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By analyzing the simple cosmological model consisting of a real massless Klein-Gordon field with

vanishing spatial derivatives in the Friedmann universe, we conclude that this model can be successfully

quantized only by using an extrinsic time. If one attempts to quantize using an intrinsic time, one is

faced with the problem of either not having a point of maximum expansion, which violates the

correspondence principle, or a necessity to devise a new interpretation for a zero-normed quantum

mechanics (in addition to the particle-antiparticle interpretation). However, if one uses an extrinsic time,

none of these dif6culties occur. In analyzing the distinction between these two quantization procedures,

we have noted that there are two distinct types of quantum-mechanical tunneling. The first type is the

usual quantum-mechanical tunneling which we call "coorfjm~te-space tunneling, " where the topology of
the classical phase space is usually pl~rior and the phase space has no classically forbidden regions,

although for a fixed energy, there can exist certain regions of coordinate space that are classically

forbidden. The second type occurs when the phase space has classically forbidden regions, and we call

tunneling into these regions "phase-space tunneling. " In terms of these two types of tunneling,

quantization with an intrinsic time allows "phase-space tunneling" to occur, and it is the presence of
this type of tunneling that gives this solution its undesirable features. On the other hand, quantization

with a particular choice of extrinsic time absolutely forbids the occurrence of "phase-space tunneling, "
and it is the lack of this type of tunneling that gives this model its desirable features. Thus, based on

this model and other general arguments, we propose that although "coordinate-space tunneling" is

quantum-mechanically allowed, the distinctly different tunneling process, "phase-space tunneling, " is not

only classically forbidden, but also must be considered to be quantum-mechanically forbidden as well.

I. INTRODUCTION

Since its inception, the problem of quantizing
general relativity has forced reexamination of
many of the more heuristic aspects of quantiza-
tion, thereby placing them on a more definitive
footing. For example, the operational procedure
of replacing momenta by partial differentials with

respect to their conjugate coordinates proved to
be valid only if the coordinates were related to
Killing directions in the space (i.e., Cartesian
coordinates in flat Galilean space-time). Of
course, in an arbitrary general relativistic sys-
tem, one may not have any Killing directions, in
which case it was found that the coordinate-in-
variant replacement scheme

could be used, ' where the q&'s are coordinates
canonically conjugate to the momenta P;, and p
is the determinant of the metric. Although this
prescription is independent of the coordinate sys-
tem in which it is applied, nevertheless the re-
sulting quantum system is still highly dependent
on the classical canonical frame in which one is
working.

In order to investigate this dependence, we have

-@~+a, —&'~a+E =0, (1.2)

where K,„~ is proportional to the square of the
local rate of expansion and is positive-definite,
K~ is the "kinetic energy" of the gravitational ra-
diation (the other t|vo degrees of freedom of the
gravitational field), also positive-definite, ~'~A

is the curvature scalar of the hypersurface, and

treated an extremely simple minisuperspace mod-
el, consisting of a real massless Klein-Gordon
field, with vanishing spatial derivatives, in a
Friedmann universe. Although this model has been
simplified to the point of being unphysical, never-
theless, it proves instructive in that it is exactly
solvable, both classically and quantum-mechani-
cally, and at the same time it illustrates the im-
portance of finding a "proper" canonical frame in
which to carry out the canonical quantization pro-
cedure.

It is in general relativity that the importance of
carrying out the canonical quantization procedure
in a special canonical frame becomes manifest,
because the quadratic constraint tends to impose
forbidden regions on the classical phase space.
Explicitly, this constraint in the standard canon-
ical frame where the metric components are consid-
ered as superspace coordinates has the basic form
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is the energy density of all matter present as
well as its inter'action energy with the gravitational
field, which for realistic classical fields is posi-
tive-definite also. Now, consider the initial-value
problem. Given the initial energy density of mat-
ter, the curvature scalar of the hypersurface, and
K„we want to solve the constraint (1.2) for the
expansion rate by taking the square root of K
But this can be done onl.y if

(1.3)

In other words, the phase space in this canonical
frame has classically forbidden regions when the
curvature scalar is chosen too large. The pres-
ence of these forbidden regions actually constitutes
additional classical constraints on the system and
these must be taken into account upon quantization.
However, as (1.3) indicates, these additional con-
straints are inequalities and how one could cast
such conditions into operator form is not at all
clear.

It is this consideration that our model quite
vividly illustrates. First, we quantize in the stan-
dard canonical frame (where the radius of the uni-
verse is the timelike variable) and find that the
solution allows quantum-mechanical tunneling into
the classically forbidden regions of phase space
defined by ' R &K~ +E . When we attempt to in-
terpret these solutions, we find that contrary to
the classical solution, the quantum-mechanical
solution does not exhibit a "bounce" at a maximum
radius of expansion (the classical turning point),
but rather once expansion has been initiated, the
universe "tunnels" through this classical turning
point and expands indefinitely into the classically
forbidden region. Naturally, if the inequality con-
straint (1.3} could be properly quantized, this type
of unphysical behavior would be forbidden. Al-
though such procedures have yet to be developed,
fortunately there exists an alternative method, and
that is to first perform a canonical transformation
on the classical system such that (1.3} reduces to
a triviality. In other words, we find a classical
canonical frame where the initial-value data are
unconstrained. ' Although we cannot say anything
about the uniqueness of such a frame, we do find
one such frame for our model. However, in doing
so, we must use what is called an "extrinsic time"
since the new timelike variable must depend not
only on radius of the universe, but also on its
conjugate momentum.

When we quantize in this new frame, all the
previous difficulties vanish and the quantum-me-
chanical solution corresponds faithfully to the
classical solution. Finally, we conclude with a
brief discussion of our results.

II. THE MASSLESS REAL KLEIN-GORDON FIELD
WITH VANISHING SPATIAL DERIVATIVES

IN THE FRIEDMANN UNIVERSE

where

It} -=2m'R'o,

—R' sin'r sin'tI], (2.1)

(2.2)

the coordinates are (t, r, 8, Q), and o.' and R depend
only on t.' We introduce Misner's "~"variable'
by letting

01R=~e (2.3)

and take our units to be such that c = 1 = 4vG/3.
Then upon setting the mass of the Klein-Gordon
field equal to zero, the total Lagrangian becomes

1, 1$2 Q2 ~ ~e4Q
2 0 Q

(2.4)

where & is the gauge variable and (&, Q) are the
minisuperspace variables.

A. The Classical Theory

Following the Dirac procedure, ' we have one
primary constraint,

(2.5)

and the Hamiltonian is

(2.5)

where the secondary constraint, X, is given by'

&(~s ~2 ewe) O (2."t)

The classical solution of Hamilton's equations of
motion can be obtained in terms of an invariant

The example which will now be considered is a
real massless Klein-Gordon field, with vanishing
spatial derivatives, in the Friedmann universe.
With these restrictions, we have only two indepen-
dent variables; the radius of the universe and the
amplitude of the Klein-Gordon field. First, we
will look at the classical theory and solve the
equations of motion. Then we will quantize in the
standard manner and attempt to interpret the re-
sults. We will see that the standard interpretation
cannot be used in this case without violating the
correspondence principle. In an attempt to rectify
this, we perform a canonical transformation on
the classical system and then requantize. Now,
all difficulties with the old quantum theory have
vanished and the correspondence principle is
beautifully satisfied. As for our conventions, we
take the space-time metric to be

[g„„]= Diagonal [P ', —R', —R'sin'r,
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parameter, ~, defined up to a constant by 'i [-~*8,~ —(8.~)*~l. (2.13)
dT= ddt.

The solution in parametric form is

+~ = constant,

Q = P~ 7'+ $0,

= &ln
cosh(RPs c)) '

(2.8)

(2.9a)

(2.9b}

(2.9c)

Ã=— Judas (2.14)

then from the known properties of Bessel func-
tions'

Thus, we can use the component of j„in the ~
direction to normalize the state vector. Defining

N = A„*A„—B*B„dv. (2.15)
where (t), is a constant of the motion, and we have
scaled T so that 7 = 0 corresponds to the time of
maximum expansion. This motion is quite simple
and well known. The limit &- — corresponds to
the initial singular state from which the universe
expands until a maximum radius of

is reached. Then the contraction phase begins and
the universe again approaches the singular state
as 7 -+ ~. Meanwhile, the motion of P is like that
of a free particle, in that it linearly increases
(decreases) its value for positive (negative) mo-
mentum, &@. Now, let us see how well a quantum
theory can describe the same system.

Due to the indefinite nature of this norm, we could
apply an interpretation scheme which exactly
parallels that of special relativistic spin-zero
bosons. ' However, instead of interpreting the
two degrees of freedom as particle-antiparticles,
following Misner, "we could consider them as
indexing the expansion and contraction phases of
the universe.

To see if this system will properly describe the
original classical system, let us look at some
expectation values. By the statistical interpreta-
tion, the expectation value of an observable is
simply the average of the measured values for a
large number of identical ensembles. We define
the expectation value of an operator 0 by

8. The Standard Quantum Theory (p& -=[ J"[s"as„s—(s„h')op]sh. (2.i8)

}[@= -, (- 8'8 '+ 5'8 ' —e'")4 = 0. (2.ii)
The general solution of Eqs. (2.10) and (2.11) is
simply

etv

(
. r h ))g(g [ p -([pg2( ( /2k)2jsinh

~ &mv~

+apl, )p(2) (e'"/28)]dvs

(2.12}

where I;~p„~ (x) is the modified Bessel functionp of
imaginary order, i~ &v(. Now, let us try to in-
terpret this theory.

First, since the secondary quantum constraint
is a two-dimensional Klein-Gordon-type equation
with a time-dependent potential, we have the con-
served vector current

In canonical quantization, ' one considers con-
straints to be conditions on the state function, not
operator identities, and it is postulated that they
constitute all of the physical requirements on the
system. Consequently, for our simple system,
the usual procedure' of letting Pz- i kez,
pe —i88~-, and P ——it~ in Eqs. (2.5) and (2.7)
gives the quantum constx aints of the standard
quantum theory' to be

(2.10)

(P„}= gv~, (2.17a)

(2.1'fb)

as expected from the classical theory, but whene'"» Sv» they approach

a
2stnh( v+2)

&y} = —I(av.)exp[e'"/a. —4fi] .

(2.18a)

(2.18b)

As one immediately notes, these are quantum
corrections to the classical equations of motion.
Obviously lacking is the turning point which clas-
sically occurs when Po =0 or e'" = )Pe ). Thus,
the implications of this theory are that upon the
initial expansion of the Friedmann Universe, it

Consider a wave packet where 8„=0, and &, is
sharply peaked about v= vo. For this packet, the
expectation value of && remains centered about h&0

for all ~, and thus is a constant of the motion in
agreement with the classical theory. Meanwhile,
since the spatial metric components depend only
on 0, they are simply c numbers with no quantum
uncertainties. However, the expectation values
of the operators Q and Po do not correspond to the
classical values for all ~. As A--~, we have



SOLVABLE QUANTUM COSMOLOGICAL MODEL AND THE. . .

expands according to the classical equations of
motion until the turning point at e' "=

~ Pe~ is
reached. Then, instead of contracting, the uni-
verse will "tunnel" through the barrier and con-
tinue its expansion.

As noted by Misner" in other related cases, one
possibility for rectifying this difficulty would be
to apply a boundary condition on the timelike
variable and require 4 -0 as ~-. This can be
done by setting 8„=-A„ in Eq. (2.12) but this
results in a zero-norm state as seen from Eq.
(2.15). Although this has now rectified the "run-
away" as exhibited by Eqs. (2.18), it has created
a nem problem. First, me know of no physically
consistent interpretation for zero-normed quantum

mechanics, except the particle-antiparticle inter-
pretation. But, this interpretation requires the
possibility of physically separating the particle
from the antiparticle, and performing measure-
ments on each one individually. In our case, when
this is done me again get the run-away for each
mode (although the sum would vanish), so we have
not really gained anything. Therefore, to com-
pletely eliminate this run-away one must postulate
that it is impossible to separate the two modes,
and to consider the solution 8„=-&„ to be a single
inseparable entity. But then one would have to
devise a new interpretation for this type of zero-
normed quantum mechanics.

Thus, in the absence of an alternate interpreta-
tion of zero-normed quantum mechanics one finds
it difficult to escape from the conclusion that if
Eq. (2.11) is the proper quantum constraint, then
when the Friedmann universe reaches the classical
turning point, it will not initiate contraction;
rather, it will expand indefinitely. Of course, one
finds this conclusion totally unacceptable, and we

propose that Eq. (2.11) is not the correct quantum
constraint.

C. The Source of the Difficulty and Its Resolution

Returning to the quantum constraint, Eq. (2.11),
one notes that the origin of the difficulty is the last
term, which represents the curvature scalar of
the Friedmann universe. If this term mere absent
or of the opposite sign, then 4 mould not exhibit
the exponential runaway and mould remain bounded
in magnitude. Thus, relative to 0, the curvature
scalar of a Friedmann universe enters the con-
straint as a repulsive potential barrier creating a
region of phase space mhich is classically forbid-
den. Now, a very crucial question is whether or
not this region should also be considered quantum-
rnechanically forbidden.

At this point, me must emphasize that there is
a distinct difference between classically forbidden

phase-space regions, as illustrated above, and
classically forbidden coordinate sp-ace regions.
To illustrate the distinction between these two,
consider the Hamiltonian

H= a(2'' ——,'P„' —,'e'—")

and the classical Hamiltonian

H= c [,'P'+ V-(x) —E],

(2.6')

(2.19)

~2~ e40 (2.20)

Clearly, this is a nontrivial classical constraint,
but, since it is an inequality, just hom one should

which is simply the Hamiltonian of a one-dimen-
sional particle of unit mass, interacting mith the
potential V(~), written in the constraint form. "

Now, by classically forbidden coordinate-space
regions me mean the following. Consider any
particulax solution of the equations of motion. If
there exist ranges of' the coordinate in which the
system mill never be found classically, then these
regions are the classically forbidden coordinate
space regions. In the case of (2.19), "hese are
whenever V(x) & E, where E is the energy of the
particular solution being considered. On the other
hand, (2.6') possesses no such regions (except
when P&=0), as can be seen from the classical so-
lution (2.9) . But, consider now the initial-value
problem in both cases. In the case of our model,
we first specify the initial values of Q and P at
some initial value of , and in the other case, me

specify the initial values of & and p at some initial
value of t. Then in both cases, me are to use the
secondary constraint to determine the conjugate
momentum of the timelike variable. In the case of
(2.19), this presents no difficulty whatsoever. But,
in the case of (2.6'), if the value of P~ is chosen
too small, no value of &z mould satisfy the con-
straint. Thus, relative to the initial-value prob-
lem, the (g P~) phase space has classically forbid-
den phase space reg-ions, whereas (2.19) has no
such regions. Note that these are tmo distinct
situations. Classically forbidden phase-space re-
gions are defined by the constraint, while classi-
cally forbidden coordinate-space regions are de-
fined by a particular solution and are energy de-
pendent. Consequently, the existence of coordi-
nate space tunneling (wh-ich is well known to occur)
need not necessarily imply that phase-space tun-
neling will also be observed. In fact, due to the
difficulty implied by the standard quantization of
this model, we propose that such regions must
remain not only classically forbidden, but also
quantum-mechanically forbidden as mell. One way
to ensure this is to somehow quantize the classi-
cal phase- space constraint
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cast it into operator form is not at all clear. In-
stead, following the ideas of York, ' we will seek
to find a canonical transformation on the classi-
cal system which will reduce (2.20) to a triviality.

One such transformation is

& = sln[PT/cosh(2T)],

p„= —PT tanh(2T),

whose inverse is

(2.21a)

(2.21b)

)( = 2(P4,
' —P-T'), (2.23)

i.e., a massiess Klein-Gordon equation. Now, the

(Q, P4)) phase space is no longer constrained.
Consequently, one can now arbitrarily specify
initial values for Q and Pz at an initial value of T
(not &), and one can always find a value of PT

p —(p 2+e4")&/& (2.22a)

T =& --' in[pc+ (Po'+e' )"']. (2.22b)

Note that this new time, T, is an extrinsic (mo-
mentum-dependent} variable. Under the transfor-
mation (2.21), the constraint (2.17) becomes sim-
ply

satisfying the secondary constraint, Eq. (2.23).
The classical solutions for this system, again in
terms of the invariant parameter ~ defined by
(2.2), are

&@= const,

P,=+
f p, /,

g) = P~T + $0,
T= /PS/ T+T, ,

(2.24a)

(2.24b}

(2.24c}

(2.24d)

P~ T+ c st. (2.25)

The quantized version of this system is identical
to the previous one except for the quadratic con-
straint which now reads

3'(()T' - s ~')(I)= 0.

The general solution to this equation may be
written as

(2.28)

where $0 and Tv are arbitrary constants. Elimina-
tion of T from (2.25c), (2.25d) gives the dependence
of /on Tas

i(v ())-S T/l)) B -i(v $-Sv T/)v)]dv

4S „(B„/3) (2.27}

where E„=+kiev and A, , B„are arbitrary functions of v. The norm as defined by (2.13) and (2.14) is
identical in form to (2.15}of the previous system. One can now easily see that this new quantized version
faithfully mirrors the classical system. First, for the expectation value of the operator (t), we have that
in general

(Q) = T JI dv —(AvA„—BvB )+2j dv(AvA ' —AvvA„+BBB„)-Bv'B„)
V ~ OQ

—(A Bv e 2(s T/S-AAB e&isvr/S)
2 L V V V V

V
(2.28)

where the primes denote differentiation with re-
spect to v. Obviously-, if A, or B„ is zero, we
have the classical result (2.25), while the third
term is a quantum correction indicating inter-
ference between the (+) degrees of freedom. Note
that the canonical transformation (2.21) has proven
effective in that there is no lo~er any asymptotic
difficulty with this expectation value; the corre-
spondence principle is satisfied.

The expectation values of the conjugate momen-
ta && and Pz are readily computed to be

momentum, &+, has a constant expectation value
whose absolute value is essentially equal to the
expectation value of the T-conjugate momentum,

These results correspond exactly to those of
the classical theory given by (2.24a), (2.24b).

Other expectation values that one would be in-
terested in are the spatial part of the space-time
metric and the associated curvature scalar. Since
our time, T, is no longer intrinsic, y&, and "&
are no longer c numbers. For y», Hermiticity
requires the factor ordering

(Pv) =BI v dv(A„A„+B„B„),

(P ) = v J B„dv(A„A.„+B„B„).

(2.29a)

(2.29b)

y„=R'-, (cosh2T} 'a,
2w

f „dv Bv(APAB +B„*B„)
2w' cosh(2T)

(2.30)

(2.31)

Thus, for well-localized packets, the Q-conjugate Now, we clearly have an oscillating universe. The
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expectation vat.ue of the square of the radius of the
universe is positive-definite, and as T ranges from
—~ to + ~, (R ') goes from zero to a maximum
VRlue given by

du E„(&„&„*+a„a„*), (2.32)

and back to zero. Thus, the universe oscillates
vrith a maximum expansion directly related to the
amount of energy contained within it.

The curvature scalar, ~'~R, for a closed Fried-
mann universe is given by (recall units vsG = c = 1)

(3)~ 1
28' '

which upon use of (2.21a) and (2.3) becomes

"'R=r'(cosh2T)(& ) '

(2.33)

(2.34)

III. DISCUSSION

As shown by our examp1. 8, when the classical
phase space is restricted in any manner, straight-
forward application of (1.1) does not necessarily
px'oduce an acceptable quantum system. Actually,
the fault does not lie in the prescription (1.1) but
in failure to take into account the additional con-
straints on the system implied by any restrictions
or redundancies in the phase space. That this is

where the factor ordering follow's from the Her~iitici-
ty of the operator B. Computing the expectation
value of this is noir straightforward, giving

(t'&H) = v'cosh(2r) —(&„&*.+B,a*„).dv

(2.35)

Hence, the intrinsic curvature is positive-definite,
reaching a minimum value at the turning point

(T = 0) and increasing without bound in the limits
T~+00,

It should be mentioned that the opexator && is
Hermitian and its eigenfunctions are complete in
that they ean be used to form all possible solutions
of the Klein-Gordon-type equation (2.2V). Thus,
P& is an observable in the usual sense and, by the
operator equivalent of Eq. (2.32), so is R'. Hence,
the expression (2.32) gives the physically measur-
able value of R' and since it has a definite maxi-
mum as a function of T, there is no tunneling into
the classically forbidden phase-space regions.
This is in contrast to the exponentially decaying
behavior in this region exhibited by the bounded

(&q ]„y,) ) solution in the previous system. Also note
that in this case, R' is an operato~ (q number)
with an associated spread (uncertainty), whereas
in the previous system e'" eras simply a scalar
(c number).

really nothing ne~ can be seen by investigating the
effects of canonical transformations on various
simple systems. Consider the harmonic oscillator
where If= —,'(P'+q'). If we apply the canonical
trRns formation

p =~M' cosQ,

q =v'2& sing,

(3.1a)

(3.1 )

the new Hamiltonian is simply @=I', but the new

phRse spRee is eonstx'ained by

(3.2)

since in the phase space of (9, P), points with
& & 0 do not correspond to any classically allocated

state of the harmonic oscillator. If me tried to
quantize the harmonic oscillatox in this new ca-
nonical frame and ignore the inequality constraint
(3.2), thereby allotting phase space t-unneling, we
mould come to the conclusion that one could find
the quantized harmonic oscillator in a state of
negative energy (&= & & 0). Since this has never
been observed experimentally, me have one more
reason fox postulating that these states must be
quantum-mechanically as well as classically for-
bidden.

In special-relativistic theories, these consider-
ations are essentially academic because the origi-
nal canonical frame Rbvays possesses a phase
space with planar topology. However, as mention-
ed in the Introduction, this issue is forced in
general-relativistic treatments because the qua-
dratic constraint may impose forbidden regions in
the phase space. This vrill occur in any space
whose intrinsic curvature disobeys the phase-
spRce eonstrRint

~ ~R ~K~ +E

Unfortunately, a general technique for handling
inequality constraints is yet to be formulated and
the simple general-relativistic example treated
in this paper amply illustrates that pathology can
arise from ignoring these restrictions. A possible
alternative is to canonically transform to a frame
in which the phase constraints become txivialities.
This procedure was successfully applied to the
example treated here and standard canonical quan-
tization in the new fry.me resulted in a system
which, in the proper limit, faithfully reproduced
the classical behavior.

Also, it is important to note that our model def-
initely favors the use of an extrinsic timelike
variable because it was found to be impossible to
quantize using the intrinsic time variable (0),
while on the other hand, introduction of the ex-
trinsic time variable (T) produced a very reason-
able quantum theory. In fact, this result ean be
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easily extended to a large class of general-relativ-
istic systems. Consider the general form of the
quadratic constraint as given by (1.2). In terms
of any intrinsic time, whenever ' 8 &0, there
mill be forbidden regions in phase space. If one
now accepts the postulate that classically forbid-
den phase-space regions (relative to the initial
value problem) are also to be quantum-mechanical-
ly forbidden, then it follows that it mill be neces-
sary to transform to a new canonical frame in
which [K,~ + ~'~R] will be a positive-definite func-
tion of the conjugate momentum of the new time
variable, with a range from zero to infinity.
Clearly, the application of such a canonical trans-
formation mill automatically introduce an extrinsic
timelike variable.

It should be noted that other attempts to quantize
the Friedmannuniverse have, in a sense, also
used an extrinsic time. De%itt" mas one of the
first to obtain some reasonable results from this
model and attempt to treat this problem of quan-
tum-mechanical tunneling and indefinite norm.
He approached it by considering the %KB solution
for a Friedmann universe, and his analysis of the
%KB solution showed that along an R =constant
hypersurface, as expected, probability flowed in
both directions. The expansion phase mas rep-
resented by probability flux in the increasing 8
direction, and the contraction phase mas also
present, and mas represented by a probability
flux in the decreasing R direction. Consequently,
along any R = constant hypersurfaee, the total flux
passing through the hypersurfaee was identically
zero, implying a zero norm, if one mould define
the inner product in the usual manner. However,
De%itt noted that, at least in certain special
eases, if one defined the inner product as an in-
tegral over a mell-chosen subset, then the norm
not only mould be nonzero, but also mould be posi-
tive-definite. This could be done by choosing the
subset such that only the probability flux corre-
sponding to increasing B mould be intercepted,
while excluding that flux corresponding to de-
creasing A. Similar difficulties have also been
noted by Misner and others' "in various cosmo-
logica1 models they have investigated, and they
have suggested similar methods for handling the
problem. Basically, what one seeks to do is to
intercept only the Qux corresponding to &~ &0,
w'hile excluding that corresponding to &q & 0. But,
this is exactly what one does when one uses an
extrinsic time. Consider Eq. (2.21b}. When T &0,
me have &g &0, and when»0, &@&0. Thus, if
the norm is defined along the hypersurfaee where
T= constant, then for T&0, only the positive
flux mill be intercepted. Consequently, any def-
inition of a norm which depends on the sign of I'o

is actually introducing an extrinsic time.
Although attempts to quantize several cosmologi-

cal models have been made, '~ reasonable quantum
solutions for almost all of these are yet to be
found. Atbest, awave function is found, and "phase
shifts" at a bounce are determined, but what do
these quantities mean2' When the norm of the
wave function vanishes identically, hom can the
theory be interpreted, how' can one evaluate ma-
trix elements, and hom does one correlate these
matrix elements to experimental measurements'
On the other hand, if one does not require a
vanishing norm, then one is faced with the problem
of these "run-away" solutions which do not have
a classical limit. Obviously, something is mrong
with our present so-called "quantization proce-
dure, " in that mhen we attempt to apply it to
general relativity, we axe unknowingly violating
a fundamental and unknown principle. Based on
our results presented here, we find that this
principle is that phase-space tunneling is quantum
mechanically as coell as classically forbidden. As
far as me can ascertain, this is a nem principle
and has not been discussed previously; but then
again, until nom there has been no need to be con-
cerned about violating this principle. In nonrela-
tivistic and special-relativistic theories, one had
only the simplest of possible examples of forbid-
den or cyclic phase-space regions (such as a par-
ticle in a box, rigid rotators, ' etc. ), and it was
obvious hom these systems should be quantized.
%hat made these systems so simple mas that the
appropriate boundaries in phase space were a
function of only one variable, and were not a
function of both P's and q's, as is the case in gener-
al relativity [see Eq. (1.2)]. In these previous
eases, the phase of the wave function mould satisfy
the Hamilton-Jacobi equation (in the limit of g-0)
and therefore be stationary along the elassieal path
by simply replacing the P's and p's by operators.
Thus, the correspondence principle mould be
satisfied. But, in general relativity, there is an
additional difficulty in that the classical path can
actually "touch" a phase-space boundary (in the
Friedmann universe, this is the point of maximum
expansion). Now, simply replacing the P's and
q's by the usual operators is no longer adequate
because the stationary point of the phase of the
wave function will then touch, and unless care is
taken could pass through„ the boundary into a
forbidden region of phase space. When this hap-
pens, no longer will the correspondence principle
be satisfied, and the quantum path will deviate
mildly from the classical path.

At the present time, the most practical solution
to this difficulty seems to be to find canonical
transformation which will "unconstrain" the origi-
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nal phase space by mapping it into another, which
has a more practical topology. How this can be
done in the general case of general relativity has
recently been treated by York. '
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