theory is covax'iant, renormaliz-
able, and unitary after the extra parts are removed from the amplitudes. The problems of
unitarization and renormalizability are discussed.

I. INTRODUCTION

%'e propose a canonical formalism for the Yang-
Mills fields f„(x) with mass M ~ 0, where the mass
M has nothing to do with spontaneously broken
gauge symmetry. A Lagrange-multiplier field X
i.s introduced in the Lagrangian of the formalism, '
so that the Lagrangian describes a pure vector
particle f and a scalar particle X with a mass M
and a negative norm. The formalism for the mas-
sive f has a well-defined limit M -0 and it is co-
variant and renormalizable. It is inevitable to in-
troduce an indefinite-metric Hilbert space if one
wishes to formulate quantum electrodynamics in a
manifestly covariant way. ' Although it is easy to
construct a renormalizable theory of a vector field
employing an indefinite metric, it is more difficult

to have a unitary "physical" field-theoretic S ma-
trix for the vector field. ' Usually, the physical S
matrix can be consistently defined in field theory
if and only if the S matrix satisfies th8 "physical-
state condition, " namely, if the initial state is a
physical state, then the final state is also a physi-
cal state and vice versa. This condition is satis-
fied in Abelian gauge field theories because the
Lagrange multiplier obeys the free-field equation
by virtue of the source current being conserved.
Yet, . it is extremely difficult to satisfy this condi-
tion in other field theories.

In the theory of the Yang-Mills field, the La-
grange multiplier field X (x) does not obey the free-
field etluation and, therefore, the physical-state
condition is not satisfied. The field-theoretic def-
inition of the S matrix S in the physical-state sub-
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space is got ueitmy due to the coupling between
X(x) and f„(x). So, the burning question is: How

ean we unitarize the S matrix without violating
causality and analyticity and thus define the physi-
cal S matrix Spp The present Lagrange-Inulti-
plier formalism is constructed to overcome this
difficulty. The field equations, especially the
equation for the Lagrange multiplier X(x), are ex-
tensively used. For instance, though y(x} might
superficially appear to have several different cou-
plings, the field equations are used to show ean-
eellations between different couplings and to sim-
plify the X coupling. Furthermore, the equation
for X is used to identify the extra absorptive part
in S due to the interaction of X.

The Lagrangian for the massive Fo and }t is

g =g„„+-,'I'f f~+qe f~ X+-,'g'X'

4~"(—kB„-4~-fP' (1)

where 7 are the Pauli matrices for isospin, x&

= (t» x» y» 8)» goo = -gkk = 1» Bo =B/Bx"
» ancl

~vM ==4f„.'f"",

f„„=B„f„—B„f„-gf„Xf„.
The parameter q will be specified as q =M eventu-
ally for the massive f„; it is arbitrary when M =0.
The Lagrange-multiplier field X has no free La-
grangian and no apparent interaction with the trans-
verse component of f„. However, we ean derive
the field equation for X(x). The equation indicates
that X has a mass M and an interaction gX

(f„xB"y), which completely determines the cou-
pling of y. It is shown below that the equation of
motion for the Lagrangian-multiplier field y(x)
together with the Feynman path integral is a pow-
erful tool to extract and isolate the extra ampli-
tudes to all orders in S in a simple way. ~ We find
that the modification of the amplitude to all orders
in S due to the interaction of X is coming from a
factor [cf. the expression (4V) below]

D -'I'=[det(1+( +M')-' f,xso)]-'". (4)

Once this extra amplitude is removed from S, the
Yang-Mills theory for the massive f„ leads to the
physical S matrix S~g which is unitary. This has
been verified by explicit calculations up to and in-
cluding two loops.

When M = 0, we have a gauge-invariant ~M and
we may replace ~g'X' by ~Pg'y', where P is the
gauge parameter. In this case, the y particle also
has zero mass for all P. The extra amplitude in
S due to the coupling between the unphysical and
the physical f„ is found to be D„o ' instead of
D„, ' '. This is because now there are two un-
physical components in the massless 4-vector

field f„. The massless Yang-Mills theory is uni-
tary after the extra amplitude D„, ' is removed
from S~„oto obtain the physical 8 matrix Sok.

After unitarization, the resultant physical S ma-
trices for the massive and the massless Yang-
Mills theories are not smoothly related in the
sense that

tl2
%~0 N 0'

This reflects the fact that there are two unphysical
components in the massless f„, while there is only
one in the massive f„. However, it should be em-
phasized that the fo~alisms for M & 0 and M =0
are smoothly related. The sudden reduction of the
observable degree of freedom in the limit M 0
can be clearly seen in the formalism.

II. FIELD EQUATIONS AND QUANTIZATION

The Lagrangian (1) can be written as
~s»

est =g~+-,'M'f f o --'(B f o)' +-'q'(x)

-gy" (-iB kg%-' f )P -mug

where g (x) = (B„f"+q}i)can be regarded as a new
field. The equation for g derived from (6) is g =0,
so that g(x) in (6) can be ignored. The Lagrange-
multiplier formalism for the massive Yang-Mills
field is based on the Lagrangian (1), which leads
to the following field equations (0 -=B„so):

(0+Mk) f„+J„=O, (V)

B„f&+@X=0, (8)

yk( kB k-g7''f -)/+ md =0 (9)

J„-=—k'ggy 7'P+gf" xf„„+gB"(f„Xf„}. (10)

The divergence of the field equation (V) together
with the constraint (8) leads to the equation of mo-
tion for the I.agrange-multiplier field X:

(O+Mk}}{=ri-'B„J„,

where J„is given by (10). Superficially, the }(
particle has a rather complicated interaction as
shown in (ll). However, using Eqs. (V), (8), and

(9), the field equation (11)becomes

(&+M')X = -gf„&& B"X . (12)

The canonical conjugate n'„, where a =1, 2, 3 of
the field f„'is defined by

ggAf
k B(B fkk) Ofk kfO»

gglf
0 B (B fSO) f}f

The equal-time commutators are given by



1680 J. P. HSU AND E. C. G. SUDARSHAN

[f'„(x),v'„(y)] =i6„„6„6'(x-y), x, = y,

[f„'(x), f'„(y)] =[v'„(x), v'„(y}]=0, x, = y, .
It is convenient to rewrite (14) directly in terms
of f'„, 8,f;, and X' (for x' = y 0):

[f„'(x),8,f,'(y)] =i6„6~5'(x —y),

[f'„(x},m'(y)] =+f6., 6„.6'(x —y),

[s.f;(x), nX (y)] =+i6., 8;6'(x-y);

(14}

(15)

,' (a,f;-—a, f;)'+-,' [(s,f„')' —(a,f;)']
+5M*(f;f;-fHf:) -kn'x'x'+ ex's, f; (18)

all others vanish. These commutation relations
already imply an indefinite metric, but it is not
very transparent in (15); see (31}below

In the absnece of g, the free Hamiltonian X& for
f„ is defined by

Kq=fr, sg, +w, 8$, -2 (f„,/=0, g=0)

From Lorentz covariance, local commutativity,
(21}, and (22), we have

[f„'(x),f'.(y)] =[(sg„,+»*„8*.)&(x -y, M')

+ (cg„„+dan a*,)A(x -y, pM')]5„. (24)

The coefficients a, b, c, and d are completely de-
termined by the equal-time commutators, and we
obtain

[f'„(x),f'„(y)] = -H„(g„,+M-'8'„8„)g(x -y, M')

+iM 8*„8*„6„A(x-y, pM ), (25}

k(xM')=-i(se) 'fdepe(p)s(p'-M')e "''. (16)

One should be careful in taking the limit M-0 in
(25). We find that (25) reduces to

[f'„(x),f'.(y)] = -i6.~g„.&(» -y, o)

+i(1 —P)6.,s*„a'„E(x y)

Here, we treat 2"(f„',g, g=0) as the unperturbed
Lagrangian. The Heisenberg equation

is 0 =[0,He], 0 = f„,e'„, Hx 'fss--ed x '(17)

reproduces the free equation of motion for f'(x)
and some identities. Thus, H& is really the time
displacement operator. In the absence of the
fermion field P(x), the interaction Hamiltonian is

in the limitM-O, where

E(x}=—,d, (»-,M')a

N=0

=-(8v) 'e(x, )8(x'),

aE (x) =~(x, 0).

From (20} and (25}, we obtain

(28)

(29)

Xjgf —X ~Ky

= (f, sg, +7f, ~ sg, -2"}-xf
=-~g(s„f„-a, I „)~ (f "xf ")

+-,'g (f„xf„)~ (f~xf ) (18)

which is an invariant under Lorentz transforma-
tion.

HI. THE PROPAGATORS

(19)

For convenience in studying the limit M-O, let
us consider the following modified free Lagran-
gian in this section:

= ——'(s, f —s„f„)' (8"f"-8"f ")

+—,'M'f fu+gX ~ 8 fu+~Pg X'.

[f'„(x) '% (y)]=-~6, 8*„&(x-y,PM ),

(31)

P„"(6) fd'xe„"'(0=—(7(f'„(x)f'„(0))(0)

-i(g„„-M 'k„k„) ik)kk„
k' -M'+iE M'(k' —pM'+if) '

(32)

d xe'"' 0 T(f'„(x)x~(0 ) 0

[gy'(x), qx'(y)] = -iM'6„n. (x -y, pM').

The commutator (31) implies that X (x) is a nega-.
tive-metric field if M & 0 and that it is a zero-
norm field if M' =0. (A state having a zero or
negative norm is called a ghost state. )

From (25), (30), and (31), we have

This gives the following "free" field equations:

(a+M')f„- (1 —P)qs, q =0,

8 f u+Pnx =o,

(O+ pM')X =0.

(20)

(21)

=+6 g 'k (k P2M i 2}+'e(33)
)xs

J d xe'"'(0]T(y'(x)y (0)))0)

=-ia,kq 2M'(k —PM +is} '. (34)

The propagator (32) can be written as
It follows that

(0+PM )(0+M2)f& —0, P 661

(Q+M6)f =0 P =1.
(22)

(23)

F(s(s(k) 666[ ig+))iH(I p)k(kkH (k -pM-) ] (35)uv -M t

which is consistent with (2p) as M-Q.
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IV. THE MASSIVE YANG-MILLS FIELD

Within the framework of the indefinite-metric
field theory, the physical state is defined by

x'"(»)lphys& =o, (36)

where X"' is the positive-frequency part of the
Heisenberg operator X(x). Let us consider the
physical-state subspace at time t =+. For def-
initeness, we only discuss the in field, since the
out field can be discussed in the same manner.
Suppose

z(x)-z (x)=-z(x},

move this extra amplitude to all orders (in g) con-
tained in 8 and thus define the physical 8 matrix
S~h. This problem can be solved with the help of
the equation (12) for the Lagrange-multiplier field

X and the Feynman path integral. The matrix ele-
ments of S are given by the amplitude

A= exp i d xZ" +$8 d f&, X, g, p

=const exp i d x Z~&, +$8 d f„, , g, 44

T//~(x-) +q(x)g+ r/ (x).f /'

d[f, x, f, ]=d[f ]d[x, 4, " ],
as time t- -~. The in field Z (x) satisfies the
free-field equations (20)-(23), with P =1. The
commutation relations for f'„and X' are given by
(25), (30), and (31), where f'„and X' are replaced
by f„'and X', respectively. ln particular, we have

[f'„(»),m7 b')] = -~5.o s'„&(» y, PM-'),

[x'(»), x'(y)] = ~n 'M-'&.-, ~(» y, eM-'),

(36)

(39)

(40)[X (x), 0' (y)] = o {P=1, n =M &o).

The constraint for the physical in state is

X."'(x)lphys} =0, X.=X' (41)

The commutator (39) implies that the x bosons are
unphysical for M & 0. In this case, we may divide

f„'(x) into a spin-one part and a spin-zero part:

fp=[f/, -&(M') 'spX']+1(M') 's„X' (6=M)

(42)

From (20), (21), (38), and (39), one can easily
verify that the spin-one part F'„=f„'-g(M') 'B„-x'
satisfies Bj'I'„' =0 and

[F„'(x),X'(y)] =0. (43)

The expressions (39), (40}, and (43) imply that the
physical subspace is generated by the Hermitian
conjugates of [F'„(x)]'" and [g (x)]~'i from the vacuum.

lf X(») obeys the free-field equation, then (36)
can be consistently defined for all time and the
physical-state condition is satisfied. There will
be no problem of unitarity, but this is of no in-
terest to us, since there is no interaction. How-
ever, the equation (12) for the Lagrange multiplier
shows that X couples to the physical components
of f„. Thus, the physical state (36) cannot be con-
sistently defined for all time and the physical-
state condition is violated. This means that the 8
matrix 8, defined in the physical-state subspace,
is not "physical, " because it contains an extra
amplitude due to the interaction of x (x) in the inter-
mediate states, and is, therefore, not unitary.

So, the problem is: How can we isolate and re-

(47)

Thus, the extra amplitude in (44) is completely
isolated in a determinant factor. Effectively,
after removing D„'/' from (44), we are left with

a functional form which gives unitary amplitude.
Unfortunately, such a functional form cannot, in
contrast with the Abelian gauge theories, ~ be ex-
pressed in a simple closed and local form. So,
the unitarized amplitude can only be expressed by

f/ = D»+'/2 exp i d'x(Z~&, +Z») d[f„, tf/, q], (46)

D»"/2 =exp@ Tr in[1+ (C]+M') 'gf„x 8"g . (49)

The new rules for the Feynman diagrams in the
massive Yang-Mills field theory are as follows:
The propagator for f„and X are, respectively,

6„[-ig„„/(k' -M'+ fe )] (50)

and

6.,[-~ /(k' -M'+f~)],

which are obtained from (32) and (34) with P = 1 and

q =M. The 3-vertex V'„'„~ [i.e., f'„(p)f'„(q)f~(k),
where p„+q„+k„=0]and the 4-vertex U'„~~~~ [i.e.,
f'„(p)f'„(q)f~(k)f~(k'), where p„+q„+k„+k„'=0]are
given by

with external physical particles. The Lagrangians
2 and g»z are given by (1) and (6), respectively.
The extra amplitude in (44} is completely deter-
mined by Eq. (12). We observe that the equation
(12) for the negative-metric field x could be de-
rived from the Lagrangian Z(X):

g(x)= —,'[s X
~ s~X™x'gx (f xs X)] (46)

if Eq. (6) (i.e., B„f„=-gx)holds. Therefore, in

(44) the extra amplitude due to the production of X

in the intermediate state can be expressed by

expi d g X X

[deg5ac+ ( +M2)-l~abcf bs»}]-1/2 —D -1/2
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I"„".1 = Z .&.[g„.(P —~)~+g.&(e -I }„+g&„A -P).j,

U('v1( =i lemma(egeu(&p()&vx
-g) 1g~p)

+es-eIM(&))( & &' &u &(»)

+ey~eye1 4'))A'()1 &))1&)p)] (53)

The new vertex implied by the determinant factor
in (48) or (49) is

~ebc +obey
P~ {54)

which ean also be seen from the source term in
(12) or the interaction term in (46). Because of
the factor D„'" in the numerator of the expression
(48), any "fictitious" loop from this square-root
determinant factor carries an additional factor
(=,' }. This is to be contrasted with the determi
nant factor in the massless case [cf. expressions',
(64) and (65) below], where the fictitious loop car-
ries a factor (-1}. The indices u, 5, c =1,2, 3, and
the lines corresponding to the fieMs in the dia-
grams are all directed outward from the vertex.
These rules indicate that the theory is renormal-
izable by standard power counting.

V. THE MASSLESS YANG-MILLS FIELD

For the gauge-invariant Yang-Mills theory, the
Lagrangian specified by the gauge yarameter P is
obtained by taking the limit M-0 in (1) and re-
placing ~rPX' by —,'P)V'X':

= ='f f )"+1}X' &g" +—'P11~X'+2

8&--—-T()p(-ie& —2g7 'f„)(() -mg(i) .
{55)

X,"'iphys) =0 (a = 1, 2, 3) . (59)

It follows that the expectation value of X(g) in any
physical state vanishes. Thus, the exPeetaNon
values of (56& and (5V) in the nhvsical states re-
produce the classical equation and the conserva-
tion of current

(&"f„„)+(Zg =0, (&"J„)=0.

This Lagrangian leads to the field equations

8"(s,f„-s„f,)+ e„(e,f ")jp+g„=0, (56)

e„f~+Pqx =0, (5V)

whe1'e Zp ls give11 by (10), a11d (56) with P = 1 1s the
zero-mass limit of (V). The divergence of (56) to-
gether with (5V} gives

~ =n-'&" ~„=-gf„»"X, (58)

which shows that X(x) is a massless field for any
value of gauge parameter P. As usual, we define
the physical states ~phys) by

f'xu ' j„=d.'*-I))' (i)i), („") )'(x, i7')+,)', ]

(6o)~ (f[f )( ~ X) X ) (l') 41)

where S(X, X') is the Lagrangian for the two mass-
less unphysical components of f„and g~~()i), T(), f r)
contains only the two physical (transverse)
comyonents of f„, i.e., f~. We know that X satis-
fies Eq. (58). Now we must find the equation for

In analogy with quantum electrodynamics, ' X'

should be identified with the gauge excitation,
which appears in the gauge transformation of f&.

f~~ f~+ ~ Xf„ (61)

Furthermore, the dynamical characteristics of
the physical system (i.e., the energy-momentum
tensor T""and the angular momentum tensor M)'")
derived from Svzw in (55) and those from Z vss1

are different. Nevertheless, these differences in-
volve X(x), and their expectation values in the
yhysical states vanish.

The supplementary condition (59) does not imply
there are no ghost quanta. Since X(z) commutes
with X(y) as seen from (31) for M =0, it is not pos-
sible to identify X'" as the destruction and crea-
tion operators for quanta arith a definite metric.
Bather, they correspond to equal-weight linear
combinations of operators for longitudinal and
timelike quanta. The supplementary condition (59)
permits the excitation of the linearly independent
combination (with opposite relative phase) of the
operators for these two modes. Change of gauge
corresponds to excitation (or extinction) of this
combination of modes; see the discussion of (61)be-:
low&. AQ these excite states, of course, have
zero norm and zero scalar product with all the
other states. The number of remaining degrees
of freedom corresponds to the ~ transverse
modes; this is to be contrasted with the massive
case with three modes. ' Correspondingly, @re

have the contrast between (46) and (63).
Because of different physical degrees of free-

dom for f„(x) with M = 0 and for f„(x) with M & 0,
one must modify the steps (44)-(4V} to isolate the
extra absorptive amplitude due to the interactions
of the bosons corresponding to the unphysical
components in f„(x). In fact, in the one-loop level,
one can shou that the extra amplitude is twice
that of the amplitude given by D„'"with M =0
(Refs. 6-8) [cf. Eq. (49)]. This double contribu-
tion does not correspond to an additional factor 2
in (48) because any constant factor in (48) does
not affect the physics [or the rules for the Feyn-
man diagrams that follow from (48)]. Since there
are two unphysical components, say X(x) and X'(x),
in the massless f„(x), the amplitude (44) with 2"
replaced by Z, „„can, in principle, be written as
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Note that we could set &&f"=0 [i.e., p =0 In (55)]
because of gauge invariance. We observe that Eqs.
(58) and (62), which completely determine the cou-
pling of the unphysical components in f,(x), could
be derived from the Lagrangian

g (X X ) =-8 X'8"X+gx' ~ (f xs"X) (63)

or, if ~„f&=0,

&1](x[i X2}= -k[8](xx ' 8"Xx gxI' (f](~ 8"X1}l

+2[8„xp 8"x& -gx2' (I„&&[]"x,)],

x = (x, —x,)/~&, x'= (x, +x, )/~&.

From (60) and S(X,X') =2„(X,X') [or Zs(X„X,)],
we find that

=fll„'axp i d'a(2x'a ada]:d[(x, P, P].
a

Again, after the extra amplitude is isolated, the
remaining functional form, which gives the unitary
amplitude, cannot be expressed in a simple closed
and local form. The unitarized amplitude is

a

dal„=, fP„=,axp i fd=addaxa) a['af„dX, , ]P, P

=
Jl x( =axp if@'a„[=,,'i„„ i"'—((/xd)(a„i")'

+Z, +Z, ]]d[f„,T[, P], (64)

D„,= exp[Tr ln(1 + CI ' gf„x6")], (65)

which agrees with the result obtained by other
methods. " The dynamical reason for the detex-
minant factor D„, in (64) and (85) is transparent
in our considerations.

Another simple method of isolating the extra
amplitude is suggested by quantum electrodynam-
ics (QED) with nonlinear gauge condition. " SiIIce
the Inethod works perfectly in QED with nonlinear
gauge, it should work here if such a method is of
any value. First, we write (58) as

Cl(1+Cl 'gf„xe")X =—Clj'=0, (66)

then express 2~~ given by (55) in terms of $':

~ JI'M ~YM +~~ Pf +&P~ ~ (8V)

The gauge excitation X' must obey the equation
such that the pure transversal f„,i.e., e&f„=0, re-
mains pure tx'ansversal after the gauge transforma-
tion (61). Therefore, x' must satisfy

ox'+ ge"(f„xx') = o
or

gX'+gf xe&y'=0, if 8 f"=0.

where g"~ does not contain t' field and its struc-
ture must be such that (67) reproduced the "free"
field equation QE'=0. This ensures that 2„"„ will
give unitarity amplitudes. In the case of QED with
nonlinear gauge condition, the Lagx'angian g&zso

can be expressed in a simple local form and does
give unitarity amplitudes. Yet, here S~~ cannot
be written in a local form. This really does not
matter because we are only interested in extract-
ing the extra unwanted amplitude froxn Z 8„. The
amplitude 1s

W

d(„, fax=p i d'a(dxa„+d, ] d[(„P,P],d[X]

exp I d'x(R„"„~+I)$"e„f"+-,'pII'$" +Z~)

x d[g, q, T(]d[ t'] [det(1+a-'gf„»]')]-'

= Jlp„, 'axplifd' [z]'a x((/pad](a -x )' pa, a]Ia

«[f, 4, 4], (68)

where the extra amplitude is isolated in the factor
D~ 0 . Therefore, the unitarized amplitude is the
same as that of (64}.

VI. RENORMAI. IZABII.ITY

%8 know Ule Dlassless Yang-Mills f181d ls x'8-

normalizable. And it has been shown that if the
massive Yang-Mills field has a limit M 0 (to
within logRrltlllnlc lllfrRI'ed sillglllRI'I'ties) 1't InRy

be renormalizable. " Prom the above discussions,
the formalism for massive Yang-Mills field has a
smooth limit M-0. In this limit, we obtain mass-
less Yang-Mills theox'y in the Feynman gauge.
Furthermore, the present theory for massive f„
is renormaljzable by standard power counting.

However, at the present time there are different
opinions about the renox'malizability of the mas-
sive Yang-Mills field (without spontaneous break-
ing of gauge symmetry). Some held the opinion
that it is not renormalizable" and others held the
opinion that the question requires further investi-
gation. ' This is not so surprising because these
different. opinions ax'8 based on different, modifica
tions of the original pure massive Yang-Mills
field given by

gM = -~f f &+~M2f ft'+g (69)

Roughly speaking, what one does is as follows.
One modifies (69}by adding an unphysical scalar
particle, so that the asymptotic behavior of the
propagator for massive f„ is proportional to 0 '.
The collpl1ng 111 (69) is renormalizabie. Tlllls If
the new coupling due to the scalar particle is re-
normalizable (or unrenormahzable), then the the-
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ory is renormalizable (or unrenormalizable). For
example, if the source term in the equation for X

(the added scalar field) is s„J"=8„(,'gg-y"7g
+ gf 'xf„„)and if it cannot be further simplified,
then the }( coupling will have a term Pgrgs }(,
which is known to be unrenormalizable. In our
formalism, the complicated source g '8„J~ can be
reduced to gf-x B~}( by using field equations.

There are many ways of modifying (69) to in-
clude a scalar field. ""'"Since the scalar parti-
cle is unphysical, different authors assume differ-
ent masses for it. Also, the relations betweenthe
scalar field and f„are different in different modi-
fications of (69). One way of modifying (69) is to
apply a finite gauge transformation to f in (69):

1f'=Of rQ '+ —(8 Q)A ' Q=e'~~
p

(70)

One obtains a very complicated Lagrangian with a
very complicated relation between y„and f . Only

when g =0 does one have the relation y„o-e„f~.
One finds that y„has unrenormalizable coupling
and concludes that the massive Yang-Mills field
is unrenormalizable because there are no further
Ward identities to be enforced. " This, of course,

does not rule out the possibility that the Lagran-
gian for the scalar field could be modified so as
to produce renormalizability. In our formalism,
the Lagrangian for the scalar field y is simple,
and we have the simple relation 8„f~~X even if
g+0. The field y does interact, through its cur-
rent, with the transverse components of f„as
shown in its equation of motion. Since the propa-
gator of this current (~}|x B„y) is, at large mo-
menta, no more singular than that of a free scalar
boson current, the theory is renormalizable.

We may remark that one should be cautious in

making a finite gauge transformation to a non-
gauge-invariant Lagrangian such as (69), because
one may end up with a different result. For exam-
ple, if one expresses

I

exp-g d g g~ q~M f ~ f ~ jgf ~ »p+qM p
1

x d[fz, pj (71)

as the action of a vector and a scalar particle
(both acting nonlinearly and in interaction) by mak-

ing a finite gauge transformation of f„to f„',

g ~+ &EAf 7 ~ P (72)

After a number of integrations by part, ' one)obtains"

B=exp -i d'x S~+-,'M'f .f +-,'M'p'- e„p+ „&&p -»p- g 3M px8~p+. ~
'

d f~, p . (73)

However, (71) leads to the following equation for p:

(p+M )p =-gf„xB~p,

while (V3) leads to

(74)

(CI+M )p=-gf xs"p+ pxC]p+ (s"p p)f
3M 3M

VII. DISCUSSIONS AND CONCLUSIONS

The formalism described in this paper tries to
remain as close to conventional quantum field the-
ory as possible. The primitive Lagrangian (44)
contains the two fields f~ and X. After the X field
has been integrated out, we get a theory involving

the four-vector isovector field f~ and an additional
unitarization factor D~'". In the massless limit,
the unitarization factor is D„,. This factor may
be viewed as being generated by a scalar isovector
fictitious field with Fermi statistics. (The quan-
tization of a massless scalar isovector field with

Fermi statistics has been considered by Rudolph

+ (p f )s"p — (s p f")p+"
3M " 3M

(75)

which is different from (74). Therefore, it is no

longer clear that (71) and (73) are the same thing.

and Durr. ") Thus, we may view the unitarized
amplitude (48) as arising from a system with five
degrees of freedom, including three normal phys-
ical degrees of freedom for the massive vector
meson, one unphysical degr'ee of freedom for the
vector meson, and a fictitious degree of freedom.
The last two cancel each other in computing phys-
ical (on-mass-shell) scattering amplitudes. Thus,
in unitarity sums only the three physical degrees
of freedom contribute; this is guaranteed for the
unitarized amplitude (48) but not for the primitive
amplitude (44).

The remaining degrees of freedom are all posi-
tive-norm states with the usual physical interpre-
tation. In this theory, although initial and final
states can be described in terms of physical
components of f~, we cannot dispense with the
"unphysical" degrees of freedom altogether. This
is somewhat similar to the situation in quantum

electrodynamics, where we cannot dispense with

longitudinal and timelike photons altogether. On

the other hand, the standard massive Yang-Mills
theory based on the Lagrangian (69) involves only
three physical components of f ~. However, such
a theory does not have a zero-mass limit' and

does not seem to be renormalizable. The present
theory does have a zero-mass limit and is renor-



THEORY OF MASSIV E AND MASSLESS YANG-MILLS FIELDS 1685

malizable. In this sense, the present theory is a
different and more satisfactory theory. Further-
more, the present formalism for the massive
Yang-Mills fields might be a useful way of regu-
lating the infrared behavior of the massless Yang-
Mills fields because the Yang-Mills quanta can be
given a mass according to the present approach
without destroying renormalizability.

The unitarization of the amplitude in (48) is
achieved without destroying the analyticity of the
amplitude. This comes about because the added
term

—,
' Tr In[1+ (Cl+I') 'gf && 8~]

in the transition amplitude coincides, apart from
signs, term by term with the amplitude for a nor-
mal scalar field with local coupling. The corre-
sponding Feynman amplitudes exhibit the usual
analyticity properties of perturbation-theoretic
amplitudes. Consequently, no loss of analyticity
results from the unitarization. We have verified
this by direct calculation in the one-loop approxi-
mation.

In our formalism of the Yang-Mills field f„with
mass M&0, the zero-mass limit of f„exists.
Aside from the problem of infrared divergence in
the massless theory, we can discuss both M& 0
and M =0 in a unified way. Because of the coupling
between the physical and the unphysical compo-
nents of f„, the field-theoretic definition of the S
matrix, i.e., S, in the physical state subspace is
not unitary. From the field equation for X, we
know the interaction of y (although this interaction
cannot be seen directly from the given Lagran-
gian). So one can unitarize S order by order.
However, the combination of the equation of mo-
tion for X and the Feynman path integral is very
powerful because it enables us to isolate the extra
amplitude in S for all orders by simple reasoning.
The matrix S can be unitarized to all orders in a
simple way for both M & 0 and M = 0 cases. A
minus sign for any fictitious loop in the massive

theory and the difference of a factor 2 between the
"fictitious loop" for massive f„and that for mass-
less f„appear puzzling in other approaches of
quantizing the Yang-Mills field."'8 Now, it be-
comes clear for all orders of diagrams in our ap-
proach. We note that the rules for the Feynman
diagrams in the massive case (cf. Sec. IV) are dif-
ferent from those given by other authors. "

On the other hand, the observable physical state
can be connected by the total S matrix to a state
containing ghosts. Here we encounter the diffi-
culty of probability interpretation. Can we just
look at Sph and simply ignore the production of
ghost in the final state? Can a field with such
properties be realized in nature? The answer is
yes in the following sense: If one considers QED
with a nonlinear gauge, e.g., „Aj'+P'A„A~=0,
P'c0, the longitudinal photon can be created and
the straightforward field-theoretic definition yields
a "physical" S matrix which is not unitary. How-
ever, if one just uses the unitarized physical S
matrix and simply ignores the production of ghost,
one can describe nature accurately. This is be-
cause the physical S matrix after unitarization (in
the same way discussed above) is exactly the same
as that of the usual QED with linear gauge. '
Therefore, we believe that a theory with such a
unitarization procedure is all right. We note that
analyticity of the S matrix is restored after such
unitarization. In the case of the Yang-Mills field
with M ~ 0, we have verified the analyticity of the
unitarized S to the one-loop level.

Note added in Proof. In calculation of higher-
order processes one must take into account the
constraint (8), which is closely related to the ef-
fective Lagrangian (46). The application of the
present method to gauge theories leads to the re-
sults which are exactly the same as those obtained
by the usual method; therefore, the possible effect
of the corresponding constraints should also be ex-
amined by explicit calculations of higher-order
diagrams.
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By use of the path-integral formulation of quantum mechanics, a series expansion for the

effective potential is derived. Each order of the series corresponds to an infinite set of con-
ventiona1 Feynman diagrams, with a fixed number of loops. As an application of the formal-
ism, three calculations are performed. For a set of n self-interacting scalar fields, the

effective potential is computed to the two-loop approximation. Also, all loops are summed

in the leading-logarithmic approximation when n gets large. Finally, the effective potential

for scalar, massless electrodynamics is derived in an arbitrary gauge. It is found that the

potential is gauge-dependent, and a specific gauge is exhibited in which a11 one-loop effects
disappear.

I. INTRODUCTION

The effective potential for a field theory (that is
the generating functional for zero-momentum sin-
gle-particle irreducible Green's functions'), intro-
duced by Euler, Heisenberg, and Schwinger, is
useful in studies of spontaneous symmetry break-
ing, as was first pointed out by Jona-Lasinio, '
and more recently by several authors. '4 Calcu-
lation of this object has proceeded by summing
infinite series of Feynman graphs at zero momen-
tum. " Obviously this is an onerous task, espe-
cially when several interactions are present which

complicate the combinatorial factors that multiply
each graph. Moreover, the calculation has been
only performed in the one-loop approximation,
since higher-loop contributions appear extremely
difficult to evaluate.

However, it is important to be able to study the
higher-order multiloop graphs, if not explicitly,
at least in general terms. Two circumstances
can be envisioned where multiloop graphs are

needed. The one-loop approximation is very sim-
ple; indeed it will be seen that it is not typical of
the higher-order terms. Thus it may be that rel-
evant effects do not set in until the two-loop level.
More importantly, bound states which, as has
been recently suggested, can provide a mechanism
for spontaneous mass generation' can never be ob-
served in a finite order of the loop expansion.
Necessarily they require at least an infinite sub-
set of all orders.

In this paper, I shall use the Feynman path-in-
tegral method to obtain a simple formula for the
effective potential. The formula has the advantage
of summing all the relevant Feynman graphs to a
given order of the loop expansion. Furthermore,
in a natural way it generates all orders of the
loop expansion, representing each order by a
finite number of graphs. Before stating the re-
sult, some notation must be introduced.

Consider a theory described by a Lagrangian 2
depending on a set of fields &P,(x) and construct
the classical action,


