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Relativistic fermion gas interacting through a scalar field. I. Hartree approximation
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A high-density fermion gas interacting through a scalar fieM is studied in the relativistic
Hartree approximation, as a model for superhigh-density astrophysical systems. The
Hartree quasiparticle states are the superposition of positive- and negative-energy states
and can be constructed by a Bogoliubov-type canonical transformation. The resulting effec-
tive mass is strongly field-dependent, and approaches 0 as the density increases into the
ultrarelativistic domain. The ensuing equation of state exhibits a phase transition and a bound
state in the intermediate-density range, but becomes perfect-gas-like at high densities. There
is no collapse, and stronger couplirg enhances the perfect-gas-like behavior. An alternate
picture is provided by considexing the fermion gas in the background of zero-momentum bo
sons. Numerical comparisons with existing scalar-meson coupling data are provided, with
emphasis on regions of neutron-star densities.

I. INTRODUCTION

Relativistic many-particle systems have gained
an increasing importance in models for exotic
astrophysical situations of extreme density. The
understanding of relativistic many- particle sys-
tems, however, both from the methodological
point of view and insofar as the novel physical
situations are concerned, is rather meager. The
present paper is devoted to the description of,
conceptually, probably the simplest system, where
the interaction is mediated exclusively by a mas-
sive scalm' meson. None of the knomn physical
systems correspond to this simplified model (we
will return to this point later) and therefore our
motivation is not that me expect the conclusions
mhich emerge from this study to be immediately
applicable to concrete situations, although it is
conceivable, indeed likely, that some features
of the model are of more general character than
their derivation would suggest. The primary con-
cern of this paper, is, however, to provide a rel-
ativistically consistent description and to explore
the consequences of peculiar relativistic effects
related to the transformation properties of the
field.

In the theory of nuclear matter the contribution
by scalar mesons to the tmo-nucleon interaction
describable in terms of a one-boson exchange
potential (GBEP) has been given considerable at-
tention. The calculations and results pertaining
to the scattering matrix elements and the effective
interaction potential (expanded to lowest order in
P'/m'c') are discussed and summarized by Green

and Moszkomskj. A detailed analys js
has recently been given by Gross. ' The necessity
of including a scalar-meson contribution in the
QBEP is nom fairly mell established. Contribu-

tions both from phenomenological OBE description
of correlated two-pion exchange processes" and
particle resonances" have been considered. Typ-
ical values for the meson masses (p, in MeV), and
coupling strengths (y=g'/4s) are: pq = 963, yq
=1.14 (Hef. 5), 9.63 (Hef. 4); p,,= 572 (Hef. 5), 702
(Hef. 6); y, =9.92 {Hef. 5), 6.8 {Ref. 6); iI, =363,
y„=2.41 (Ref. 3); p,,=570, y, =4.08 (Hef. 4). Since
no direct comparison between the results of this
paper and the behavior of neutron matter can be
made, the exact numerical values are not signifi-
cant, but they give an indication of the orders of
magnitude to be of interest. Some further com-
ments on this connection will be made at the con-
clusion of the paper.

In a different context, the scalar interaction has
recently gained popularity as the principal candi-
date for quark-quark interaction in the quark mod-
el.'

Further studies, motivated by the unusual prop-
erties of the scalar interaction and its relative
simplicity, explored tmo- and many-particle sys-
tems interacting through a scalar field. The one-
particle and two-particle bound-state problems
have been studied both classically" and quantum
mechanically" while the classical scattering prob-
lem has also been given some attention. "'" The
classical many-particle system (a "scalar plas-
ma") has been considered by Kalman" '~ (Ref. 13
will be referred to as 1 hereafter) and Hakim. "
The unfamiliar features of all these systems stem
from the field dependence of the effective mass:
This fact is responsible for the appearance of ap-
parent repulsion in the one-particle case and for
the satux'ation of the interaction for the many-pax'-
ticle system.

In the present papex me investigate a zero-temp-
erature Fermi gas interacting through an (attrac-
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tive) scalar field. The thermodynamic properties
of the system are calculated in the Hartree ap-
proximation; a subsequent paper deals with the
role of the exchange'6'" and with the Hartree-Fock
approximation. The three parameters that deter-
mine the behavior of the system are the density
(or Fermi momentum), the coupling strength y
=g'/4v, and the meson mass p; in the Hartree
approximation, however, the latter two do not
enter independently. The characteristics of the
system are not unlike to those of the classical gas:
At high densities, a perfect gas behavior obtains;
at intermediate densities if the coupling strength
is high enough a phase transition occurs. A new
feature is the nonmonotonic behavior of the energy
and the resulting appearance of bound states. Con-
trary, however, to what has tacitly or openly been
assumed in studies relating to similar systems,
there is no col/apse: At sufficiently high densities
the bound state disappears and the system reverts
to a perfect-gas-like behavior.

In contrast to its nonrelativistic counterpart, the
Hartree approximation constitutes a nontrivial
many-body problem. The Hartree quasiparticle
operators are obtained by a Bogolidbov-type can-
onical transformation, which mixes particle and
antiparticle states. This formalism and questions
of consistency are discussed in See. II. The actual
calculation of the equilibrium properties is carried
out in Sec. III.

There is no real "'boson background" in the mod-
el; the existence or nonexistence of such back-
ground is, however, a distinction more of seman-
tic than physical nature. Indeed, as is suggested
by the static-source model, a state which contains
a coherent mixture of zero-momentum N-boson
states is a better approximation of the ground
state than the mere Fermi distribution; but the
results for physical observsbles are not unlike in
the two cases, only the ways these results are ob-
tained differ. This point will be somewhat further
elaborated in Sec. IV.

H. QUASIPARTICLES

The behavior of a Fermi gas coupled to a scalar
field is determined by the equations of motion of
the field operators g and 4:

Wy(x) =gC(x) y(x),

n4)(x) =4vgg(x) y(x),
where A and 4 are the free Dirac and Klein-Gordon
operators

and by the standard commutation relations.
(1) and (2) are derivable from the Hamiltonian

X= dx xA s-g xC x x

+8 [g'e*(x)+8,e(x)a, e(x)+))'(x)] I.
1

(3)

The unambiguous approach to the study of the
many-body system described by (3) is through the
standard many-body Green's-function technique.
The generalization of this technique to a coupled
relativistic fermion-boson system is fairly
straightforward and is discussed in the Appendix.
The simplicity of the Hartree and Hartree-Fock
approximations makes, however, the use of the
Green's-function approach a somewhat useless
luxury. Therefore we prefer to handle the prob-
lem by introducing effective one-particle and two-
particle Hamiltonians from which the boson oper-
ator has been eliminated. However, in the Ap-
pendix we demonstrate that the Green's-function
ayproach leads to identical results.

From (1) and (2) the two-particle Hamiltonian
can be inferred to be

--. g 4( ;kp, )(l4,'-, ~, PHk-=„Pg , (4)-
p, q, k

Q(k; p, (l) is the appropriately chosen two-particle
interaction, which in the Hartree approximation
can be taken as the static potential

4m '
y(k; p, q)

-=y(k) =,
The one-particle Hartree Hamiltonian now will be

X=+ p (a p+Pm) g-
P

P

4(I)&4-, ~PS;&A„-„PP;.
pg, X

This Hamiltonian will be diagonalized by the
same states Ipr& (r stands for both the helicity
and the signature of energy) that diagonalize the
free-particle Hamiltonian, provided in the state
vector the substitution m-M is made and M is
determined self-consistently. To see this we note
that

82
2

=ex ~x

&[p]8+ IPI[5js'+&= —,
p
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Thus (6) can be written as

IX= + a p+P m-Q — n-—
P V

p P

4 = 4(o) (9)

which provides the definition of M by

I IM=m-P — n- —. (1o)
V

p P

The one-particle energy is given by (8): Since M
is momentum-independent, a Fermi momentum P,
and a Fermi energy eo can be defined in the usual
way. Also, the identification between the chemical
potential p and eo can be made,

p = [M*(P,)+P,']'~', (11)

ticle Hamiltonian are the simple generalizations
of free particle states, they are, in effect, fairly
complex coherent superpositions of positive and
negative energy or particle and antiparticle states.
Equivalently, a canonical transformation can be
introduced to define creation and annihilative op-
erators, c, d and c, d for the new quasiparticles:

c-=u a +8 5
P P P P

(15)
d~=- g g +Q

P P

where a and b are the usual creation operators
P

for particles and antiparticles. Spin indices, whose
role is trivial, have been suppressed in (15). The
one-particle Hamiltonian (6) written in terms of
a and b has the form

although the implicit density dependence of M
makes it less transparent that g defined by (11)
satisfies the required thermodynamic identities.
This is, however, proven below.

We observe that M can be regarded as the effec-
tive (field-dependent) mass, replacing m in the
single-particle energy. Also the average Hartree
potential (4& can be identified as

X= Q [ep(m)(a-av+b-bp)]

-g(e& (a-a-+b-b-)m
e»(~} P P P P

+ (a- b + b=a-)p
ep m

(16)

(e& =y —Pn-—i. M

P

(12)

X= Q ep(M)(cttcp+dpdp) .
$ e $PRR

(17)

A proper choice of up, vtt now diagonalizes (16):

=g 4yP4;,

the latter being the operator of proper density.
The interpretation of (C» being the average poten-
tial should also be clear from regarding (12) as
the appropriate expectation value of (1). The sa-
lient feature of the scalar interaction is reflected
through Eqs. (10), (12), and (18). M can be written

M=m-g(C» .
Furthermore, the factor M/e renders the inter-
action momentum-dependent. Both these features
are essentially identical to the characteristics of
the corresponding classical system (cf. 1 and Ref.
15).

We also see that the Hartree potential plays a
crucial role: Once it is known, the determination
of the equilibrium properties is a routine matter.
In contrast to the customary nonrelativistic Har-
tree approximation, however, the finding of the
equilibrium potential is not trivial: This is a con-
sequence of the implicit momentum dependence of
the interaction which, ultimately, leads to a non-
linear self-consistency condition.

Although the states that diagonalize the one-par-

The similarity between the present problem and
the familiar Bogoliubov transformation in the the-
ory of superconductivity is rather evident. The
values of eland ep can be taken from there, which,
when adapted to the present situation, yield

1 (, e;(~)-g&c»~/~;(~}}"
~p(3d)

(16)

ett(m) -g&y&m/~-, (m)l)
'

A little algebra shows that u and vp can be re-
written as

1 ([ep(e)+e][e5(M)+M]) ( ~p(m) -e )
u, =—

I il+
2 ( ey(m) ~~(M)

~ I~ ey(M)+M
~

'

(19)

, ([ &( )- ][;(M} M]~"'(
v =—

I

~;(m}e;(M)
~ ~ e&(M}+M~

'

which is indeed equivalent to the statement that
cp, dp have the structure of free-particle operators



RELATIVISTIC FERMION GAS INTERACTING. .. .I. . . . 1659

with the m-M replacement. The similarity be-
tween our self-consistency criterion (10) and the
BCS gap equation resulting from the Bogoliubov
transformation can also be observed.

The Fermi sphere now is filled with positive-en-
ergy c particles. (To be consistent, the c vacuum
has also to be redefined since it satisfied d(0, &

= 0,
which is obviously different from the a vacuum for
which b(0, & =0.) Such a coherent mixing of pos-
itive- and negative-energy (or particle and anti-
particle) states is a general feature of consistent
relativistic many-body calculations and will be
shown to play an especially important role in the
calculation of the exchange energy.

Turning to the calculation of the ground-state
energy we note that the total energy (per particle)
is the average of (4), and can be expressed as

the actual static polarizability a(%) and response
function e(k) =1+a(%) which can be regarded as
defined by the relation

sx=g &0y+rNy& .

5c ~op 5M
ink &M ink

(26)

There is, however, an intimate connection be-
tween e(k) and e which will be discussed in a later
paper.

To see the validity of (22) we first note that

(20)

It is the usual feature of the Hartree approxima-
tion that this is not the average of the one-particle
energies. The expression for A.-g is evaluated
from (4):

8~$4' 5M
ink 8M One

The two derivatives are

M
~M

P

(27)

(28)

M
EyE'g

(21)
M P2

2+IIM V Egg Ey E )
This can be compared with the analogous expres-
sion for V ' in I.

It should be noted that the second term in (20)
is positive and is certainly not the "potential en-
ergy" of the system.

The consistency of the present scheme requires
that the single-particle energy be derivable from
the expression for the total energy as the quasi-
particle energy:

while 5M/5s„- can be evaluated from (10) to lead to

y/v
5"k I+(P/V) Q(q /e„-)n~ ~f (29)

Since 6g(4&/5nt-, = —5M/5nk, (29) serves to identify

e=1+a,
(30)

U= NE

(22)

(23)

(24)

as the quasiresponse and the quasipolarizability of
the medium. Now

5M = ok -P A.g gng+ n; "n—gs—p .
nk

p nk

(31)

It is the implicit {I„)dependence of e~ which
makes this requirement nontrivial. A further con-
sequence of this implicit dependence is that the
average potential, when disturoed by a variation
ink of the momentum distribution, responds in a
peculiar way, exhibiting a "screening" effect
which can be described in terms of a quasipolar-
izability a and quasiresponse e = 1+a such that

Introducing then the relations exhibited in Eqs.
(26) through (29), one easily convinces oneself that
all the terms but the first in the right-hand side
of (31) cancel each other, thus verifying (22).

A further, somewhat similar, but distinct con-
sistency requirement is that

(32)

5 1
g&c» =- g&c& .

Qntt e ~nk g
(25)

In other words

This quasipolarizability should not be confused with e,,=—((eP ——,
'

&Xpg&)
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IO

-I
IO

potential, andpressure, and their critical values as
functions of the density and of the coupling strength.
The prerequisite for this is the self-consistent
determination of the Hartree potential and of the
effective mass.

A convenient form of the self-consistency con-
ditions (10) through (13) will be given by employ-
ing the variables

IO
(37)

IO

The latter will be referred to as the (effective)
coupling strength. By eliminating (P) in favor of
M one can write

(38)

IO

O.OI O.l

I l iffl I I I I I I II
ii

n =O.lfm n=lofm

n* lfm I

IO.O

is to be satisfied. It is sufficient to combine

FIG. 1. Effective mass x =M/m vs Fermi momentum
$ =pp/m. The parameter is the effective coupling
strength I =(4/n)(m/p) g . The density scale is also in-
dicated.

G(q) -=q(1+q')'~' —sinh '
g .

Numerical solution of this equation in the form
x= s($) has been obtained and is represented in
Fig. 1. We note the following points:

(i) The effective mass is rapidly decreasing as
the Fermi energy rises, but it remains finite for
any density (cf. I);

(ii) in the low-density (nonrelativistic) limit
($- 0) the expansion of G(q) leads to

(iii) while in the high-density (ultrarelativistic)
limit (q- ~),

(EP=Ep +( ) (34)
2

A(2 (40)

and

(35) (41)

For the chemical potential p, one obtains, in view
of (11},

p, = [x'+ ]'(x)]'~' .
with (28), and relations analogous to (27), in addi-
tion to using

V eEq
0

to show the validity of (32).

(36)

III. EQUATION OF STATE

The equation of state is obtained by determining
the density dependence of the energy, chemical

p, is plotted against the density in Fig. 2 for var-
ious values of the coupling strength I'. The non-
monotonic behavior for a certain range of I' is
striking; we shall comment on this at a later point.

. The total energy per particle, E, can be eval-
uated from (20) and (21) and with the aid of the
self-consistency condition (38). Performing the
averaging in (20} one finds that

2 x $ 1E=-m H — + 3 (1 —x)-
3 - 4 x I'(

(42)

H(q) =—3 [q(2' + 1)(1+ rf)' 2 —sinh 'q] .
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FIG. 2. Chemical potential p, relative to m in units of m vs the Fermi momentum $=pp/m. The parameter is the
effective coupling strength I'= (4/7r)(m /p ) g . The density scale is also indicated.
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FIG. 3. Total energy per particle E in units of m vs the Fermi momentum $ =pp/m. The parameter is the effective
coupling strength I' = (4/m) (m/p) g . The density scale is also indicated. Curves A, B, and C represent no-bound-state,
local minima, and bound-state situations.



.34
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picture of the equilibrium properties of the system.
The behavior is-determined by bvo parameters:
the density (Fermi momentum, $) and coupling
strength (I'). Consider first the low ds-nsity case;
x for this limit has been given by (39). We now
consider the chemical potential, energy per par-
ticle, and pressure. On introducing (39) into the
expansion of (41), (43), and (43), respectively,
some algebra yields the result

.20—

r=
lo

r= 50
r=soo

m4pga gr g8)
1

(46)

.I 2—

.08—

.04—

These are the expansions familiar from the non-
relativistic Hartree approximation with the only
difference that p and E now include the rest en-
ergy. The nonrelativistic Hartree potential is
--', rm& =-4s(g'n/ii').

A less trivial result ensues fromthe evaluation
of the high-density limit. The corresponding lim-
iting value of x is provided by (40); the asymp-
totic expansions of ii, E, and P in (41), (42), and
(43) now lead to

0.0I 0.I

ill I I It, f I.0t, 5.0
Ii so, jfiII I s II ~ jpfIII P'

il s lf III

FIG. 4. Equation of state: pressure& in units of
m4/efj2 vs Fermi momentum & =po/m, . The pressure of
an ideal ultrarelativistie Fermi gas is A) 4 in these
units. The parameter is the effective coupling strength
I'= (4/m)(m/p) g . The density scale is also indicated.

P. =PPl $+

3 3 18=m 4(+2 (47)

The knowledge of s(() enables one to explicitly
determine E =E((). The result is plotted in Fig. S.
Again, we have a nonmonotonic dependence on the
density, which will be discussed later.

The next quantity of interest is the pressure I'.
In a zero-temperature system

(43)

and a useful consequence of (43) is

P=s(p, E) . - (44)

The calculation of P from (44) by employing (SS)
is straightforward:

Equation (45) in conjunction with Eq (38) cons.titute
the equation of state. Figure 4 represents the
pressure-density relation for different values of
the coupling strength

Now we are prepared to construct a general

The noteworthy feature of (47) is that the system at
high density approaches a perfect-gas-like behavior:
The higher the coupling constant and the density
are, the more closely it resembles a perfect gas.
Indeed, the leading terms in (4V) are expressions
one would find for a noninteracting gas of mass-
less fermions. In addition, the expansion appears
in inverse powers of the coupling strength. This
weakening of the interaction at high densities is
analogous to the similar effect occurring both at
high densities and at high temperatures in a clas-
sical system. What happens can be described by
recalling that the momentum dependence of the
interaction is such that high-energy particles are
ineffective in creating a potential. (For a more
detailed physical picture the reader is referred
to the corresponding discussion in I.) The com-
petition of the two aspects of the interaction which
are manifested by the low-density and high-density
limits explains the van der Waals-type equation of
state shown in Fig. 4. This is again similar to the
character of the equation of state of the classical
gas. In contrast, however, to the classical case,
it is not only the pressure that exhibits a nonmono-
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n= OJffn
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n = lffn
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FIG. 5. Critical regions in the I'"~ -( phase plane,
where

tonic behavior: Both the chemical potential (Fig.
2) and the total energy (Fig. 3) are nonmonotonic
functions of the density, while the energy of a clas-
sical gas decx'eases towards an asymptotic limit
as the density incx eases. The difference can easily
be understood: In a Fermi gas the average kinetic
energy varies as q (-', & h. & —',); this, together with
the discussed high-density behavior of the inter-
action and with the concomitant boundedness of the
interaction energy, results in the resumed in-
crease of the total energy at higher densities (were
it not for the scalar character of the interaction,
this would not be the case; cf. with the high-density
behavior of a Fermi gas with a vector interac-
tion"). The consequence of the nonmonotonic be-
havior of the energy-density relation is the appear-
ance of bound states for the system; such bound
states can be local [curve (B) in Fig. 3] and abso
lute [g/m& 1, curve (C)]. Physical significance
should be attached to the latter only, as will
readily be pointed out.

Depending now on the value of the coupling

TABLE I. The minimum I' values below which no
critical behavior takes place. 1: gas-liquid phase tran-
sition, 2: negative pressure, 3: negative chemical poten-
tial (relative to m), and 4: bound state. The required y
values (y =g /4x in the notation of B,efs. 3-6; y =g in
the notation of this paper) for e-, 0-, e-, and 5-meson
masses are also displayed. $~ is the value of the Fermi
momentum where the minimum I' occurs: Both lower
and higher densities require higher coupling. $ is the
maximal value of the Fermi momentum, beyond which
density no critical behavior takes place.

1 2.52 0.30 0.73 0.74 2.10 0.56 0.70
2 2.66 0.32 0.77 0.78 2.21 0.64 0.82
3 3.11 0.37 0.90 0.91 2.59 0.68 1
4 3.28 0.37 0.95 0.96 2.73 0.79

3 —2x
«] («2 + (2)1/2 I (48)

2 —SR+x
ts (x 2 + t2)1/2 (49)

strength I', the over-all equilibrium behavior of
the system can be classified as belonging to one
of the five different categories below,

(I) If I' is below a critical value I;, both P and
E (and consequently p, ) are monotonically increas-
ing functions of the density and the behavior of the
system is not qualitatively different from that of a
perfect Fermi gas.

(2) If I'& I;, the pressure becomes nonmono-
tonic, but for F& F, this does not affect the mono-
tonic behavior of E for p, . This is tantamount to
the incidence of a gas-liquid phase transition at
critical densities depending on the actual value of
r.

(3) For I'& I'2 the energy ceases to be a mono-
tonic function; as long, however, as F&F4, one
has a local minimum only.

(4) If I' is further increased, y, changes its
character and for I'& I'2 (p, -m) (i.e., the energy
required to add a particie to the system) becomes
negative.

(5) Finally, when I'& I; is attained, the actual
bound states (E&m) appear. No phase transition
takes place beyond this limit.

The four critical curves displaying the boundaries
of the critical regions and determined by SP/s(=0,
P=0 (SE/S) =0), p/m=1, and E/m=1 can be cal-
culated fx'om the conditions

( =P,/m.

The curves labeled by 1, 2, 3, 4 represent gas-liquid
phase transition, negative pressure, negative chemical
potential, and bound-state boundaries, respectively.

3 (I -x)' I
I —& xff(t/x)

(5o)

(5I)

where x is given by (34). Equations (45), (46), and
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(47} are immediate consequences of (41), (37}, and
(38); (34) follows after some algebra from (41).

In Fig. 5 we present the critical curves in the
'-$ plane, in which representation they show

some resemblance to the customary critical curve
in the temperature-density plane. The maxima of
the curves correspond to the critical F values de-

VEÃÃlzi

fined above; y values, calculated for concreteness
from the g values for the 5 (Ref. 5), e (Ref. 5), and
the proposed n (Ref. 3) and o (Ref. 4) particles
are given in Table I. These numerical values, to-
gether with the equivalent y values for o.-, 5-, s-,
and 5-meson mass ratios, are given in Table I.

The actual density dependence of the thermody-
namic quantities is of course monotonic, as de-
picted in Fig. 6, with the aid of the conventional
Maxwell construction. The local minima of the
energy of Fig. 3 do not play any role; only the
absolute minima (E&m) are significant. The cor-
responding phase diagram is given in Fig. 7. The
left-hand boundary of the "bound" region is the
locus of the absolute energy minima. Thus no den-
sity lower than the equilibrium value correspond-
ing to this boundary can exist: This is the meaning
of the "nonphysical" region for F&3.28. It is in-
teresting to note that the intuitive argument that
stronger coupling leads to high equilibrium density
is verified only for 3.28& 2& 4.44; for higher F
values, contrary to intuition, s~«+g«coupling re-
sults in lo~e~ equilibrium density. Compression
beyond the equilibrium density increases the en-

0.4—

LIQUID

O.S

/
(i V

0.2—

O.I—

NON-PH

0
0

I I

0.2 0.4
n = O.lfm

0.6 0.8

n Ifm

I.O l.2

FIG. 7. Phase diagram in the I' ~-( plane, where

FIG. 6. The actual behavior of the energy, pressure,
and chemical potential after the nonphysical negative-
slope regions have been eliminated; (a) without, and
(b) with bound regions.

$ =Po/m.

The density scale and the I values corresponding to
o, 0., e, and 6 mesons are indicated.
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ergy until it ceases to be negative at the right-hand
boundary of the "bound" region. It is remarkable
that irrespective of the coupling strength, no bound
state exists for $ &~3. As for the gas-liquid phase
transition, which is limited to regions of positive
energy, such a transition can take place only in a
narrow range of the coupling strengths 2.52& I'
& 3.28. It is unlikely that any physical system
would fall in this region. Finally it should be
observed that all the critical I' values as exhibited
in Table I correspond to fairly small values of the
actual coupling, y.

IV. BOSON BACKGROUND

X=+ e+&c c~+dtid~)

v,(P) =—(cltct;+dt;d5)+ —(c~d z+d &cS)
M t t P t t

p p

(55)

-g [K(A0+Ao) —g& 4&] vo(p) + pAotAO . (54)

Here Ao, Ao are the zero-momentum boson oper-
aiors e =ep()if)

The full Hartree ground-state wave function is
the product of the filled Fermi-space c-fermion
wave function and the boson vacuum wave function:

SPiII fermion

(52)

2gg2 ]
V~

Only zero-momentum bosons are considered since
finite-momentum bosons can be created at the ex-
pense of perturbing the Fermi sphere which we
want to avoid. The boson background, however,
can be taken into account explicitly from the out-
set, thus providing an alternative and somewhat
more satisfactory description of the system. This
can be done along the lines of the static source
model: We take the boson ground state as a co-
herent mixture of N-boson, zero-momentum
states, while the fermion ground state remains to
be determined self-consistently:

Therefore the expectation value of the boson num-
ber in the Hartree ground state is 0. The question,
however, whether there is or is not any real boson
background is a rather moot one, since in order
to evaluate the expectation value of the boson num-
ber to the same order as the Hartree energy, one
certainly has to go to higher order than the order
of the Hartree approximation. If the boson wave
function is calculated to order g beyond the Hartree
approximation, the expectation value of the boson
number, to this order, becomes

C, =A, ——Q &v,(p)&

P

K~M=A ——~—n-,O~~gp
pp

the resulting Hamiltonian becomes

(56)

X=/ Eg&c~c~&+d&~d&~)

K
K(C,'+C,)+2—p&v, (q)& -g&y) v,(p)

+ K(Ct+C,)+— &v,(q)) (v,(p))
p,

+ p. CO Co. (57)

The boson Hamiltoni~ is obtained by taking the
fermion expectation value of (57); the terms linear
in C cancel and one is led to

Xe = &X&~

[cf. Eq. (13)], and the Hartree coupling te'rm has
been added and subtracted in order to allow one
to use the diagonalized fermion Hamiltonian. Since,
however, the nondiagonal vo(p) term is now multi-
plied by the boson operators (rather than by a
c number), the previously employed base states
do not diagonalize the Hamiltonian in the fermion
space. Nevertheless, diagonalization in the boson
space can be accomplished by taking the fermion
expectation value of (55), as will now be shown.

If one introduces the shifted boson operator

~
G) =

) fermion&P c„)N& . (53)
K M M=g ~;n; ——P npng+g&y&g —np6'

~p

The Hamiltonian will be truncated to exclude all
non-zero-momentum boson operators; it is also
convenient to employ the fermion operators c, d
defined by (15):

+ p Co Co ~ (58)

The ground state (58) is obviously the zero C-boson
state, which is identical to the superposition of
states of N physical bosons with
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N
-K2/2

v'N/ (59)

& Z&~ =Q e
p (cg c-+dpd-)

K
2—Q &v,(q)&-g&y& v,(p)

(60)

The vanishing of the off-diagonal terms now is
tantamount to requiring that the coefficient of
v,(p) be zero:

K2

K= —8» ~

P

It should be kept in mind that in the context of
the calculations of the present section &P& is still
undetermined: It will be made definite by pre-
scribing that the boson expectation value of the
neglected off-diagonal term in (57) vanish. Eval-
uating the latter one finds

mixing of positive- and negative-energy states,
which is easily seen not to be a peculiar feature of
the scalar interaction. Indeed, recent recalcula-
tions of Gross' of relativistic scattering matrix
elements indicate that the repulsive core is a
common feature of all relativistic interactions—
although the implications of this statement in the
many-body context and the precise relativistic
behavior of other than scalar couplings require
further study. The present paper has not gone
beyond the simple Hartree approximation, but it
should be realized that the consistent relativistic
Hartree approximation, in contrast to the non-
relativistic situation and more alike to what it
means in atomic physics, is not equivalent to a
lowest-order expansion in the coupling strength.
This is certainly obvious from the rather com-
plicated dependence of the results obtained on the
coupling strength I', and can also be visualized
by the diagrammatic expansion of Fig. 8. The
Hartree approximation differs from its nonrela-

4' 1~M—W —n-,'~2 p~ g P

P

(61)

which is the condition identical to (10). Using (61},
Eq. (58) can be written as

BC~ =E~+ p. COCO, (62)

where the expression for the fermion energy is
identical to (24).

The expectation value for the boson ground state
of the physical boson number is given immediately
from (59):

&&v&, =g c,'~

(63}

It is now obvious that the explicit introduction of a
"boson background" —at least in the Hartree ap-
proximation —does not lead to any new conclusions;
it is only an alternative way of arriving at results
which can be obtained otherwise.

(a)

V. CONCLUSIONS

The main conclusion emerging from this paper
is that at high densities the consistent relativistic
treatment of many-body systems leads to new ef-
fects which cannot even qualitatively be estimated
by the extrapolation of nonrelativistic results. The
crux of the matter is, of course, the coherent

FIG. 8. Diagrammatic representation of the approxi-
mation scheme: (a) conventional Green's-function for-

' malism; (b) alternate Green's-function formalism.
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tivistic counterpart also in that the two-particle
Hartree Hamiltonian

36=/ 4p(&'9+~m) 47t- 0 StfPkpff Pfq
P po

(64)

would not be diagonalized by the product of one-
particle Hartree states; the solution of the problem
represented by the model Hamiltonian (64) is a
much more complex one than the solution of the
one-particle Hartree approximation.

Insofar as the implications of the results of this
paper for the behavior of high-density neutron
matter are concerned, since the most important
pseudoscalar and vector parts of the interaction
are completely ignored, one should be rather re-
luctant to make actual comparisons or put forward
predictions. Some feature can, however, be noted.
As it is clear from Table I, all the previously
suggested scalar-meson coupling strengths but
that of the 5 meson correspond to I' values for
which bound states could occur. The minimum
densities for this to take place are in the range
0.6& g &0.7, i.e., 1.28x 10 & p~&2.03x 10~'

g/cm'. Calculating the corresponding du values
(d=interparticle distance, ~svdss=1), one finds
2&dp, &1.1 (see Table II). For comparison, in this
range (du)~=2. 62; thus at the densities in question
the scalar interaction should have a high relative
weight. This is, of course, a nonrelativistic fea-
ture, which is properly included in any phenom-
enological, nonrelativistic nuclear potential —what
is not included, however, is the behavior at the
high-density boundary in Fig. 7. The maximum
densities, where the scalar coupling ceases to
bind the system, are in the range 1.29&) &1.31
or 12.7xlo" g/cm'& p &13.3xlo" g/cm', and
the corresponding du values are 1&dp, &0.5 (see
Table II). Thus the particles are deep within the
scalar well, but, nevertheless, the interaction
becomes rather ineffective. This should result in
a stiffer equation of state than the one calculated
by nonrelativistic methods, although much before
this density range is reached the appearance of
heavy baryons" renders the situation much more
complex.

TABLE II. Estimated p (=g /47' in the notation of
these papers) values, meson-nucleon mass ratios for
e, e, and 6 mesons, and the corresponding minimal
and maximal Fermi momentum ($), density, and dp

(d =interparticle distance) values Lor bound-state re-
gions.

P/m min dmin(fm ) ~d~)max max Smm)fm ) (dp)min

fr 5.40 0.61 0.67 1.097
(2 2 41 0 38 0 65 1 00

9.92 0.61 0.60 0.788
6 114 103 ~ ~ ~ ~ ~

1.75 1.29 7.84
1.12 1.29 7.84
1.95 1.31 8.21

0.97
0.57
0.89

The Green's functions and the spectral densities
Q, S~

3 (xx') = ((g(x), g(x'))&,

u (xx') = (l y(x}, y(x'}), (A2}

satisfy simple equations of motion:

(A —Z) G=1,

(A —Z}9=0,

(A -11)D = 4s,

(d, -11)m=o,

(A3)

Z (xx') = —i (Tv(x) g(x")& G '(x"x'),
v(x}=-g4(x) y(x),
II(xx') = —

4m ig(Tv(x) gx")& D '(x"x'),
v(x) = It(x) g(x) .

(A4)

The fermion Green's functions can conveniently be
built up from the analytic pieces G', G'.

G'" (xx') =i (g"(x) P(x')&,

G'"'(p~) = —2s Q 1(0lu-„ lm& I' 6(~+~-)

xu,"(p)u„(P, (A5}

G'"s(xx') =+i gi (x') g"(x)),

which define the self-energy and polarization parts
Z and II. For scalar interaction in particular

APPENDIX: GREEN'S-FUNCTION FORMALISM

G (xx') = —i (T&(x) g(x')&,

D(xx') =z(TC(x)C(x')) . (A1)

The usual many-body Green's-function formal-
ism can be employed for relativistic systems with
little modification. Fermion and boson Green's
functions can be defined in the usual way:

G'"'(p(u)=+2sip l(mla- lo)l26((u+s )

xu„"(p)u„(g) .

The notation is standard; r runs over both helicity
and energy signature quantum numbers; the two-
component spinor character of G" has explicitly
been exhibited. Thus
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1" (p~) = fdw'[5, (~-w')c'~(ptd')+5 (td —w')a'" (z~')]

= —z d(d'] z 6((d —(u') [8((u' —tz) —8(tz —(d')]l+ —P, 9~ (p(u') (A6}

follows, the second step by virtue of G'((d —tz)

carrying positive- and G'((d —tz) negative-frequen-
cy parts only for the ground-state expectation
value.

So far the formalism of nonrelativistic many-
body theory remains unaffected. It should be noted,
however, that the poles of the Green's function
now are provided by the eigenvalue equation

4'' 1~ m+Z
V ~ e (nz+Z)

p P

(A11)

in accordance with (10).
An alternate Green's-function formalism can be

based on the Hamiltonian expressed in terms of
the particle and antiparticle operators ap bp The
two Green's functions

I
A"'(p~) —~"'(P(d)

I
= o

or equivalently by

(A7) G(p, t —t') = —i (Tapt} a (t')),
G(p, t - t') = —i ( T 5+t) b ~(t'})

(A12)

]~+~p-(~[p] l~(p~) lz"[p]& ]=o

which is tantamount to the required coherent mix-
ing of positive- and negative-energy states dis-
cussed earlier.

The spectral density and the Green's function
for the noninteracting system are easily calculated:

90(p(d) =—{b((d —ejt) A(f))) —6((d+E~&) A(- e~&)),
P

G,(p(d} = —i—{[6,((d —sit) (1 —n;)
P —5 ((d —f p) n&] A(e~)

+5 ((d+e~)A(-ett)3, (A8)

where A((d) is the adjoint Dirac operator.
The self-energy part Z satisfies the usual Dyson

equation; in the Hartree approximation it is a
scalar, determined by

F(p, t- t') = —i(Taft) b +&t')),

F(p, t- t') =i (Tb (t}a&(t')) . (A13)

The coupled Dyson equations for G and F now are

G=G +G ZG+G, TF,
F G() Y G+ G() ZF (A14)

while the Hartree approximation for Z and T yields

2:(p) = - ig' D.(00)——g ——{G(q ) + G(q )),
m 1 d(dm

can form the basis of the formalism. They present
the advantage of not being four-spinor matrices
anymore; the complexity of the system, on the
other hand, is reflected through the fact that G and
G become coupled to the additional Green's func-
tion F,

Z = —ig' D,(00)—g —trG'(p(u)
2 dc@

V 2n'

together with

(A9)
(A15)

T(p) = —ig D,(00)——Q .——{G(q(d}+G(q(d)j .p 1 drum
cp V 2n' eq

q

G '(p(u) = G, '(p(u) —Z . (A10)

The self-consistent solution of (A9) and (A10) is

The solution of the resulting eigenvalue equation is,
of course, not different from what has been de-
rived previously.
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