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One of us @.J.K.) has found the position operator for the Lorentz-invariant localization of
scalar mesons, electrons, neutrinos, and photons. It was found uniquely except for an un-
known constant for the electrons. With a set of postulates we Gnd uniquely the spin angular-
momentum tensor for the electrons and the value of that constant. We also find some general
common properties for all the particles considered.

I. INTRODUCTION

A. General

Sec. III we establish some common properties of
the physical systems considered in papers I and II.
In Sec. III we summarize our results.

The I orentz-invariant localization for elemen-
tax'y systems' was considered by one of us
(A.J.K.).2 2 ln Ref. 2 (hereafter called l}, the gen-
eral consequences of imposing Lorentz invariance
of localization (i.e., the physical consistency of the
description of the localization by observers in dif-
ferent inertial frames) were derived and applied
to nonzers-mass systems of spin 0 and ~. In Ref.
3 (hereafter called II), the same procedure as in I
was applied to zero-mass systems of spin 0, —,',
and 1. In all the cases considex'ed, the position
operator and its eigenfunetions were uniquely de-
fined, except for a constant in the spin--,', nonzero-
mass case (electrons), and their form was found

explicitly.
The basic purpose of this paper is to determine

the unknown constant for the electrons and to
establish several physical relations between the
physical systems considered in I and II. A com-
parison between the Lorentz-invariant approach
and other approaches used to try to solve the
localization problem may be found in Ref. 4, where
an extensive literature on the subject is also given.
For further, more recent vrorks see, e.g. , Ref. 5.

In what follows we shall use h = c = 1, unless
stated explicitly, and the same notation and con-
ventions for the metric in space-time, indices,
vectors, and Dirac matrices as in part V of Ref.
6. We consider only one-particle positive-energy
states in the p representation, always denoting

p —+(~p 2+ ~2)1/2

8. Outline of the argument

In Sec. II, we will consider the spin of the elec-
trons, determine uniquely its position operator,
and find some general properties for them. In

II. ELECTRONS

A. Spin

In paper I the Bargmann-Wigner formabsm' for
positive-enex gy states was used. It could be ar-
gued that the spin is then already well defined, be-
cause Bargmann and Wigner' consider that the
spin is the antisymmetric second-rank tensor —,'0"'.
But, the physical states must belong to the space
X of the allowed wave functions, "a condition that
we can satisfy with a projector A, ' where

A=A', A=(2m) '(P„y +m) . (2.l)

Then, because of quantum mechanics, a necessary
condition that any operator 0 must satisfy to be an
observable is

[n, A]A=o, (2 2)

which expresses the fact that for any allowed wave
function q, that is, one for which Ay = y, this op-
erator does not project it out: of K, i.e., that if
Qq =0, then AC C.

For the antisymmetric second-rank tensor c"",
Eq. (2.2) does nothold, sothatg"" is only aformal
spin, but not the observable physical spin; hence
we must find the physical spin of the theory.

We shall state what we mean by a physical spin
by imposing the following conditions:

(a) lt is an antisymmetric second-rank tensor,
—2Z""A (we set here the factor —,

' for convenience};

(b) [z""A,p] =o;

(c) [Z""A A]A=O

(2.3)

(2.4)

(d) For eigenstates of momentum in the rest sys-
tem ~5~'A=M 'A, where'
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m"" =i(p~s" —p "s~)+-,'c"" (2.s}

PP& -PP&
Taking into account requirement (c), we obtain

AZ "'A =Z""A

= C, Ao~ "A+ C,A~"""p.y, y, A

+C A(p p c'"-p"p c"")A (2.6)

where C„C„C,are invariants. Using Eq. (A4)
and Eq. (A6) of the Appendix, we see that a redef-
inition of C, allows us to impose without loss of
generality C, = C, = 0. Then we obtain the result
that

z""(c)A= CA&a""A (2.7)

is the only antisymmetrical second-rank tensor in
the space of the allowed wave functions (that do not
depend on 8,), and hence because of (a), (b), and

(c) the physical spin tensor —,'Z" "A for the elec-
trons must be —,'Z""(C)A for some, up to now un-
known, value of C.

Now imposing requirement (d) we find that C = 1,
and —,'Z""A is just the Hilgevoord-Wouthuysen spin
tensor. ' " We must also notice that &Z""A is the
Bargmann-Wigner' spin tensor —,'cr"" projected ac-
cording to Eq. (2.7) into the space of the allowed
wave functions. It is also a conserved quantity'
and Eq. (A6),

(2.6)

is the covariant expression of the fact that the
temporal components, Z", are zero in the rest
system'9; that is, that the electrons behave in ac-
cordance with the classical x elativistic descrip-
tion 8 ~7

The space-space part of Z"",
(ZR8 Z31 Z18) (2.9}

is a three-vector operator whose components (as
well as its norm) have for each eigenfunction of

is the total angular-momentum tensor.
Because of assumption (a), the spin, being a

covariant entity, has a Lorentz-invariant meaning.
Also it is a part of a covariant splitting of the total
angular-momentum tensor. Assumption (b} means
that the spin is a translationally invariant concept,
so that it does not depend on 8~. The most general
antisymmetrical second-rank tensor in agreement
with requirements (a) and (b) must be constructed

g~ u. 8 I y o"', y'y", and y'.
There are only three independent antisymmetric
second-rank tensors; they can be selected as 0"",

Cf 5
+pvaaP

P»' (as well as for each eigenfunction of p2), a
bivaluated spectrum, since

(z")'=I+ m-'p„2 (u gf),

where

p»' = (p')'+ (p')',

Z =3I+2m 'p

(2.10)

(2.11)

B. Position operator

In paper I, Eq. (6.28}, it was found that the 0
component of the position operator for electrons is

x'={P,)-'[(-,'+G)z"- Af"]A, (2.12)

where G was an unknown constant, which we want
to now find.

This is the t=0 position operator in the Heisen-
berg picture; that is, the value at t =0 of the op-
erator X (i) Then, X .(i) =exp(ip~t)x exp(-ipot)
because X' =AX'A and HA ~p, A [where p,
=+(p'+ m')'~']; we obtain

x'(i) =x'+(p, ) 'p'iA. (2.13)

To determine 6 we shall only impose

—,'Z (C) A =MA-X(i)xp,

where M is the space-space part of the total angu-
lar-momentum tensor M"".

Notice that we are not using the previously found
value C=l. Notice also that Z(C)Ais the space-
space part of Eq. (2.7) and that it is not the physi-
cal spin because it remains to apply requirement
(d) to determine the constant C. Equation (2.14)
contains two undetermined parameters, C and 6,
but this equation is enough to determine them.
Despite the appearance of Eq. (2.14}, remember
that Z(C), p, and M are constants of the motion
and hence do not depend on time t.

The substitution of the expressions of M [Eq.
(2.6)], Z(C)A [Eq. (2.7)], and X(i) [Eq. (2.12)] into
Eq. (2.14) gives

(2.14)

—,'(C- I)A»"A =-ap, -'iA(a'p' —~'p')A. (2.1S)

From Eq. (2.10}and Eq. (2.11), we see that the
commutation relations between the —,'ZA components
are not the usual ones. We must note that lack of
the usual commutation relations between the —,'ZA
components is not in contradiction with the invari-
ance requirement under rotations. The latter only
implies that the components of the totgE angular
momentum must have the usual commutation rela-
tions. We also see from Eq. (2.10}and Eq. (2.11)
that the eigenvalues of Z' and of the Z components
reduce in the rest system to the ordinary values,
as it should be.
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Setting p=0, Eq. (2.15) reads —,'(C —1)Ao"A=0;
hence we obtain once more C = 1 because Ao"'A(p =,
$0. We keep p free again and replace C =1 in Eq.
(2.15). Then, because A( o'p' —a'p')A $0, we can
conclude that C =0. Then, )he single imposition of
Eq. (2.14) has led us to the conclusion that

C=1, C=0. (2.16)

g~" = m"'A- —,'Z j"A. (2.18)

We know that AM" 'A = M"'A. Then by Eq. (2.5)
and Eq. (2.7) we notice that g"" defined by Eq.
(2.18) is the Bargmann-Wigner orbital angular-
momentum tensor

Vfe find that the orbital angular momentum

g =x(t)xp=xxp (2.IV)

is the space-space part of the orbitai angular-mo-
mentum tensor defined by

mentary system considered in papers I and II. The
explicit form of this projection operator for each
case can be found in papers I and II. Notice that
this convention is different from the one used in
Sec. II, vrhere A mas used uniquely for electrons.
Moreover, when vre write an operator, me refer
now to the operator associated with the corre-
sponding elementary system considered in papers
I and II.

Since we have found uniquely in Sec. II the posi-
tion operator for electrons, and as for the re-
maining systems considered in papers I and II the
position operator was also unique, vre start in this
section vrith the point of vievr that me knom a mell- .
defined position operator. We call the attention of
the reader to the difference between the approach
of this section and that of Sec. II.

In papers I and II the k component of the position
operator at time t = 0 was written

fPu-t(pcs& pu sP) (2.19) X =iA8 A+AR A. (3.1)

then vre find that

x'(t) =t A. (2.21)

This last result strongly depends on the order-
ing of factors in Eq. (2.20). For example, a sym-
metrization of the type (see, e.g. , Refs. 19 and
16)

(2.22)

could be used. It must be noted that the ordering
of factors in Eq. (2.17) [and hence in Eq. (2.14)] is
irrelevant.

With X (t) = tA we recover the c-number time
that has been used in paper I. If we write X"(t),
where X (t) is given by Eq. (2.13) and X (t) =tA, '

vre know that it is Not a 4-vector, ' "but that it
can be extended to a formally covariant operator"
in the sense of Fleming. "

III. COMMON PROPERTIES FOR
ELEMENTARY SYSTEMS

In this section the common properties of ele-
mentary systems with spin 0 and —,

' (zero and non-
zero mass) and spin 1 (zero mass) are considered
(these are the systems treated in papers I and II).
In what follovrs, when vre vrrite the projection op-
erator A (which projects into the space of the al-
lowed wave functions) we refer to the projection
operator associated with the corresponding ele-

projected according to A into the space of the al-
lovred mave functions.

For the 2' components, if we define X'(t) such
that

z,"=p'x'(t) —p'x'(t),

But from papers I and II, 8'=0 for all the parti-
cles except the electrons; for the electrons it fol-
lows from the present paper, Sec. II, that C = 0,
so that taking into account Eqs. (6.6a), (6.22), and
(6.23} in paper I, we know that for this particle
A =0 also. Then for all particles considered in
papers I and II, R'=0 so that

X (t)=tAB A+p p 'tA (3 2)

(this result was anticipated in the review paper 4
on the localization problem by one of us}.

Defining

z"'=p"x"(t) —p"x "(t) (3.3)

where X'(t) = tA and X'(t) is given by Eq. (3.2),
we find that g" ' is nothing more than the Barg-
mann-Wigner angular-momentum tensor 6""[see,
Eq. (2.19)] projected into the space of the allowed
wave functions; that is,

(3.4)

Notice that here Eq. (3.3) is the definition of g"",
but that in Sec. II the definition vras given by Eq.
(2.18).J""is an antisymmetric second-rank tensor, as
is evident from Eq. (3.4), despite the fact that
X"(t) is not a 4-vector. ' " Hence X"(t) isaquasi-
covariant operator in the sense of Lugarini and
Pauri.

For nonzero spin, I""does not agree vrith Eq.
(2.2), and hence cannot represent the physical
angular-momentum tensor of our theory, which is
given by g"". g"" is a conserved quantity.

Although X"(t) is not a 4-vector operator, it can
be extended to a formally covariant operator, 20 in
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the sense of Fleming. "
We now define the spin angular-momentum ten-

sor —,'5""A as

-Z""A = M""A —2"' (3.5)

—Z""A =A(M ' L"")A (3.6)

For nonzero spin (M"" —L"")does not agree with
Eq. (2.2), and hence it cannot represent the physi-
cal spin angular-momentum tensor of our theory,
which is given by —,'Z"'A.

The helicity operator associated with the spin
&RA is, for each case,

ZAp o p A for electrons, (3.7)

ZA p = —A for neutrinos,
2lpl

ZA p = coA for photons,
2 Ipl

(3.8)

(3.9)

where ~ =+1 is the helicity and is fixed. ' The he-
licities found are the usual.

Since A is the identity for scalar mesons, "by
Eq. (3.4) we see that L~" is the orbital angular-
momentum tensor for scalar mesons. Hence Eq.
(3.4) tells us that the orbital angular-momentum
tensor corresponding to any of the elementary sys-
tems considered, is nothing more than the scalar
mesons' angular-momentum tensor L"" projected
into the space of the allowed wave functions. Then,
from the definition of spin [see Eq. (3.5)] we re-
cover a notion of spin similar to the nonrelativistic
one.

We know" that the components of the position
operator do not commute for the electrons, the
neutrinos, or the photons. But from Eq. (3.2)
written in standard units, it is evident (since A

does not depend on h) that'

Notice that here Eq. (3.5) is the definition of E"",
but that in Sec. II the definition was given by the
set of postulates (a), (b), (c), and (d). E"' is a
constant of the motion. —,'Z"'A is nothing more than
the Bargmann-Wigner' spin angular-momentum
tensor (M""—L"') projected into the space of the
allowed wave functions as is easily seen from Eqs.
(3.4) and (3.5); that is,

(3.10)

This is an expected result for the classical limit
of the position operator, where the Poisson brack-
ets vanish.

IV. CONCLUSIONS

With four postulates we found in Sec. II that the
spin of the electrons is the Hilgevoord-Wouthuy-
sen' spin. Then we found the value of a parameter
of the electron's position operator of paper I so
that this operator is unique. In Sec. III we started
from the point of view that we know the position
operator for the particles considerated in papers
I and II; then we wrote them as shown in Eq. (3.2).
We define the angular-momentum tensor g""
through Eq. (3.3) which is also given by Eq. (3.4).
The spin angular-momentum tensor is defined by
Eq. (3.5), which is also given by Eq. (3.6). Both
2"" and 5""are constants of motion. The helicity
associated with Z"" is the usual [see Eqs. (3.7),
(3.8), and (3.9)]. Finally the position operator is
consistent with the correct nonrelativistic limit
[see Eq. (3.10)].

APPENDIX

(1) Ay"A= m-'p"A,

(2) Aou'A A( ', i)[y",—y"]A

=o~ "A+fm -'(p"y" —p"y~)A,

(3) Ay'A=o,

(4) Ay'y"A = i(2m) p&
e""" Ao»A,

where ~'"'= 1, or also

(5) Ay'y"A=y'y"A- m 'y'P"A.

(Al)

(A2)

(A3)

(A4)

(A5)

For reference, also, we give the following rela-
tion:

Aa""p A =0 (A6)
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The quantization of pathological field theories, suffering noncausal propagation properties and the

Johnson-Sudarshan effect, is investigated from both the Yang-Fel~~~~ and action-principle points of
view. For a particularly simple system of this kind, the two quantization approaches are shown to be

exactly equivalent. It is argued that the equivalence also holds for theories of interacting spin-3/2 fields.

I. INTRODUCTION

The pathological nature of theories with inter-
acting spin-~ fields can be classified as type I,
the noncausal propagation of disturbances, and
type II, the Johnson-Sudarshan effect. The pathol-
ogy of type I has been discussed by Velo and
Zwanziger' for minimal couplings to the electro-
magnetic field and by Singh' for the interaction
with pions and nucleons suggested by Math et al.'
The pathology of type II, discovered by Johnson
and Sudarshan, ~ considering the electromagnetic
interaction, refers to their result that the spinor
anticommutator, positive-definite by form, in fact
is indefinite if Schwinger's action principle' is
used for quantization. That the pathology of type
II also occurs for spin-~ fields in interaction with
a pion and nucleon was shown by Hagen. '

Although there has been little controversy re-
garding the pathology of type I, the question of the
quantization-method independence of the pathology
of type II has received some attention, originating
with the work of Gupta and Hepko. ' These authors
noted that the simplest choice of canonical vari-
ables corresponding to the commutation relations

of Johnson and Sudarshan, who considered the
electromagnetic field as external, failed to satisfy
Heisenberg's equation of motion in the fully quan-
tized theory. Consistency required a transfor-
mation in the canonical variables, leading Gupta
and Repko to suggest that the Johnson-Sudarshan
anticommutator should be modified and thus that
the pathology of type II may be in question. Later
Kimel and Nath, ' using a generalized Yang-Feld-
man' approach, verified that the canonical variable
transformation of Ref. 7 was required but also
showed that the Johnson-Sudarshan anticommutator
was invanant under this transformation. ' The
origin of this invariance remained a puzzle which
will be dealt with in the present paper. Similarly,
the equivalence of the commutation relations ob-
tained from the action principle and the Yang-
Feldman approach for the interaction of a spin-&
field with a nucleon and a pion has been established
as well. " Since perturbation techniques were
applied in Refs. 8 and 11, the assertion that the
two quantization methods yield equivalent results
has been proved there only to second order in the
coupling constant. Recently, however, Soo" has
extended the methods of Ref. 8 to fourth order and


