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Gravitational Slavnov-Ward identities
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Functional techniques are used to derive the general Slavnov-Ward identities for the quantized gravitational
field. These identities are verified to second order in the coupling constant, employing the technique of
dimensional regularization.

I. INTRODUCTION

Despite much theoretical work on quantum grav-
ity, ' ' there have been only a few brief consider-
ations of the gravitational Ward identities, "al-
though such identities are an essential step in de-
ciding if the theory is renormalizable.

In this paper we derive a general formula con-
taining all the gravitational Slavnov-Ward identi-
ties and indicate how the individual identities may
be extracted in a simple way. We then use the re-
sults of a previous paper' (henceforth referred to

a») «show that the lowest-order graviton and
fictitious-particle self-energy and vertex parts
are consistent with these identities.

In order to verify these Slavnov-Ward identities,
we employ the technique of dimensional regular-
ization, which is particularly useful for gauge the-
ories.

II. THE GENERAL GRAVITATIONAL
SLAVNOV-NARD IDENTITIES

The Feynman rules are obtained by considering
the generating functional

(2.1)&fi„.l= fdfg""I&frr""1»vI~ f *
&+ El" i » "&.„.k-" 8. t "&8'.

W

whose origin is explained in detail, together with the notation, in I. We note here that 6 can be inter-
preted in terms of fictitious particles and is given by

(~fg""I ')= fdfk I&fn. le pIix)&xq. III. D-K(A„., x„—4„p&. ~,&q-4„p,„&. ~p ~ 0„., „& )Ik I, (2.&)

2~r&) g)1u g,Pg, O ~

We now derive the general Ward identities, fol-
lowing the technique of Slavnov, ' by considering
the effect of an infinitesimal gauge transformation,

(2.5)x'" = x" + t'"(x, y),
on the generating functional Z[j„,] of Eq. (2.1),
ghere, in general, g" can he a functional of P
as well as a function of x. The gauge transforma-
tion (2.5) induces the following change in g""(x):

where we have defined the graviton field P
8 by

(2 2)

The indices on p ~ are raised and lowered by
means of the flat-space metric 5 z. g is the pure
gravitational Lagrangian which, in an n-dimen-
sional space, is given (in terms of the weight-one
tensor density g"8) by

1 p~ 1
gypgxv 2 g gpxg)v

5g ""(x)= - t'(x)& ~g "'(x) + (",,(x)g "(x)
+ (',.(x)g" (x)- ( ..(x)g"'(x). (2 5)

The functional Z[j„,] is invariant under changes in
the integration variable and hence, in terms of the
field Q„& introduced in Eg. (2.2), we obtain

5Z l dXd ~g Z Jog g v

X apv«4 vX

&i4.sb)&(&.l.—s(*))+(&+«II2

(2.7)

Zfy. , j„.l=c exp'~'Jdx u+ —g""j„„

2 ~if 8 ~a8' &va sKe
(2.8)
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and J is the Jacobian of the transformation (2.6).
Using Eqs. (2.3) and (2.6), we obtain

and

+ 5u. p4p p
—5p, pl pv

+& '(5u. u+(v, u
—(p, p5pv)

5(S p 4' p v(x)) 5 k4 pv, 'kp + (u, p p4 p p

+&..p&up. ~
—

&p, p&~ .j

++ ~v, pp

(2.9)

(2.10)

&& jp„(x)A p„„(x)N~B(x,y)

2——()(*-))si( ~t~)I =a. (2.(6)

(5 X4 k8} (2.17)

To extract the Slavnov-Ward identities for the in-
dividual Green's functions, we take the appropriate
number of functional derivatives with respect to
j„„and then put j„„=0.The simplest identity is

or, more compactly,

5(t p,(x) =Ap. ~(x)t~(x) (2.11)
which is just, a statement of translation invariance.
Another identity is obtained by taking the functional
derivative 5/Sj„„of Eq. (2.16) and putting j„,=0.
We thus obtain [using also Eq. (2.17)]

5(s „Qp.(x)) = M.~(x) h~(x) =- X.(x) (2.12)

(2.13)

where N&, is defined by the operator relation

M, (x)N~, (x, y) =5 „5(x—y). (2.14)

We now consider ]t„(y) as an arbitrary function
and hence $&, is implicitly a functional of Q 8. It
is important to know the effect of such a nonlinear
transformation on the integration measure d[g]
and the fictitious-particle functional h. A direct
calculation (see Appendix A) shows that the prod-
uct d[g]n is invariant, as in the Yang-Mills case.
Equations (2.11) to (2.13) now enable us to express
the variation of the generating functional Z in the
convenient form

5Z=i d Q 8 dxdyZ Q 8 j„,

&& j „„(x)A„„(x)N8(x, y)

2——5(x-y}S~4~8(x) X8(y)

where the. new operators A„„),and M„& are defined
implicitly through Eqs. (2.9) to (2.12). Equation
(2.12) leads to the following solution for $~(x}:

—(T(pp„(z)$, 8 )(y))) —(T(A px( )zN, (8,z)y)) =0,
2i

(2.18)

Nu «(» y)- -&&hp(x)[7~(y) (2.19)

whenever N„z appears inside functional integrals,
then it is readily verified that this is consistent
with the definition (2.14). To prove this we con-
sider

eu„(, y)=--iK Jd[q ]d[(&] („(g)q (y)

where T is the covariant time-ordering operator.
The Slavnov Ward id-entity (2.18) imposes condi-
tions on the total graviton propagator, but for it
to be of any use we need to know N&8. In principle,
N~z can be determined from Eqs. (2.14), (2.12),
and (2.10) as an infinite nonlocal power series in
the fields (()) 8, but this is both unnecessarily com-
plicated and obscures the diagrammatic interpre-
tation. Instead, we employ the fact that the oper-
ator M„z(x) [Eqs. (2.10) and (2.12)] is the same as
that appearing in the fictitious-particle functional
[Eq. (2.2)]. If we make the replacement (see Ap-
pendix B)

=0 (2.15} exp iK gy 2 My g )zv $8 Z Z ~

Since ]t8(y) can be considered an arbitrary function
of y, Eq. (2.15) leads immediately to the following
formal expression for the generalized Slavnov-
Ward identities:

(2.20)

Since M „(x) is an operator only dependent on

Q, ),(x), we may write
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~M „„(x)X„„(x,y)

&K
Jl dl. )}.ldI ~,l)},(y)M „(x)&„(x)

x exp iK y}y(z)My [)(z)$8(z)(fz

k

J' Q
k~

r 5=-
Jt 4)).l~[(8]y) (y) 5)).(x)

&exp iK qz z M&az E&zdz

(2.21)

which, using integration by parts, reduces to

d get d $8 5t3(g5 y -X

FIG. 1. Gr aviton-fictitious-particle vertex. The two
different fictitious particles & and g have momentum
labels k 3 and A. 2, and polarization labels ~ and y, re-
spectively.

tious-particle &-g propagator given, in momen-
tum space, by

x exp)(((f ez(z)ZZ t*)(z,(zz)dzI =e[g"). (Th~y)„)= pa (3.1)

(2.22)

This completes our proof.
We must emphasize here that the two fictitious

particles are not equivalent and $„and gz cannot
be interchanged in Eq. (2.19). Having expressed
N„z in terms of the fictitious-particle fields, the
Slavnov-Ward identity (2.18) can be interpreted as
giving conditions on various graviton and fictitious-
particle Green's functions.

III. VERIFICATION OF THE SLAVNOV-WARD
IDENTITY

We shall now restrict our attention to the
Slavnov-Ward identity given in Eq. (2.18). We first
quote the appropriate Euclidean space Feynman
rules which were given in I. We employ a ficti-

and a graviton y}-( vertex given by (see Fig. 1)

V&8 y ~(k )zk&z ks) =K( —5y(ak, 8)k, g

+ 5y „k@ k, 8)) z

where we have defined

(3 2)

A (~ B [))
——

2 (A ~ B [) + A [)B„). (3.3)

If we choose the gauge parameter n =-1 in the
functional (2.1), the graviton propagator is given
by

1
D [),x[t(P) 2~ 2 (5 158[( + 5 8%5 [) 5 85k[)) '

(3.4)

Using Eqs. (2.9) and (2.19), we may write Eq.
(2.18) as

2 a 8 a
(z'(z„„(x)(z,„(z))=— I),„z,. —e„.z, )(T(,(z)e„()t))

Q Bgy 8Xly BXP

8 a
(I5'pk x + +cpu + ~pi +4pp x ~vx,~ a&, » ' ex,

—(..tz)
~„(.(z)ezte)).

(3.5)

This Slavnov-Ward identity (3.5) is now directly interpretable in terms of Feynman diagrams On the.
left-hand side (TP„„(x)(t)),y(y)) is the total graviton propagator, while the first term on the right-hand side
(Tg~(x)y)y(y)) is the total fictitious-particle propagator. The remaining term is a fully corrected graviton
-g-g "vertex, " with the graviton and g lines going to the same point and various derivatives acting on in-
ternal lines. (See Fig. 2 for the lowest-order contribution; the notation is explained in Fig. 1.)

A. The Slavnov-Ward identity to order Jy

To lowest order the Slavnov-Ward identity (3.5) merely relates the bare propagators. For o. = -1 Eq.
(3.5) then reads (although it is straightforward to verify this equation for general (z)
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FIG. 2. The lowest-order "vertex" contribution to
P& yves&xy)

FIG. 3. Lowest-order correction to the fictitious-
particle propagator.

8 1 8 8 8
2 D„„«q(x—y) = —5«„+5«, —6„„[K6«„D(x—y)],

8y), "' & K " 8x, " 8x„"'8x),
(3.6)

where D(x) and D„„«z are the x-space scalar and spin-two massless propagators, respectively. Convert-
ing Eq. (3.6) to p space, we obtain

2 t «D„.«, (p) =(5„„P.+5y.P„-5,.p„)D(t ).
From Eqs. (3.1) and (3.4) we see that (3.7) is indeed satisfied by our Feynman rules (3.1)-(3.4).

(3.7}

B. The Slavnov-Ward identity to order EC2

As a more interesting example, consider the contributions of order If' to Eq. (3.5) (see Figs. 2 and 3).
In order to handle the divergent Feynman integrals which arise from the loops, we employ 'the technique
of dimensional regularization' as it is particularly useful for gauge theories. We refer the reader to
Refs. 5, 6, and 7 for details of this technique, and merely note here that the basic idea is to work in a
space-time of 2~ dimensions, where e is a comPlex regulating parameter. In I we applied this technique
to the order-IP contributions to the graviton propagator [which we define as Q„„«„(p)](see Fig. 4) and ob-
tained

P«Qq„«y(P}= 2 (P2qP, Pq[2P T, —4((u —1)T ] 45+qpPy[-(P )'T, +4(a) —1) T~+4((a) —2)T, —4P T,]
4 p22 Jl U '7

+[5,„P„+5,„P„][4T, +4P'T, ]),
where

T, = [8(4(u~ —1)] '(+2(u —5(g)'+35(a +16(v)I, ,

T2 = [32(co —1)'(4(u2 —1)] '(-14(o —7(u'+36(@2+9(o)(pm)~I, ,

T, = [32(4(gr2 —1)] '(+16ur~ +18(gP —15') —8)(P ) I, ,

T = [32(&gp —1)(4uP —1}] '(+ 4(o —10(cr + 38uP + 32 (u + 8)P 'I, ,

T, = [32(4(u' —1)] '(-16uP —18uP +15u) +8)P'I, ,

and

(3.8)

(3.9a)

(3.9b)

(3.9c)

(3.9d)

(3.9e)

Q'

J e'(u-ep
w I'(2 —(u) I'(u) —1)I'(u) —1)

r(2 -2) (3.10)

P

p, 'V

p

p, V

FIG. 4. Lowest-order corrections to the graviton propagator.
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The O(IP) contribution to (T)~yjy) is shown in Fig. 3 and is given in momentum space by [see Eqs. (3.1)
to (3.4)]

6~ „. 6xyV „(P)=JdqVq, ~ (-qqq P)—Dq, , q ,(q), V, ,q. „- -(q P —q, -P)

Using precisely the same techniques' as in I, one readily obtains

-1 (~ —1) 1
" 4(2 1} "" &(2 1)

and hence

(3.11)

(3.12)

[q,„p.~ q,„p„—q„„p,]D,„(p)= —, p, p.p„q ( +p'q„.p„[-q]+p'[q, „p„+q„„p„] 2(2 () Ir, .

(3.13)

We have thus found the first term on the right-hand side of Eq. (3.5} to order IP. The remaining term of
(3.5) is

8 8 8)Vy(*- )=2( V- „P., ~(*)+ P(q*) qi „2+ ,P( q) 2iq„2- 2(*) „qi(q*) y q)()2.

In a similar way (see Fig. 2) this gives in momentum space (to order K'}

=
-1 (2 —3(u) -1
p' " ""2(2tq —() "" " ' "" """ 2(2 —()

Using Eqs. (3.8), (3.13), and (3.15) we can thus write Eq. (3.5) in momentum space as

(3.14)

(3.15)

, ,(P„P,Py[2P T, —4((u —1)T ]

+6qppy[-(p ) T, +4((2) —1) T2+4((2) —2)T2 —4p T2]+[6ypp~+6yqp„][4T +42p T~]j

=[6k[,p. +6k.p[ —6],.pk] &xy(p)+ ~'p.y(p) (3 18)

From Eqs. (3.13) and (3.15) we obtain

T3 —-p T5 7 (3.17)

2 p 'T, —4(v —1)T, =p 'I 2, (3.18)

-(p')'T, +4((d —1)'T,

+4(~-2)T, —4p'T, =-(p'}If, . (319)

Eliminating I, from Eqs. (3.17) to (3.19), we find

(p2)2T, +4((d —1)2T~+4((d —1)(TS -p T4) =0.

(3.20)

Hence these Slavnov-Ward identities are consis-
tent with the more restricted identities [i.e., Eqs.
(3.17) and (3.20)] obtained and verified in I. More-
over, directly substituting the expressions for Ty
to T, [Eqs. (3.9)] into Eqs. (3.17) to (3.19), it can
be verified that all the Slavnov-Ward identities to
order K' are indeed satisfied by the various gravi-
ton and fictitious-particle one-loop diagrams given
in Figs. 2, 3, and 4.

IV. CONCLUSION

We have derived the gravitational Slavnov-Ward
identities and shown in general how to give a dia-
grammatic interpretation. Furthermore, by em-
ploying the technique of dimensional regularization
we have been able to verify these identities to or-
der K'. The gravitational Slavnov-Ward identities
derived here are stronger than those identities
previously derived in I. It is interesting to note
that some of the diagrams which are needed to
verify these identities [arising from
A„,„(z)N),8(z, p)) do not appear in some of the
"simplest" calculations such as graviton-graviton
scattering.
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b Sp (A9)

where

I pit
(Al }

G~" &(~i8», i =[6i6~t86(x —x')6 t(x —x )

+6g6t~86(x-x')6 t(x —x")

—6„"85(x—x')5 i(x —x")

—6""86 g(x —x')6(x —x")]. (A2)

From Eqs. (2.12) to (2.14) we also have
b'"bt tt g (A3)

tt =N ytM tt =6v v
(A4)

y- xy (A5)

(i) The Jacobian. The Jacobian J of the transfor-
mation (Al) is given by

J= Det —(g'+ 5g')
6gb

b 6&'Tr G'b'x" 6--5 +G'b'x"g 6-b6go 6gb

(A6)

The trace G', ), ~ is formally zero and employing
Eqs. (A3) to (A5), we have

y tt

xy
6gb 6g b (A7)

) It5N" y'" ), - 6M~8
N y-, (AS)

APPENDIX A

The fictitious-particle factor 4, as used in actu-
al calculations, is not gauge-invariant since the
integration is not performed over the entire gauge
group. Also the integration measure d[g "'] is on-
ly invariant with respect to c-number gauge trans-
formations. However, in this appendix we show
that, as in the Yang-Mills case, ' the combination
d[g]h is invariant with respect to the particular
nonlinear gauge transformations given by Eq.
(2.12}.

We employ the notation of DeWitt' in that we sum
over repeated indices (», , a, etc. ) and integrate
over repeated space-time points (indicated by ',

. etc. }. Latin letters are used to represent
an index pair [e.g. , a =(Iuv)]." Equation (2.6) can
thus be rewritten

where there is no integration over x in Eq. (A9).
Hence

J=-G -~„"G -6Lg N (Al0)

(ii) The variation in b. From Eq. (2.2) (see also
Ref. 5), b. is given by the functional determinant

a =Deux. (All)

Hence, if M undergoes a transformation paramet-
rized by &t [Eq. (2.12)], then

M =TrM(&t)M '

6M ),=Tr 6g N6gb

Using Eqs. (Al) and (A9) we thus obtain

6~ =G', .;6-G"&- -[g'Pr'" ~']

(A12)

(A13)

(iii) The invariance of d[g]b, . From Eqs. (A10)
and (A13) we have that the variation in d[g]a is
given by

I=J+6b,

But G'b &- is a matrix element of the generator
G& of the group and satisfies the commutation
relation (see Ref. 9)

[Gq, G„]=G, C' „„.
C „„.in Eq. (A15) is the structure constant of
the group and, in fact, is given by'

(A15)

C"„,~ = 6"„6,(x —x'}5(x—x")

-5",6 „(x—x")5(x-x'). (A16)

Employing Eqs. (A3), (A4), (A14), and (A15), we
finally obtain

(A17)

However, the trace of the structure constant is
formally zero and thus the variation in the ficti-
tious-particle term is exactly canceled by the
Jacobian for the transformations of Eq. (Al).
Clearly this proof is not limited to gravity or the
Yang-Mills fields and can readily be extended to
any theory involving a similar kind of gauge-
breaking term.

Finally, we must emphasize that the proof is
purely formal, in that it involves products of de-
rivatives of 6 functions, and is only strictly valid
in the context of some regularizing technique. "
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APPENDIX B

In this appendix we briefly outline how a similar calculation to order K' verifies that interpreting
N„„(x,y) as -iK)„(x)qz(y) is indeed correct. We simply write

( TM ~ g(P(x))Ng 8(x, y)) = -fK( TM~ g($(x)) tg(x)qs(y))
82

=5 85(x —y)+, F 8(x-y)

(B1)

where F ~(x-y) consists of all the higher-order
corrections to the fictitious-particle propagator.
To order K', F z(x-y) corresponds in momentum
space to P q(p') [see Eq. (3.12) and Fig. 3]. In
order to verify that N~8(x, J) really is the right in-
verse of M„~(x), we merely have to show that the

last two terms in Eq. (Bl) cancel. We already
have an expression for 3' 8(p) [Eq. (3.12)] and the
remaining term in Eq. (Bl) can be evaluated in ex-
actly the same way as that of Eq. (3.12). In this
way (2.19) can be verified to order K'.
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