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The equation of state for cold neutron matter at high density is studied in the t-matrix
formulation and it is shove that energetically it is convenient to have neutrons in a crystal-
line configuration rather than in a liquid state for values of the density exceeding 1.6 @10 ~

g/cm . The study of the mechanical properties indicates that the system is stable against
shearing stresses. A solid core in the deep interior of heavy neutron stars appears to offer
the most plausible explanation of speed-ups observed in the Vela pulsar.

The discovery of pulsars and their plausible
identification vrith rotating neutron stax's has led to
a considex'able intex'est in the physics of neutron
stars, particularly with x'egard to the equation of
state govex'ning matter at high densities. A large
Qumbel of equations of stRte have been constx'ucted
Rt zex'0 teQ1pel'Rture Rnd lt 18 only fRlx' to 8Ry that
the state of matter appears to be reasonably vrell
understood up to the nuclear density (p=sxlo"
g/cm'). A comprehensive review of the equation
of state up to this density and above this density
may be found in the review axticles of %'heeler, '
Cameron» Rnd CRQuto. A8 R 188ult of the 1Rx'ge

variation of the density from the surface through
the center„ the structux e of a neutron stax' is com-
posed of 1Ryex'8 With dlffex'ent pI1yslcRl character-
istics. %hat makes the study of these stars so
fascinating is that the physical conditions prevail-
ing in their interior provide an ideal testing ground
for theories of nuclear and neutron matter. The
obsel ved pulsRx' speed-ups hRs Rlso pre8ented Rn

interesting test for the model calculation of neu-
tl on stRrs.

The origillal structure calculation of Oppen-
heimex and Volkoff' treated the interior of a neu-
tron star as a noninteracting Fermi gas and this
yielded an upper limit of 0.7Mo fox' a stable neu-
tron star. The model calculations mere later im-
proved by Tsuruta and Cameron by incorporating
the effects of the nuclear forces among the par-
ticles and this naturally x'aised the uppex' limit of
a stable Qeut on star to about 2~ . The exact
value of the upper limit is, however, Subject to R

considerable amount of uncertainty, because in
the model calculations the density at the maximum
occurs at densities around 10"g/cm', and this
involves Rn extx'RpolRtlon of the many-body tech-

niques to a region substantially above the nuclear
density. There was in fact no reliable calculation
available in the density range 10"cp clo" g/cm3
as can be seen from the results of Tsuruta and
Cameron which gave significantly different mass
limits upon using Levinger and Simmons'8 veloc-
ity-dependent potentials Vs and Vz. This prompted
Banerjee, Chitre, and Gaxdev to adopt, following
a suggestion by Bethe, an approach which assumes
that %then the nucleal' fox'ces become sufflclently
repulsive a possi. ble minimum energy state can
be achieved by keeping the nucleons as far Rmay
fx'om one another as possible, i.e., by localizing
them at lattice sites. Such R solid lattice of neu-
trons mould be a nuclear analog of the Coulomb
lattice of nuclei which exists in the outer cx'ust of
R neutron star. The lattice calculation eras per-
formed with the harmonic approximation using the
classical Debye model and employing a Reid soft-
cox'8 potentlR1 fox' the lnterRctloQ among Qeutl Gns.
It was found that the lattice was stable in the den-
sity regions upwards of Bx10"g/cm', but the re-
sulting energy per particle could not be compared
%'Nl Rl1y exlstlng coIQputRtloQ Rs there was no cal-
culation available @which eras done in the same
spix'it, Rnd in that sense the result was inconclu-
81V8.

Shortly afterwards Pandhar ipande' calculated
the binding energy pex' pax'tlcle of a Qeutl on liquid
up to a density of 4 neutrons/fm using the Retd
soft-cox'8 potentlRl. In Pandharipande 8 lowe8t-
ox'dex' vRx'1Rtlonal formulation» the tl 1Rl %'Rve fuQc-
tion is expressed as a pxoduct of single-particle
wave functions Rnd the short-range calculation in
the manner of Jastx om. A diffex'ential equation fox'

the corx'elation function is then derived by mini-
mizing the energy arith a constrained variation.
The energy, which is calculated using clusters up
to two bodies, was found to be lower by a factor



1588 V. CANUTO AND S. M. CHITRE

of two compared with the energy computed by
Banerjee et al. in the density range 7.5x10'~ ~ p
~6x10" g/cm'. This immediately demonstrated
the need for a quantum-mechanical computation of
the neutron lattice which is expected to lower the
energy in relation to the classical Debye calcula-
tion by spreading the wave function around each
lattice site thereby collecting more attraction in
the final energy values. Moreover, the classical
harmonic-osciHator treatment is hardly adequate
for a satisfactory description of a neutron lattice
which is a highly quantum crystal in the sense that
the zero-point energy of the neutrons is compar-
able with the potential energy and the amplitude of
oscillation becomes a sizable fraction of the inter-
particle distance.

There have been semiempirical attempts to
study the possibility of crystallization of neutron
matter especially from the point of view of deter-
mining the solidification pressure. Anderson and
Palmer' were the first to appeal to de Boer's law
of corresponding states by making use of empiri-
cal data regarding nuclear and neutron matter.
They obtained a solidification density for neutron
matter in the vicinity of 5x10" g/cm', a result
which was not significantly altered by a later re-
fined version by Clark and Chao" who adapted an
average Reid potential to a Lennard- Jones shape.
This evidently raises a crucial question whether
a neutron star may have a crystalline structure
throughout its interior —a consideration which is
of prime importance from the point of view of the
dynamics of a neutron star. The argument based
on the law of corresponding states cannot be taken
literally insofar as its numerical predictions are
concerned. Nevertheless, it gives a good physical
insight into the nature of the problem. More spe-
cifically, it emphasizes the numerical equality
(-3) of the de Boer parameter for solid 'He and for
a neutron lattice, and provides a semiquantitative
answer to the question concerning the solidifica-
tion of neutron matter under a sufficiently high
pressure.

The present computation to study cold neutron
matter is based on the t-matrix approach which
has been successfully employed to describe the
physical properties of quantum crystals like 'He
and 'He. Our experience has been that since nu-
clear forces are highly spin- and angular-momen-
turn-dependent, they cannot be easily incorporated
in a variational method. In our approach we have
managed to avoid a number of approximations
which are usually invoked in the context of 'He and
have been able to bring out a full dependence of the
wave function on spin and angular momentum. The
principal feature of our work is that we find the
onset of a solid phase for cold neutron matter in

the density range upwards of 1.6x10" g/cm'. Re-
cently there have been some more attempts to in-
vestigate the problem of the crystallization of
dense neutron matter. Coldwell, "using orthogonal
single-particle wave functions finds crystallization
at a density of 7.78x10" g/cm'. Nosanow and
Parish, "using a Monte Carlo technique analogous
to the one used for solid 'He, found the onset of a
neutron solid at a density of 4.2x10" g/cm',
Schiff" using a fermion version of the quantum
perturbation method developed by Kalos, Levesque,
and Verlet estimated the crystallization density
for cold neutron matter at (2.9+0.5)x10" g/cm',
while Pandhar ipande's" constrained var iational
computation yielded no solidification up to a den-
sity of 2 neutrons/fm'.

The remainder of the paper is arranged as fol-
lows. In Sec. II we set out the mathematical for-
mulation as applicable to a neutron lattice and in
Sec. III we derive the general expressions for en-
ergy per particle interacting via a soft-core nu-
cleon-nucleon potential. The self-consistent meth-
od for determining the frequency of oscillation for
a neutron oscillating around a lattice site is de-
scribed in Sec. IV and the various spin configura-
tions of neutrons in a conventional lattice structure
is set out in Sec. V. The elasticity of baryonic
lattices is discussed in Sec. VI and the main thrust
of our computation and the related problems with
uncertainties of interaction potentials are dis-
cussed in Sec. VII. Finally the results are sum-
marized in Sec. VIII along with a comparison with
other neutron solid calculations and the astrophys-
ical aspects are detailed in Sec. IX. A short ver-
sion of this paper has appeared as a letter. "

II. GENERAL THEORY

It is customary to think of a crystal as an or-
dered array of particles oscillating about their
mean lattice positions with amplitude small com-
pared to the interparticle distance. Such a crystal
can be adequately described by classical dynamics
in the framework of the harmonic approximation.
However, quantum crystals, such as solid helium,
cannot be treated on the basis of classical lattice
dynamics. This is largely a consequence of the
fact that the attractive part of the interaction is
quite weak and the atomic mass small, so that the
zero-point energy becomes almost comparable
with the potential energy. The rms deviation of
an atom from its lattice site is then no longer
small with respect to the nearest-neighbor dis-
tance and the standard harmonic approximation
becomes inadequate for a proper treatment of the
crystals. Quantum crystals have been extensively
studied in the last ten years and comprehensive
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recent reviews may be found in the works of
Brandow" and Guyer. " These studies ean be
broadly divided into two categories: One is con-
centrated on the long-range correlations associated
with the phonons, while the other deals principal-
ly with the short-range correlations arising from
the hard-core of the two-body interaction. The lat-
ter aspect is usually handled by the variational
approach adopted, amongst others, by Nosanow, "
Hansen and I evesque, "Massey and Noo20 and the
f-matrix approach followed by Iwamoto and
Namaizawa, "IGuyer and Zane, ' and Sarkissian, '3

Horner, and Ebner and Sung. "
The variational approach, in which the trial wave

function is written as a product of a single-par-
ticle wave functions (taken to be Gaussians cen-
tered at lattice sites)and a short-range correlation
functions, is based on an approximate expression
for the expectation value of the energy which is ob-
tained by performing a truncated cluster expan-
sion in the manner of van Kampen. Most of the
theoretical work on the ground-state energy of
solid helium has been done using the variational
approach. Hansen and Levesque" performed a
Monte Carlo calculation and obtained the best
solidification pressure. The merit of this calcula-
tion is that the ener gy expectation value is based
on a cluster development that includes short-
range correlations between all particles in suc-
cessive oxders in the expansion; the ealeulation,
however, uses a rather restrictive form of the
correlation function which turns out to be con-
siderably more spread out than any of the other
published forms.

Ne have adapted the g-matrix approach to the
many-body problem. Even though any two-body
theory should be capable of handling the full com-
plexity of the nucleon-nucleon (NA) potential, the

presently available formulas in the variational
framework" are not, as such, suitable to handle
the NN problem since they were originally de-
veloped for spherically symmetric potentials, like
the one acting among two helium atoms.

A detailed f-matrix calculation of solid 'He has
been described by Guyer and Zane" who used an .

equation of motion for two particles in the average
field produced by the remaining particles similar
to the Bethe-Goldstone equation. Also, Horner"
has reported a Brueckner-type formalism where
short-range correlations are included to derive a
Bethe-Goldstone type of equation. These calcula-
tions, which have yielded ground-state energies
in reasonable agreement with the experimental
results, were preceded by the work of Iwamoto
and Namaizawa, "who introduced on intuitive
grounds an equation of motion very similar to that
derived by Guyer and Zane" and Sarkissian. "

However, in adapting the t-matrix scheme, we
have avoided a number of approximations usually
introduced in the context of 'He in order to bring
out a full dependence of the wave function on spin
and angular momentum and made the full use of
energetically favorable spin arrangements in con-
ventional lattice structures.

We consider a system of N baryons described
by the Hamiltonian

A'H=- V; + V]q.2m

Here the Slater determinant for the unperturbed
system is built up by single-particle wave func-
tions of Gaussian form

where 8, is the i th lattice site, around which the
particle is performing an oscillatory motion under
the influence of the remaining (H- 1) particles.
Such an unperturbed wave function, which is
strongly localized at the lattice site, is supposed
to exhibit the essential features of the actual sys-
tem. In translationally invariant systems, the
unperturbed wave function is usually taken to be a
plane wave. Brueckner theory is a low-density
expansion, and as such there is no g prior reason
why it should work for dense systems like solid
helium or baryonie lattices. However, the theory
has produced remarkably good results for solid
helium and hydrogen. " This could largely be due
to the use of Gaussian wave functions since they
already contain correlations and, moreover, to
the fact that the contributions from three-body
correlations are probably much less important in
crystals than in translationally invariant systems
like liquid helium or neutron liquid, as evidenced
from the small value of the wound integral, z «0.3.

The thrust of this computation is to find out
whether a system of N strongly interacting baryons
will minimize the energy by localizing the con-
stituents in a lattice structure rather than in a
liquid state under the conditions of density and
pressure of interest in the interior of neutron
stars (typically, p=10" g/cm', P=10"dynes/
cm ).

The Hamiltonian of the system may be formally
separated into II =H, + H„where

«.=g T, ~ !gW„,

The Hamiltonian Ho is supposed to be exactly
solvable leading to localized orbitals of Gaussian
form with unknown spread a '. The eigenfunctions
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of Hp are in turn used to perturb H, . The Rayleigh-
Schr5dinger perturbation expansion of the energy
shift gives rise to the following expression (cf.
Guyer and Zane" for details)

g;, V„.yqgd r;d r,-
3 . 3

E=~N CO+2 3 3Jpig (oI/ d rg d

in which y„. is the two-body uncorrelated wave-
function taken to be the product q&(i)qr(j), whereas

p,.&
is the correlated two-body wave function to be

determined by solving the Bethe-Goldstone equa-
tion

[T(i}+T(j)+ U(i)+ U(j)+ V;/]P;, = e;, P;;. (4)

Here T(i ) and T(j) are respectively the kinetic
energies of particles i and j, U(i) and U(j) the
corresponding self-consistent one-body potentials
and V,J is the two-body interaction potential.

Let us write Eq. (4) by separating center-of-
mass and relative coordinates. Thus, using Eq.
(2), we have

y;, = p(i)q(j)
~3/2
, /, exp[--,'a'(r, . —R,.)']

~3/2x,/, exp[--,'a'(r, . —R,.)'] .

Introducing the notation

2

X(R) = ——V„'+ —,
' p(u'[(R —R,)'+ (R —R,)'],

8p,

2

X(r)= ——V, +2gm r~ —pro r Z+2U(0)+V(r),

(i2)

U(0) +-,'m(o'(r, —R,)' .

The determination of U(0) and u self-consistently
will be discussed in Sec. IV. The wave function
Po can then be written as

y„.= y(R}it(r), (i4)

where

P(R) - a&/2(~ &) 3/4& -&(R 6-)-
satisfies the equation

X(R)g(R) = (~~h++ ~ g(g2A2)y(R) .

(15}

The equation of motion (4) can finally be written
as

2

V„'+ —,'g(u'(r —Z)'+ V(r) ij

= [& ——'ka) —2 U(0)] y . (17)

and U(i ) —= U(r, —R,) has been assumed to be of the
form

g=R) —R, ,
m; R;+m; Rz r =r] —rgm. + m.

m; r&+ m, r& m;m;
m, +m,. '

m, +m~ ' (6}

The wave function g in its full generality must be
taken to depend upon M~, the projection of the
total spin S. The general wave function is then
written to include the spin wave functions g,

"~ (cf.
Bethe, Brandow, and Petschek"):

(r) = Qi '[4v(2L+1)]' '(LOSM~
~
JM)

we can write

&p,, = e(R}q(r),
where

C(R)=(—'w) 4a' exp[-a (R —&) ],
y(r) =(2v) '/'a' 'exp[- —,'a'(r —A)'],

with

d LL 4 (R) = 1,

d3r p2 r

(7)

(9)

in obvious notation.
In our formalism the energy is strongly depen-

dent upon the spin arrangement and we have to con-
sider three distinct possibilities:

(A) S=0, M~ =0:

y~ = g i '[4s(2L+ i)] /2i", , (r)g, (&),
g=0

(B) S= 1, M~ =0:

The Hamiltoman of Eq. (4} may be written as

X=X(R) +X(r) (1o)

in which

i '[4v(2L+ 1)] '/'(L010
~
JO)

2=0

xiii,",(r) 5'„(Ll), (19)
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(c) s=l,

i"= p g i'[4~(2)+ )}]'i'(io))[z(}

The introduction of j ' in the expansion of the wave
function is only formal; it has been introduced to
be consistent with the expansion of the unperturbed
wave function y(r) [Eq. (8)] which contains in the
exponent a term of the form r A. The angular part
of rp(r) when expanded gives rise to

g=o

Cr~ S (21)

the three sets of equations can be cast in the fol-
lowing form:

(A) s=o, ~, =0,

E]"+(E—U, ~)E,

X,Ne' '=P gi'[4w(2/+1)]' '((OSMJZM)

x j,(--,'f o'rn) JJ,~ (g), (20)

where j,(ix) is a Bessel function of imaginary
argument. After inserting the three wave func-
tions (A), (B), (C), into Eq. (17), we get three sets
of coupled differential equations. The coupling of
various waves is due to the term r 6 =rAcose
which much like the Stark effect couples odd and

even waves.
Vfe have included in our computation partial

waves up to l =6. This gives rise to three sets of
equations containing, respectively, 7, 13, 18 cou-
pled second-order differential equations for cases
(A), (B), (C). The solution of these coupled equa-
tions in order to yield the lowest eigenvalue (else
nodeless wave function) is a formidable task. We
have resorted to the power method used in nu-

merical analysis for obtaining the lowest eigen-
value and it is described in detail in the Appendix.

If we now introduce the notation

(C) S=1, M =1,

H, ~"+ (E—U, ~)H, ~

( 1)]+I o4~d
+

(
i f (E+ 1011icP 1) H(+y

-(1+1)g (f 1-O11j~-1)'H, , „, =O.

Here 1=0, 1, . . . , 6 arid J takes the values com-
patible with Il —1 I

«8» f+ 1 and likewise the sums
over J' and J" follow the rule:

1 ~J'~1+2, (f —2)c8"~l .

The rest of the notation is as follows:

a = c(r„x=r/r„

I 3
ym

0 0

2 v&0' ~(&+ 1)U~~=~'&'+ @2' ~~~+

E= e- —Sup- —a 4 -2U2P&o 3

8p, 0

The matter density p is so defined that there are
four particles per unit cell for an fcc lattice
(y =4) and two particles for a bcc lattice (y =2).
Once the wave functions are known for each spin
and angular momentum component, for a given
frequency u, the energy per particle can be readi-
ly computed.

In this section we have discussed the equation of
motion of two particles, each of them moving in a
one-body potential centered around different lattice
sites Rnd ln Rddltlon intel Rctlng through R two-
body potential. Vfe shall now derive the expres-
sions for energy per particle up to second order
for various pairs of baryons, Rnd in particular
develop the detailed formulas for nucleon-nucleon
interactions up to l ~6, in the following section.

III. ENERGY EXPRESSIONS

'"d [is (f 1)z ]-o
+(2f 1) 2

] 1 I 1+

(B) s=l, ~, =0,

G}~"+(E- U(~)G}z

(22)
' lg (1+1010(Z'0)'G„, ~.

(2l + 1) 2

—(f + 1)Q [(f —1010
~
Z"0) G(

gal(' W

The general expression for energy per particle
can be written as[see Eq. (3)]

E/H = ga(d + 2 Q Pgg, E),
k

The first and second term are not the expectation
value of the true kinetic and potential energy in the
exact ground state due to the fact that we use a
model theory. %'e shall, however, refer to them
simply as kinetic and potential energy with the
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x E(S,M„T), (25)

where m, ,m,. can take values +-,'; the values as-
sumed by t, , f~ and their respective projections
7, , ~,. depend on the specific pair of baryons under
consideration. In general

(26)

Each g«"&(r) is the solution of the appropriate set
of E(1. (22) and V(r) is the two-body interaction
potential between the particles in question.

After calculating the Clebsch-Gordan coefficients
applicable to various particle pairs we derive the
following ener gy expressions. "

«, = «(n)ni)

= «(Pipi}
=E(s= 1,M, =1, r=1),

«z ——«(nini)

= «(Pip~}

=-,'[z(s=o, M =o, r= 1)+ E(s=l, ,v, =0, r=1)],
«3= «{n~p'i)

=
2 [E(S= 1,M~ = 1, T = 0) + E(S= 1,M~ = 1, T = 1)],

«, = «(n)P))

=-,'[z(s=o, M, = o, r=o)+z(s=o, M, =o, r= 1)

+z(s= 1,M, =o, r= o)+z{s=1,M, =o, r = 1)],

«5= «(Zin~)

= «(z;p, ) = E(s = 1,M, = 1, r = —,},

«, = «(Z)n()
= «{Z ~pi)

=-,'[E(s=o,M, =o, r = ,'}+E(s=1,M, =o-, r =-,')],

understanding of the limitation inherent to such
terminology. The quantity n, is the number of par-
ticles in the 0th shell and e~ the energy for that
shell. The explicit expression for ~~ of course
depends on the spin configuration under considera-
tion and in what follows we shall derive the for-
mulas for various baryon-baryon interactions and
spin configurations.

Let us write the energy expression for the inter-
action of two particles i,j with a given spin and
isotopic-spin projection M~ and T, as follows:

a(ii ) =
Q (-,'m,.—,'m, (sM, )'(t, r , i, v, I

&r)'.

= «(Aipi)

=E(s= 1,M =1, T= —', ),

«„=«(A in()

(2'f)

= «(A)pi)

=-,'[z(s=o, M, =o, r=-,')+z(s=1,M, =0, r=-,')],
«gs = «(A)A))

=E(s=l,M, =1, r=o),

«~4 = «(A ) A ))
= —2[E(S=O,M~ =0, T=O)+E(s=1,M~ =0, T=o)],

«ps = «(Z)Zi}
=-.'[2z(s= 1,M, =1, r =2)+E(s= l, M, =1, r =0)],

«» «{Z tZ k)

=, [2E(S=O,M~ =0, T=2)+E(S=O,M« =0, T=o)

+2z(s= 1,M, =o, r=2)+z(s= 1,M, =o, r =o)],
«xv= «{Z&Zi)

= «(Z yZ))

=E(S=1,Mq = 1, T = 2),

«xa «{Z tZ ()
= «(Z iZ))
=~2[E(S=0,Mq =0, T=2)+E(S=1,M~ =0, T= 2)],

«»= «(Z')Z')}

= «(Z iZ ))
= ~[E(s= 1,M~ = 1, T = 1)+E(s=1,Mg =1, T= 2}],

«7 = «(Z in')
= «(Z(P()
= 3[2E(s = 1,M~ = 1, T = 2) + E(s= 1,M~ = 1, T = 2)],

«, = «(Zin))

=
8 [2z(s = 0,M~ = 0, T = 2) + E(s = 0, M8 = 0, T =

~ )

+2z(s= 1,M, =o, r=-,')+z(s= 1,M, =0, r =-,')],
«9 = «(Z ~n~)

= «(Z'i p) )

=-*.[2z(s= 1,M, =1, r = ,')+z(s-=l, M, = 1, r =-,')],
«» «(Z i n k )

= «(Z'~p& }
=—,'[2E(S=O,M~ =0, T= —,')+E(S=O,M~=0, T= ,')-

+2E(s =1,M, =0, T= ,)+E(s=1,M-, =0, T =-,')],
«gg = «(A i n i }
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emG= e(z fz))
= e(z [z'[)

=-,'[E(S= O, M, =O, T= 1)+E(S=0,M, =0, T=2)

+E($= 1,Me = 0, T = 1)+ E(8= 1,Me = 0, T = 2)],

e„=e(Z'iA))

= e(Z iAi)

= e(Z)Ai)

=E(S=1,M, =1, T=1),

=
G [ SE(8= 1,M~ = 1, T = 1)+ 2E(s = 1,Me = 1, T = 0)

+E($= 1,M = 1, T = 2)],

622 = t(z ~ z ~ )

=~2[3E(S=O,Me =0, T=1)+2E(S=O,Me =0, T=O)

+E(S=O,M =0, T =2)+SE($=1,M =0, T=1)

+2E(S=1,M, =0, T=0)+E($=1,M, =o, T=2)],

e„=e(z')A ))
= e(Z iA))
= e(z )A ))
= —,'[E(S=O,Me =0, T=1)+E(8=1,Me =0, T=1)].

Using E[ls. (8), (18), (20), and (21), the four pos-
sibilities for the n-p system give

e, =e(n)nj)

11 H11V +1 H12 P2 jl 2H32 V E2 H33 V E3 5H34 V E4 j3

e, =e(n)n))

N21 E0V S0 j0+ 5E2V B2 j2+9E4V G4 j4+ ' 0 x dx

+jr [[VG V(P)+G V(P)]j,+[VG V(P)+dG V(5')]j+ )d(r)dr),

G= 6(n'~pi)

3 H11V I, +H~V I2 j1+ 2H32V E2 +VH33V E3 +5H34V E4 j3+ e ~ ' C X dh

+N„' H„V 8, j,+-, H„V D, +-,H„V D, j,+" d

= E'(n ~p[)

=4 N4, 3E,V 'I', j1+7E3V E3 j3+ ~ ~ a Xdx+N~2 ' E0V '80 j0+5E2V 'D2 j2+9E4V '64 j4 a g dx

43 ~12V +2 ~10V +0 jl 32 2 34 4 j3

+&m ' &01V'~1 jo+2~21V D1 j2+

where N~s
' is the same as the numerator with

V = j.. The various quantities are defined as

y=-,'a'xd, a(x) =xe "
Sinhy

j0
y

coshy sinhy
jl

y y2

3 coshy 1 3——+—, sl.nhy .
y

(29)

IV. DETERMINATION OF THE FREQUENCY
OF OSCILLATION

One of the important parameters in the present
formulation is the spread e ' of the single-par-
ticle wave function, which is related to w of Eq.
(24) by the relation,
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= 71t Cg/5 . (30}

where p,. =r, —R, . Similarly, the denominator
can be rewritten as

as/2

(2w)"' xp[ --,'n'(r —Z}']y(r)d 'r . (33)

Since the one-body potential is considered to be of
the form U(0)+ ,'m~'(r, —-R,)' we .compute U(i) at
the lattice site, i.e., we evaluate Eq. . (31) at r,
=8, , thus obtaining after some algebra the exact
expression:

fexp[ ——,'o.'(r —Z)'] V(r)y(r)d'r

f exp[ ——,'n'(r —Z)'] p(r)d'r

Let us now obtain a second expression for U(0)
by inserting Eq. (31) into Eq. (3). Using Eq. (13),
the energy per particle may then be written as:

—= —,
' —a'+ —,

'
U(0) + —,

' ——c('

982=- —o(2 + 2 U(0) .8 m

Since by definition

E 3k',—Q + Pg6u 4m

(35)

The determination of a is a difficult task and we
shall describe the way in which we have pro-
ceeded:

When the quantum crystal problem is treated
within the variational framework the-energy is
usua1, ly varied with respect to a until a minimum
is found. However, in the t-matrix computations
of solid 'He so far published, one finds that both
methods have been employed: The minimization
of E/N vs u and the determination of u self-con-
sistently. The latter may be carried out as fol-
lows. In the framework of the t matrix one de-
fines the one-body potential U(i) as

fV'(f)V(i)~ 0 d'r~
P(()))(()P(l ) = g o (

(31)

where g is taken to be antisymmetrized, i.e., only
the waves allowed by the Pauli principle are em-
ployed. (See discussion in Sec. X.}

Using the previous definition of y(i) given in
Eq. (2), the numerator of Eq. (31) becomes

ae/2
exp[ —

p Q (2pg + r —6) ](2v) (-, )) )

xexp[ --,'a'(r —Z}']y(r )V(r)d'r,

(32)

we can recombine the foregoing equations to get
U(0), now called U~(0) in the form

U (0)= s e --—aD 3k'
2

=-2(pot. En. ) —(Kin. En.) .
Our computation now proceeds as follows: Given
an arbitrary &u we solve Eq. (22), compute g, sub-
stitute it in Eq. (34) and evaluate U(0). Once the
g's are known, they are also used to compute e~
with the help of Eqs. (24)-(27). From Eq. (36),
U~(0) is then determined. The procedure is re-
peated for several ~'s, and a plot is made of U(0)
and Us(0) vs e (or o') with the intersection of the
two curves determining the self-consistent value
of &. This value is then employed to recompute
g and finally the energy using Eq. (24). Now an
important question is: How does the a so obtained
compare to the one given by the relation 8(E/Ã)/
Be =O'P

Unfortunatel, y it has not been easy to answer
this question from the published literature. As
far as the authors were able to reconstruct either
method was used exclusively and no direct com-
parison is therefore possible.

In order to gain a better understanding of the
problem, we performed two calculations, which
though not directly related to the present problem,
are nevertheless rather instructive. After em-
ploying the present technique for handling the an-
gular momentum dependence of the B-Q equation
for solid 'He, the resulting P was used to compute
(E/N)„and (E/Ã), , the variational and t-matrix
energies. The function (E/N)„was found to have
a very clear minimum with respect to a at a
= a„. The value of a„was however higher than
the value of a determined self-consistently. The
values for the energy were nevertheless almost
identical. Second, we performed a neutron-solid
computation assuming the same potential for all
the angular momentum waves. In particular, we
took

Vx

V(r) =6464.2, @=0 Vr, .
x

which is the repulsive part of Heid's '8, potential,
a potential suggested to us by Bethe.

The results were as follows:
(1) The g's obtained from the B-G equation were

'

used in the variational form for E/N and the en-
ergy was then minimized with respect to a. A
clear minimum existed at a„. The same g was
also substituted into the f-matrix form of E/N
and n was determined both by minimizing E/N
(again a minimum existed) and by using the self-
consistency equations. The latter two a's were
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extremely close but both smaller than a„.
(2) The energies (E/N), and (E/N)„were almost

identical. In a sense this fictituous problem great-
ly resembles the 'He case, since only a state-
independent potential is employed and the behavior
of V(r) for small r is the same for all the angular
momentum waves.

(3) When one goes from the V(r) just described
to a realistic potential, for instance the one given
by Reid, then (E/N), has a very shallow minimum
with respect to 0., if a minimum exists at all. %e
have not tried to employ the B-G P's in (E/N}„,
as done previously, since the presently available
equations for (E/N)„are not suited to state-de-
pendent f's. We therefore determined n through
the full self-consistent method described before.
At this point the suspicion could arise that the
behavior of Reid's potential near the origin, which
is rather different for different waves, is re-
sponsible for the disappearance of a well-defined
minimum. Reid' s potential is presently being
studied by Bethe and Johnson with a view toward
constructing a new potential having the same core
behavior for all angular momentum states. It is
too early to decide as to whether this new poten-
tial will give substantially different results, but
it is surely safe to expect that the behavior near
the origin of V(r) has a major influence on the E/
N vs a behavior.

V. SPIN CONFIGURATIONS IN A LATTICE

The nuclear forces are known to be highly spin-
and angular-momentum-dependent. One of the
main motivations of our computation was to at-
tempt a number of spin arrangements by localizing
the particles in a variety of configurations with a
view to minimize the energy. The overriding con-
sideration was to collect as many particles with

antiparallel spins in the neighborhood of a given
particle so that the singlet 'S, which is an attrac-
tive potential in the range of density under consid-
eration will become operative, thus lowering the
energy. Clearly we must aviod a configuration
with too many particles with parallel spins in the
first few neighboring shells. The reason for this
may be attributed to the frequent appearance of
the triplet 'P„a state in which nucleons always
repel each other at any distance.

For a given lattice structure we can arrange the
baryons in a large number of ways depending upon
the spin configuration. In a bcc lattice, for in-
stance, there are two interpenetrating cubes with
16 possible sites and if one is considering a sys-
tem of an equal number of neutrons and protons,
there are eight possible sites for neutrons and
eight for protons. Note that we are considering a

larger unit cell compared to the conventional con-
cept of a unit cell for a cubic structure. One
could start with any site of a cube with, say, a
neutron with its spin up, ny. In the adjacent site
on the same cube one can put n~, p~, or p~. In
the next site one has a similar kind of degeneracy
and the same degeneracy can be thought of for the
interpenetrating cube. In general one can envisage
the most asymmetrical configuration with respect
to the kind of particles and their spins randomly
distributed at lattice sites. %e tried several of
these configurations with an arbitrary degree of
randomness to ensure that they are not energeti-
cally favorable. It soon became clear that for a
given configuration the energetically favorable
situation occurs whenever the spins of the parti-
cles are symmetrically distributed.

Regarding an fcc lattice made up of neutrons
there are the following three symmetrical pos-
sibilities for the arrangement of the spins:

(1) In an fcc structure, basically there are four
cubes —a simple cube with three other cubes
whose corners are at the face-centers of the sim-
ple cube. The neutrons can be so distributed
that any two neutrons at the adjacent corners of
the same simple cube have opposite spins. The
same distribution is applied to the other three
cubes which are displayed as face-centers in Fig.
1(a). We call this the "mixed spins" configuration.

(2} The spins of the neutrons on the basic cube
can be a11 parallel, say 4., and in the three face-
centered cubes the spins can be all parallel, with
one cube having all spins up (0) and two cubes with
all spins down (0), as exhibited in Fig. 1(b). This
is our "parallel spins" configuration.

(3) Another possibility ls that one can start with
the spins of neutrons in a given cube parallel and

up (0}and the spins of the three face-centered
cubes can be antiparallel and down (0) as shown
in Fig. 1(c}. Notice that we are considering a
larger unit cell compared to the conventional unit
cell and as the system is translationally invariant,
the symmetry of the spin configurations repeats
over the whole crystal.

The spin configurations for the three cases are
shown in Fig. I for the first four shells. In cases
(b) and (c) we see the spin configuration «,(n~n~)
repeating in every other shell starting with the
second shell and this implies a preponderance of
the 'P, which is purely repulsive. In case (a),
however, in the second shell we have «( ~n~n) and
this collects attraction from the presence of the
singlet 'S, wave, while «, (n~n~) does not appear
till the fourth shell at which distance its repulsive
contribution is significantly lower. This is -the

main reason for favoring the fcc configuration of
neutrons with mixed spins, a fact which is indeed
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fcc STRUCTURE
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FIG. l. Spin configurations for three fec lattices of neutrons. (a) Mixed spins, where each of the four cubes has
neutrons on the adjacent corners with opposite spins, (b) parallel spina, where two out of four cubes have neutrons
with their spins parallel and up (t) and the other two have neutrons with spins parallel and down (&). Configuration (e)
is explained in the text in See. V.

bcc STRUCTURF
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iL

FIG. 2. Spin configurations for two bcc lattices of neutrons. (a) Mixed spins, where the two interpenetrating cubes
have neutrons onthe adjacent corners of the same cube with antiparallel spins, (b) parallel spins, with the neutrons
on one cube with spins parallel and (t) and the interpenetrating cube has neutrons with spins down (k).
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supported by detailed numerical results.
Similarly, for a bec structure made up of neu-

trons, the following two possibilities arise:
(1) In a bcc lattice there are two interpenetrat-

ing simple cubes. The neutrons can be so dis-
tributed that any two neutrons at the adjacent
corners of the same simple cube have antiparallel
spins. The same symmetry is repeated for the
interpenetrating simple cube. This is the bec
mixed-spins configuration displayed in Fig. 2(a).

(2) Another possibility is that the neutrons on the
same simple cube can have their spins parallel,
say up 0, while the neutrons on the interpenetrat-
ing cube have spins down (0). We call this the bcc
parallel spins ease and it is shown in Fig. 2(b).

By and large, the first three shells just about
determine the major contribution to the potential
energy. It ls clear from the spin conf lguratlons
shown in Fig. 2 that while in the bcc mixed spins
case there are ten antiparallel neighbors, there
are correspondingly eight antiparallel neighbors
in the parallel spins case. In case (b) we have

again a preponderance of the spin configuration
e,(stnt) bringing in too much repulsion and con-
sequently case (a) turns out to be energetically
more favorable compared to case (b). The de-
tailed computations also bring out the feature that
the mixed spins case is to be preferred.

Now, between bec and fcc mixed spins configura-
tions, the fcc lattice turns out to be energetically
favorable since in a fcc structure, in the first
three shells, there are 24 antiparallel neighbors
while in a bce there are only ten. Also, at the
same density two neutrons are more widely spaced
in an fce than in a bcc lattice and this helps in
picking up less repulsion at the high density if the

particles are 1ocalized in an fcq structure. The
hcp structure gives results which are essentially
similar to the fcc structure which we have dis-
cussed above. Ne shall exhibit, in what follows,
the detailed computations obtained with an fcc
lattice of neutrons with mixed spins.

VI. ELASTICITY OF BARYONIC LATTICES

%e have hitherto considered the energetics of
an hypothetical arrangement of neutrons. In other
words, we have assumed the particles to be
localized at lattice sites of a specific structure
interacting via an assumed nuclear force and then
determined the resulting energy per particle. If
it should turn out that the energy so obtained is
lower than the corresponding energy yielded by
assuming a fluid phase, it will be hasty to con-
clude that the structure represents a solid in an
ordinary sense. The question that must be an-
swered is whether such a lattice is mechanicaQy

stable. Of course, any lattice has to satisfy the
requirement that its energy density must have a
stationary value at equilibrium. However, for the
structure to be stable, any deformation under
shearing stresses must result in an increase of
the energy.

%e shall follow the notation developed bv Born"
for investigating the mechanical stability of a cube
with side 2a which is deformed homogeneously into
a parallelepiped whose sides are the vectors
r„r„r,. Consequently the lattice points of the
undistorted cube which are described by

Ro=(l,s, l,a, l,a)

are then given by the vectors

Rg= (tax'~+ )2r2+ I 3rs y

where the integers I„/„I, assume different sets
of values for the bee, fcc lattices. If we now con-
sider small deformations, the square of the dis-
tance from the origin is given by

A$ R0 + 0 8 SECIL 8 —R0 + 5)p (3V)

(E/Q =-'QC((Z '+8)"') (38)

where the summation symbol is hereafter meant
to indicate sum over successive shells.

Since for any well-behaved function 4(r), we

have

=-(Dc'), =(z,"(;) &2

we may expand C (r) in a Taylor series as follows:

C((ft'+tt)")=C(Z )+t)(DC) +-'t}'(Il'4) + ~ ~ ~

and hence rewrite Eq. (38) as

(z/x} =-'P(c+eDe+-'VD'c + ~ ~ ~ )

=(z/)(l, -',a'Q e g) ) gB@

0
+—Q 8~8eq, l~l ()Iq/ „D 4 + ~ ~ ~ .

I6 A p p «X p

where g 8 are the usual strain components of the
theory of elasticity:

8))),=(t), —Q )/Q ) k= I) 2) 3

e» = r, ~ r~/a', k, p = 1, 2, 3.

The total potential energy of a deformed lattice
(E/N)~ wherein the interparticle forces 4(r,.~) are
only central, may be written as
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In this expansion the fix st tex'm on the right-hand
side is the energy of the undeformed cube while
the second term is zero at equilibrium. %e,
therefore, have for the deformation energy ~

+ 2 C4c(e~~ + eex + erg }.

tlon energy m'hlch is proportional to the nondiag-
onal terms e„„e„,etc. In reality there can be
no ambiguity in the concept of melting. If one re-
gards the difference between a liquid and a solid
as that the solid offex s elastic resistance against
shearing stresses while the liquid does not, it
mould then seem that the positive value of C« is
a necessary condition for a crystalline phase to
exist.

VII. DISCUSSION

The crystalline structure is deemed stable in
the classical sense if ~E &0, i.e., if there is a
gain in energy while undergoing a small deforma-
tion. It is straightforward to show that the qua-
dratic form (40) is positive-definite provided the
folloming considerations are satisfied:

(i) —=-C»+2C» &0 (K =compressibility),
~ 3=

ll

(1I) C~ &0
~

(iii) C» —C» &0.
(42)

if condition (i) is violated, the lattice has no cohe-
sion and it is basically unstable. In the event of
condition (ii} not being satisfied, there is an ab-
sence of elastic resistance to any shearing
stresses and the lattice melts. However, if con-
dition (iii) is violated, there may yet be an elastic
resistance to shearing stresses, but the material
exists in a "gel" form. Physically it is clear that
the elastic constant C,4 represents the sheax'
modulus as it multiplies that part of the deforma-

y~ = 4(bcc), y* = 2(fcc), V = @*a',
where a,s before the summati. on extends over suc-
cessive sheQs and P is the pressure.

If me nom identify B~ with 6, the distance from
the origin of the various shells, me can compute
the first and second dex'ivatives of the potential
energy at successive shells and sum over a de-
sired number of shells until a sensible conver-
gence is achieved, and evaluate the elastic con-
stants as a function of the matter density p. The
above expressions are evidently classical as there
is no wave function present in them. The quantum-
mechanical expressions may be derived by
changing 4(R,,) into

The whole thrust of the calculation is the solu-
tion of the three sets of equations, which confronts
us mith several problems mhich are discussed be-
low.

Contrary to the uncoupled case, there is no gen-
eral Sturm-I iouville type of theorem that helps
in localizing the lowest eigenvalue. The systems
of Eqs. (22) have an infinite set of solutions and
the lomest energy eigenvalue has to be searched
essentially by a method of trial and error. A de-
tailed description of our numerical method is
given in the Appendix. The power method used for
this purpose mas checked by changing widely the
lowest possible eigenvalue and making sure the
system indeed convex ged to the same value, and
also by testing it against the V= 0 case for which
an analytical solution is known. For the V=0 case
the numerical value mhich our method yielded was
exact to within one part in 10' of the analytical
value.

The second problem arises as follows. In Eq.
(22}we have I ranging from 0 to infinity. How-
ever, for the computation to be manageable, some
finite E must bechosen, )~, say, such that the
final energy remains unaltex'ed if the contribution
of /~~+ 1 is included. We first included partial
waves up to l ~ 2. Following a remark by Bethe,
we extended the computations up to /=4 and sub-
sequently up to I = 6, which for the set (A) S=0,
M~ =0 gives rise to seven coupled differential
equations. However, since for the triplet states
i I —1 i

~Jc I+ 1, the two sets (B) S = 1, M~ = 0 and
(C) S = 1, M~ = 1 yield, respectively, 13 and 18
coupled differential equation. Even though the
energy mas found to be sensibly unaltered from
say /=5 to 3=6, me extended the triplet waves to
include l = 7 to ascertain that the results were
stable. On the other hand, the singlet states for
which l = J was extended up to l= 25 without too
much computational problem. This was also done
with hardly any change in the final result. Even
though it is impossible for us to establish a math-
ematical proof of the convex gence with respect to
the value of /, me however can give the following
argument due to Brandow" to justify our choice.
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The Fourier transform of the single-particle
wave function

y{r,) a: exp[--,'a'(r, —R,)']
is given by

y ~exp(-P/2n'} .

The one-body momentum distribution p(Tc}' is
then proportional to

8 g2/a2

and the root-mean-square of z comes out to be
(3~2/2)1/3

Now the relative momentum of particles i and j
localized in a lattice is

K;~ = g(IC( —Kg )~

and the average gives

(z;, ') =-,'(~ + «, ') .

The root-mean-square relative g is then given

by

&{3)&/a

The impact-parameter rule consequently yields

I =K(qo = Do(g) (0': core radius).

Thus to account for the repulsive part of the po-
tential we must include the partial waves up to g

= o.o(-,')'~', which is of the order of 3 up to a den-
sity of 4.4x 10"g/cm' if we take o = 1 (fermi) as
the core-radius. The question now arises as to
what the value of l is to get a fair representa-
tion of the maximum of the unperturbed wave func-
tion

y(f)~e-& (r -6) /4

which occurs in the region where the potential is
largely attractive in the range of density of inter-
est. If we take r=~ and let 8be the angle be-
tween r and ~, then clearly

,'o.'{r—Z)' = —,'c.'cP—{1—cos 8),

and hence the wave function is reduced by a factor
of e when

—,'n'rP(I —cos8*) = 1

first shell of an fcc lattice of neutrons. The in-
clusion of partial waves with I,= 6 is probably ade-
quate for getting a reasonable representation of
the correlated wave functions. The problem of
convergence is related to the presence of the
term r.i in the equation of motion which couples
odd and even waves. A problem of this kind would
naturally not arise if one had treated U{i )+ U( j)
in Eq. (4} not as the sum of two inginite harmonic
oscillators, but rather as a clipped harmonic
oscillator in the relative coordinate r. Such a
shape would be more physical in that it would al-
low any of the two particles to be in either well
rendering them indistinguishables as they should
be. By not so doing one has brought in partial
waves which should not be present. In particular,
the S=0 state for neutron matter is represented
only by So D2 . , i.e., only even- l waves
should be present, whereas the coupling term in
our formulation brings in unwanted waves like
'P„etc., i.e., odd-L waves. Analogously, for the
triplet state one has to incorporate spurious states
like 'S,. The way to deal with such "unwanted"
states is not obvious since after all one is paying
for the consequences of not having treated the dy-
namic equation properly. However, it must be
stressed that a clipped potential cannot be easily
parametrized in a form that renders Eq. (4)
mathematically manageable. Recently, a potential
of this form has been utilized in the study of sin-
gle-particle energy levels with reference to fis-
sion problems. No extension to a two-body prob-
lem is known to the authors. It is our hope that
the work done in the two-centered harmonic oscil-
lators in the context of shell-model computations
will provide us with some insight into the way to
treat such a potential. Lacking any better alterna-
tive, we tried several choices for the presence of
the undesirable waves.

choice I: In the singlet set, V('P, ) was taken to
be the same as given by Reid, and likewise in the
triplet sets, the even waves V{'S,) and V('D~)
were taken to be those given by Reid. Fox poten-
tials for higher partial waves in all the states, we

chose V(l&3), „=V('D, ) and V(I~3)~,

TABLE I. The values of /~ required to get a fair
representation of the maximum of the unperturbed wave
function Q(r)tx: exp[-~ (r-Z) J and the inverse of the
spread of the wave function, & ~, for an fcc structure of
pure neutrons.

2cos8*=1-a4
The required l which is then of the order of
w/8* is listed in Table I for three densities for the

10 ~5p (I,/cms)

1.83
3.34
4.4

0.' (fermi ~)

2.924
3.597
3.937
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= V, (3P, —'P,).
Choice 2 (suggested by Bethe): In the singlet

state, for the potential of the odd waves like the
'P, we take V('P, ) =6484.2e '"/x (x=0.7r) the re-
pulsive part of the singlet '5, state. The triplet
even waves like V('8,) and V('D~) were set equal
to V,('P, —'E,). Likewise the V(I,« ~ 3) was set
equal to V,('P, —'F,) as in choice 1.

Choice 3 (suggested by Bethe): All the undesired
waves like 'P„'I, from the singlet set and '8„
'D,. from the triplet sets were equated to the re-
pulsive part of the singlet 'S„with the same pre-
scription as in choices j. and 2 for the potentials
of the higher partial waves.

In the discussion of the results it will become
clear from Table V (where the energy values ob-
tained by using choices 2 and 3 are written above
and below the results of choice 1) that choice 2
produces an energy about 25 MeV largex than
choice I, and similarly for choice 3.

An overriding concern in computations of this
kind relates to the convergence of the many-body
technique employed. Specifically, since the many-
body method employed here considers only two-
body correlations and since the density is rather
high, there always remains the question regarding
the validity of such a computation vis-a-vis the
convergence of the series expansion of the inter-
action energy. Such a problem is unsolved in
principle. %e have already mentioned how the
phenomenological form for the one-body wave
function incorporates high-order correlations that
are not present in the liquid plane waves. Be-
sides, we have computed the "wound" parameter
x, whose size measures the importance of three-
body correlations, and the result was W.2 at p
= 3.34@10"g/cm'. In any event, for a crystal in
which the particles are localized at lattice sites,
it is rather improbable for three particles to
come close enough to make the three-body contri-
bution important. Lacking at the present time any
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systematic study of the value of the three-body
effect in a quantum crystal in the framework of
the t matrix, we can say that the rather small of
g is the only justification we can advance to be-
lieve that the cluster expansion here employed is
actually convergent. 'O

VIII. RESULTS AND COMPARISON KITH OTHER
NEUTRON SOLID COMPUTATIONS

The geometx ical configurations of the nucleons
for fcc and bcc are respectively displayed in Figs.

I I

=IO p (g/cm')

FIG. 3. The spread of the wave function, n ~ (fermi),
as a function of the density, together with the nearest-
neighbor distances for an fcc lattice of neutrons with
mixed spins at a density of 3.34 @10 5 g/cm3.

TABLE II. For an fcc structure of pure neutrons with mixed spins the total energy per par-
ticle E/N (MeV) along with the potential energy and the kinetic energy as a function of the
matter density p =4m/r 0 (g/cm~). The lattice constant ro is so defined that the nearest-neigh-
bor distance is xo/~2. We have inserted Kin. En. values up to 547 MeV even though at around
3.34&& 10 g cm ~ one should already become worried about special. -relativistic effects. After
3.33& 10~~ g cm ~ the numbers should therefore be taken with caution.

10 ~sp (g/cm3} t'0 (fermi} Pot. En. (MeV) Kin. En. (MeV) E/N (MeV)

1.6
1.83
2.40
3.34
4.0

5.0

1.61
1.54
1.41
1.26
1.19
1.15
1.10

-110
-102
—93
—80
—29

21
65

250
265
309
402
462
479
547

140
163
216
322
433
500
612
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10 24~ (sec ~)

TABLE III. The spread of the wave function n ~ (fermi) determined self-consistently, the
nearest-neighbor distance 6=t'o/W2 and the frequency of oscillation ~ =@x2/m (sec ~) as a
function of the matter density p (g/cm ). The localization parameter A is defined as the ra-
tio of the availabl. e volume per particle (~4&3) and the actual volume occupied by the zero-
point motion [ 3 7t {2.5/G. )3 2], for an fcc lattice of neutrons.

10 "p (g/cm ) n (self-consistent) (fermi) 6 (fermi)

1.83
2.4
3.34
4.0
4.40
5.0

0.342
0.312
0.278
0.259
0.254
0.238

1.089
0.995
0.891
0.839
0.817
0.779

1.379
1.391
1.415
1.456
1.491
1.501

5.382
6.468
8.146
9.385
9.759

11.115

j. and 2. VFe attempted a number of configurations
to find, first of all, that on energetic grounds it
is convenient to have only neutrons at high density;
secondly, the fcc structure made up of neutrons
with mixed spins does indeed appeax to be the
lowest energy configuration of pure neutron mat-
ter and the detailed x esults for such a configura-
tion are displayed in Table II where the first
column gives the density, the second the lattice
constant, then the potential energy, followed by
the kinetic energy Lace discussion after Eq. (24)]
and then finally the total energy. The spread of
the wave function, as measured by o. '(fermi), vs

the density is exhibited in Fig. 2 along with the
nearest ne-ighbor distance over the density range
1.6xIO" ~ p «5x10" g/cm'. In Table III we list
the density, the spread of the wave function o '
determined self-consistently, the nearest-neigh-
bor distance, the localization parameter A which
is a measure of the ratio of the available volume
per particle and the actual volume occupied by the
zero-point motion of the particle, and the frequen-
cy of oscillation. It is evident that over the range
of density of interest A is of the order 1.5. Such
a small value of A is only to be expected for a
highly quantum solidlike neutron lattice. The self-

-IOO—

-200—

-300—

& -500—

-600—

-800—

44 4.6 4.8
a =gr

Tcc

FIG. 4. The intersection of U(0), detex mined by solving Eq. (34) and U+(0) yielded by Eq. (36) to localize the self-
consistent value of e.
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TABLE IV. Energy contribution per shell for an fcc structure of pure neutrons with mixed
spins at a density of 1.83' 10 5 g/cm and r 0

——1.54 fermi together with the shell distances, 2hz,

the number of particles in each shell, nz, and the cumulative potential-energy contribution,
1 a"a ~a

(fermi) —.'(~, +~,) (MeV) 62(& &) (MeV) e1(&&) (MeV) ,'g—n~es (MeV)

1.089
1.540
1.886
2.177
2.435
2.667
2.881
3.080
3.267
3.443
3.611
3.771

12
6

24
12
24

8
48

6
36
24
24
24

5.84

-3.85

—1.35

-0.59

-0.27

-0.11

-13.43

-2.18

-0.59

0.58

0.39

0.23

35.04
-3.25
-51.45
-47.97
-64.17
-72.89
-87.05
-85.88
-89.66
-96.74
-98.06
-95.30

consistent n obtained by plotting U(0) yielded by
Eq. (34) and U (0) determined by using Eq. (36) is
indicated in Fig. 4 as the intersection of the two
curves.

The detailed breakdown of energy contribution
per shell (for the first 12 shells) for an fcc lattice
with mixed sinus for three densities (p = 1.83, 3.34,
4.4x 10t' g/cm') is shown in Tables IV, V, VI, and
the shell contributions for p = 4.4x10" g/cm' are
exhibited in Fig. 5 as a function of the shell dis-
tance (in fermi).

With a view to compare the energy obtained by
using another configuration, we investigated a bcc
lattice of neutrons with parallel spins at the density

p =3.34x10" g/cm' using choice 1 for the interac-
tion potentials. The breakdown of the energy con-
tribution per shell is displayed in Table VII. A

similar breakdown for an fcc lattice of neutrons
with mixed spine at the density p =3.34x10"g/cm'
is displayed in Table V. It is instructive to corn-
pare the two results: at the same density a bcc
lattice has the nearest and the next nearest neigh-
bor, for example, at closer distances, thus picking
up more repulsion as can be readily discerned
from the numbers in Table VII. In the first shell
there is a gain in energy with the bcc structure,
but in the second and third shells the fcc structure
is evidently energetically more favorable. Again,

TABLE V. Energy contribution per shell for an fcc structure of pure neutrons with mixed
spins at a density of 3.34& 10 g/cm and ro= 1.2599 fermi together with the shell distances,
Q, the number of particles in each shell, n~, and the cumulative potential-energy contribu-
tion 2+zn~e~. The energy values in parentheses above and below are, respectively, those
obtainel with choices 2 and 3 for the interaction potentials.

Ez (fermi)

0.891

1.259

1.543

1.782

1.992

2.182

2.357

2.519

2.672

2.817

2.954

3.085

12

24

12

24

48

24

2(&1+&2) (MeV)

27.40(s4 ~ 4»

( S1.18)

6 4](-6 64)

(-6.68)

3 31(-s.s1)

(-s.s1)

-1.49

-0.75

—0.38

E2(& &) (MeV) &1(& & ) (MeV)

14 S7( 14.88)

(-15.49)

, 45(1.»)
(1.s8)

-5.13

0.52

-1.51

0.39

2+n~s~ (MeV)

164.34

119.73

42.81

51.51

11.79

-8.73

-44.49

-42.93

-56.43

-74.46

-79.02

-74.34
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in the fourth shell the bcc wins while in the fifth
and sixth shells the fcc is more convenient and the
pattern repeats until at the end one comes out with
less energy (-25 MeV) on an fcc compared to a
bcc. The difference may be considered marginal
but nevertheless significant to favor an fcc struc-
ture with mixed spins for yielding the lowest ener-
gy configuration.

The plot of the energy per particle E/N vs den-
sity for neutron fluid and fcc neutron solid is dis-
played in Fig. 6. We have indicated by error bars
the changes in the values of the energy per par-
ticle with different choices for the interaction
potentials. The difference brought-about by these
choices is at most ten percent; it may be noticed
that at a given density the solid energies are low-
er than the fluid energies by as much as 25/o at
the high-density end. It is concluded that from
density p =1.6x10" g/cm' upwards, the solidlike
arrangement gives a lower energy per particle
than the Quid. One can therefore say that it is con-
venient to have the neutron matter arranged in a
lattice at p exceeding 1.6x10" g/cm'. It should be
stressed that strictly speaking both solid and fluid
energies should be calculated within the same
methodological framework for a proper descrip-
tion of the fluid-solid transition. We have, how-
ever, compared our solid energies with Pandhari-
pande's Quid energy' which has been computed
variationally and as such it represents an upper
bound. The present computation can, therefore,
be regarded only as an indication for the onset of
a solid phase at high density, but not a definite
proof.

The energetic favorability of a neutron solid
naturally raises the question of a phase change at
high density and in order to determine the fluid-
solid phase transition we perform a Maxwell con-
struction using the previously quoted liquid ener-

l2-

IO-

-IO-

FIG. 5. Shell contribution in MeV as a function of the
shell distances in fermi for fcc neutrons with mixed
spins at p =4.4x10 g/cm .

gies which yields a solidification pressure of 2.1
x10"dynes/cm' with a jump in the density from
1.6x10" g/cm' (melting density) to 1.3x10" g/cm'
(crystallization density).

Another interesting feature is the display of the
elastic constants Cyy Cg2 C44 shown in Table VIII
as a function of the density: It can be seen that
C«&0 for p = 1.6x10" g/cm', indicating that the
fcc structure made up of neutrons can withstand

Qe shearing stresses at a density upwards of this
value and that it goes soft at about the same den-
sity where energetically the fluid phase is prefer-

TABLE VI. Energy contribution per shell for an fcc structure of pure neutrons with mixed
spins at a density of 4.4x 10 5 g/cm and ro ——1.15 fermi together with the shell distances, Q,
the number of particles in each shell, nz, and the cumulative potential-energy contribution,l~

b,~ (fermi)

0.813
1.150
1.408
1.626
1.818
1.992
2.151
2.300
2.439
2.571
2.697
2.816

12
6

24
12
24

8
48

6
36
24
24
24

—.'(, +~,) (MeV)

51.62

5.34

-4.65

-2.35

-1.20

-0.65

&2(t 5) (MeV)

-10.25

-7.06

-2.25

~~(») (MeV)

1.29

0.48

0.40

Sg eeez (MeV}

309.70
279.00
214.92
222.66
168.85
138.61
82.21
83.65
62.05
35.05
27.25
32.05
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TABLE VII. Energy contribution per shell for a bcc structure of pure neutrons with parallel
spins at a density of 3.34&& 10 g/cm and r&—- 1.0005 fermi together with the shell distances,
Q, the number of particles in each shell. , nz, and the cumulative potential-energy contribu-
tlOIl, 2 gpss Ey .

Q (fermi)

0.866
1.000
1.414
1.658
1.732
2.000
2.179
2.236
2.449
2.598
2.828
2.958

~,(& &) (MeV)

27.08

-13.90

-5.11

2 022

-1.18

E~(&&) (Me7)

24.16
4.73

1.58
0.91

0.68
0.56

~~gs~eI, (MeVi

108.30
180.78
209.15
42.45
48.76
51.50
-9.80
-1.60
+ 5.08
-30.43
-28.04
-56.43

able to the solid phase. It may be argued that the
"classical" approach af Born to compute the elas-
tic constants may not be altogether adequate to
take into account the contribution of phonons.
Nevertheless, the values for C4~ yielded by our
quantum computations cannot be too far from
reality.
- We shall now discuss and compare the results of
other neutron solid computations. To date there
exist seven calculations to investigate the possibil-
ity of a neutron lattice at high density out of which

six indicate the onset of a solid phase at some
density between 4.2x10" g/cm' and 3x10" g/cm'.
These are displayed schematically in Fig. V. The
scaling arguments advanced by Anderson and
Palmer' and Clark and Chao'0 can only be taken
to provide a rough estimate of the solidification
density. In the first instance their treatment is
intened to yield only order of magnitude estimates
and also the choice of the interaction potential is
rathex idealized. Nonetheless, their work does
provide a positive answer to the question whether

700

600

500

400

300

200

lOO

I I

IO
'

p (g/cm')

FIG. 6. Ground-state energy per particle vs the density for neutron fcc lattice. The neutron Quid is taken from
Pandharipande (Ref.8). The error bars indicate the result with different choices for the unwanted waves in the inter-
action.
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TABLE VIII. Elastic constants C&&, C&2, C44 in dynes/cm for an fcc structure of pure
neutrons with mixed spins against the matter density p.

10 Sp g'/cm ) 10 C&& (dynes/cm ) 10 6C
f2 (dynes/cm ) 10 ~6C44 (dynes/cm2)

5.0
4.4
4.0
3.34
2.4
1.83
1 ' 6
1.4

27.57
17.59
13.15
6.78
2 ~ 65
0.89
0.40
0.16

10.33
6.69
4.98
2.97
1.07
0.37
0.24
0.15

5.71
3.43
2.52
1.47
0.48
0.09
0.03

-0.03

neutron matter would solidify under high enough

pressure, and the approximate crystallization
density comes out in the vicinity of 5x 10"g/cm' ~

Coldwell" performs an Hartree- Fock calculation
treating the degree of localization as a variational
parameter to find that at a density of 7.78X10"
g/cm' the nucleons should be in a cryst"3&ine
phase. The merit of this calculation is that it
makes use of Mathieu functions as orthogonal sin-
gle-particle wave functions: Such a wave function
is capable of approximating either a gas or a
crystal-like system depending on the value of a
parameter present in the Mathieu functions. This
choice enabled Coldwell to treat the nuclear gas
and the nuclear crystal simultaneously and to set
upper bounds to the energy resulting from a strict-
ly Hartree- Fock calculation. An averaged two-
body soft-core Beid potential was used in this
computation and in that sense a complete state and

angular momentum dependence was not taken into
account. Schiff" determines the density and pres-
sure at which neutrons will solidify by making use
of a fermion analog of the quantum perturbation
method developed by Kalos, Levesque, and Verlet
and concluded that the main problem concerning
dense neutron matter is not so much the many-
body theory as the choice of the two-body interac-

tion potential. An approximate choice for the neu-
tron-neutron interaction potential gives a solidifi-
cation density of (2.9+0.5)xl0" g™

The Monte Carlo computation of Nosanow and
Parish" treats the many-body clusters very sat-
isfactorily, but the correlation function which in
this formulation, was chosen to be exp[-(b/r)" ]
with n =4. In Fig. 8 we have shown our correlated
wave function P, the uncorrelated wave function y
along with the correlation function f=g/y for the
singlet state 'So for an fcc latti'ce of neutrons with
mixed spins at p = 3.34x10" g/cm'. The correla-
tion functions of Pandharipande" and Nosanow and
Parish" are shown in the same plot for compari-
son. It is evident from an inspection of the plots
that the correlation function of Nosanow and Parish
is rather different from the one obtained in the
present work or by Pandharipande. The choice of
exp[-(b/r)'] forces f to be practically zero until
a distance of 0.25 fermi and this will almost cer-
tainly reduce the contribution of the repulsive part
of the interaction. Thus the choice of their f, even
though justifiable at low density, becomes some-
what questionable as the density increases and the
rather low solidification density obtained in their
work is probably to be attributed to this particular
form of the correlation function. The nucleon-

i4 l44.2xlO 5xlO 7xIO
14 II ' 15

l.6 xlO 3x IO

- p(g/cm')

NOSANOW ANDERSON COLDWELL
PARISH RLLMER~

CLARK
CHAO

CANUTO SCHIFF
CHITRE

FIG. 7. Schematic representation of solidification density obtained by various neutron matter calculations.
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.15 eP

.10 -1.0
-9

f
-.8
-7

.05
-4

3

0.5 1.0
r (fermi)

1.5
I

2.0
0

FIG. 8. The correlated wave function g, for the single-state S() along with the unperturbed wave function p and the
correlation function f, at p =3.34 x10 5 g/cm for the nearest-neighbor distance 4 =0.891 fermi. The correlation func-
tions of Pandharipande (Ref. 14) and Nosanow (Ref. 12) are shown for comparison.

nucleon potential was also drastically simplified
in order to make the Monte Carlo computation
manageable.

In Pandharipande's work the variational calcula-
tion is supplemented by an equation satisfied by
the correlation function f very similar to our Eq.
(17). The point of departure arises when the im-
portant cos0 term that couples odd and even waves
is averaged and no angular momentum expansion
of the wave function is performed, while in our
formulation one of the major concerns is the state
dependence of the correlation function which is
exactly treated. The correlation function of
Pandaripande never exceeds unity, but approaches
it from below. Moreover, as can be seen from
Fig. 8, his correlation function lifts very quickly
near the origin probably because he constrains the
f to heal at d = 2r, R, , (0.72—5 fermi at the density
of 3.34x10" g/cm'), and as a result his f is always
larger than our f for the most part when the po-
tential is repulsive. There is another feature of
Pandharipande's computation which seems to have
more serious implications and this relates to his
choice of the interaction potential. In our compu-
tation we take into account the full contribution of
the noncentral forces wherever applicable, while

Pandharipande assumes the central part of
V('P, —'F,) as the interaction uniformly for all the
triplet states. We shall demonstrate that the final
energy values are highly sensitive to the exact
choice of the interaction potential.

We shall now compute the energy, using our for-
mulation, for a bcc structure of neutrons with
parallel spine at a density of 1.8 nucleons/fm' (or,
p = 3.01x10"g/cm') using the localization parameter
and the potentials which Pandharipande" has used,
viz. for the singlet state all the potentials were
set equal to V('D, ) and for the triplet states all the
waves were taken to be given by V,('P, —'F,). With
this prescription we were able to reproduce the
energy of -670 MeV which he obtains. A detailed
break-down of energy for the first four shells is
shown in Table IX. We believe taking just the cen
tral part of the ('P, —'F,) wave for all the triplet
waves is a gross simplification of the interaction
potential operating for the triplet states. This can
be readily seen from Fig. 9 where we have shown
the contributions of the central part of 'P, as well
as the total 'P, wave. 'It is evidmt that there is a
substantially attractive contribution from the L,S
component and as a result the effective V('P, ) = V,
-~SV~+ V~~ is largely attractive in the range of
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TABLE IX. Energy contribution from the first four shells with our formulation and the
following choice for interaction potential for a bcc structure of pure neutrons with parallel
spins at a density of 3.01x 10i~ glcmt: all the singlet waves were set equal to V ( D&) and ail
the triplet even waves were assumed to be given by V~ ( P2), but the odd waves were taken
from those given by Reid. The computation was repeated using Pandharipande's localization
parameter and his choice of the potential viz. all the singlet waves =V ( D2) and all the triplet
waves=V~ ( P2).

Q (fermi)

0.866
1.000
1.414
1.658

8
6

12
24

~,(ii) (MeV)

47.35

-12.3

~,(») (Mev)

21.3
3.08

~,(tk) (MeV)

57.13

-8.56

~, (~~) (Mev)

45.26
-2.06

E/N= 560 MeV
(present work)

EA= 674 MeV
(Pandharipande)

S=O S=1 S=O S=1

V('D, ) Reid except
V(S)=V (P )

V('D, ) Alt. waves
V, (P,)

density of interest. We therefore repeated the
computation for the bcc structure of neutrons with
parallel spins at the same density using for the
waves of the singlet state V('D, ) and for the triplet
state the undesired waves like 'S„were taken to
be given by Vc('P, —'F,), but elsewhere we use the
full potentials given by Reid for each odd-wave ex-
plicitly. The result which is summarized in Table
IX shows a drastic reduction in the energy of about
100 MeV over the value obtained by Pandharipande.
Clearly one has to be extremely careful while
handling the part of the problem concerning the
interaction potential.

In order to ascertain the onset of solidification
of a system one can for example compare the en-
ergies for the liquid and solid phases and determine
which is lower. This demands that both energies
be computed within the same many-body frame-
work and with the same potentials. At the present
time this is not possible for us to do, because we

do not possess a value for the energy of the liquid
computed with the g-matrix approach. Since we
consider that the features of the spin and angular
momentum dependence of V(r) are very important
features that can be accounted for in the solid in
a fully satisfactory way with the t matrix, we con-
centrated our efforts in that direction.

Even though the comparison with Pandharipande's
liquid is not fully justified, the drop in energy of
the solid configuration is conspicuous enough to
make room for possible uncettainties brought in
by a different potential and many-body technique.

Finally, another way of looking at the phase
transition is by considering the point (density) at
which the mechanical stability of the crystal breaks
down, indicating the onset of melting. Such a
point, as discussed in Sec. VI and seen from Table

VIII, is in excellent agreement with the value ob-
tained by comparing the values of the energies.

IX. EQUATION OF STATE AND
NEUTRON-STAR MODELS ~'~

The equation of state derived by arranging neu-
trons with their spins mixed in an fcc lattice is
summarized in Table X: Here in the first column

200 ———

l50-

IOO-

I
1

L

I

i v,('p, )

l
I. I

I.O

50-

l7
f.6

.3

-IO—

-20—
-30—
-40-
-50—

FIG. 9. The central part of P2 wave and the total P2
wave along with the correlation functions obtained in the
present computation and by Pandharipande (Ref. 14).
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TABLE X. Equation of state obtained with an fcc structure of pure neutrons with mixed
spins: The first column shows the matter density p, the second the energy per particle, the
third the mass-energy density E, the fourth the pressure P, and lastly the adiabatic index I' =

[(P +e)/e] (BP/ct).

10 ~sp (g/cm3) S/Ã (MeV) 10 e (erg/cm ) 10 38P (dynes/cm2)

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

140
157
176
195
216
238
262
287
314
342
371
401
433
466
500
536
574
612

1.652
1.889
2.134
2.388
2.652
2.928
3.217
3.520
3.836
4.167
4.513
4.874
5.252
5.647
6.061
6.495
6.948
7.420

0.214
0.276
0.356
0.460
0.588
0.743
0.922
1.122
1.342
1.582
1.846
2.141
2.475
2.849
3.262
3.703
4.160
4.622

1.176
1.877
2.432
2.731
2.936
3.043
3.045
2.947
2.794
2.667
2.638
2.719
2.860
2.986
3.042
2.998
2.858
2.654

is a listing of the density (g/cm'), the second lists
the energy per particle (MeV), the third the mass-
energy density e (ergs/cm'), the fourth the pres-
sure derived by using the relation P= -(BE/B V)
and the last column gives the adiabatic index

P+e 8P
Bf

The adiabatic index typically has values fluctuating
above and below three at the high density end. It
is th stiffness of the equation of state, character-
ized by these high values of I' which is largely re-
sponsible for a flat density profile throughout
much of the interior of a neutron star. We have
fitted the pressure P vs the mass-energy density
with a polynomial expression in the density range
1.6x10" & p &6x10" g/cm'

&36 = 0.20579 —0.27160 f36

+ 0.181809 636 —0.008037 636

where

P,S=Px10 "dynes/cm',

e36= ex10 "ergs/cm' .
This is a useful formula which is likely to prove
of help in the structure calculations.

To construct neutron-star models, we must
solve the Tolman-Oppenheimer-Volkoff general-
relativistic equations of stellar structure. The
governing equations are

dP G(e+ P/c')(m + 4v r'P/c')
dr r(r —2G m/c')

dpn = 4''c,
dr

where r is the radial coordinate, c the mass-en-
ergy density, P the pressure, m the gravitational
mass interior to radius r. In order to solve these
equations to obtain the march of the physical vari-
ables inside a neutron star, we need to specify
two boundary conditions m(0) =0 and e(0) = e, .
These must be supplemented by the equation of
state given by say, Baym, Pethick, and Suther-
land" up to a density of the order of 1.3x10" g/
cm'. This was continued by our equation of state
in the density range 16x 1 '~0&& &dx fg~g/cms.
In Table XI we list the central mass-energy den-
sity, the radius in kilometers and the mass in
units of the solar mass and Fig. 10 exhibits a plot
of M/M vs e, . Our models are evidently in good
agreement with those of Baym et al. up to a central
mass-energy density of the order of 10" g/cm';
there is a departure at the high-density end be-
cause of the difference in the equation of state
from the one employed by Baym et al. based on
Pandhar ipande's pure neutron liquid calculation.
We find a maximum mass of 1.39M for a stable
neutron star at a central density of 5.2x10" g/
cm', not altogether different from a maximum
mass of 1.66 Mo calculated by Baym et al. at a
central density of 4.1x10"g/cms. Note from
Table X that there is a remarkably little variation
in the radius over most of the range of stable neu-
tron-star masses. There is also a rapid decline
in the mass-curve around a central mass-energy
density of 10"g/cm' which causes a very sharp
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~, @/cm')

8.293x 10
6.589x 1Q

3.304 x 10'
1.045x 10'
2.626x 10'
8.312x 1Q

1.659x 10"
3 313x10io

6.617x 10'0
1.322 x 10"
4.188x 10"
9.728x 1O"
3.833x 1O"
7.801x 10"
1.340 x 10'3
2.6Sx 10'3
4.56x10"
8.83x 10'3

1.801x lo'4
2.772 x 10
4.166x 10'
7.978x 10
1.651x 1Q

1.883x 10
2.121x 10~5

2.376x10"
2.631x 10
2.912x1O"
3.19Sx 10~~

3 498x10
3.829 x 10"
4,161x 10"
4.503x 10
5.232x 1O"
6.042 x 10i5

6.466 x 10"
7.411x 10~~

4437
3549
2648
2069
1732
1283
1055
879
736
597
469
466
518
577
669
851

1134
2173
54.5
25.5
16.1
9.9
9.634
9.453
9.243
9.014
8.760
8.516
8.300
8.101
7.929
7.770
7.618
7.351
7.095
6.986
6.794

0.4762
0.8242
0.9777
1.0018
0.959S
0.9073
0.8744
0.8436
0.8029
0.7563
0.677
0.660
0.635
Q. 623
0.614
0.611
0.612
0.615
0.101
0.122
0.158
0.668
1.1157
1.1158
1.196S
1.2353
1.2690
1.3003
1.3278
1.3490
1.3649
1.3755
1.3S24
1.3873
1.3824
1.3779
1.3655

TABLE XI. Neutron-star models showing the radius
in kilometers and the mass in units of solar mass as a
function of the central mass-energy density.

subsequent healing which has been so successfully
applied to account for the Crab pulsar, can ex-
plain the obsex vational featux es associated with
the Vela pulsar only if it is assumed that the latter
possesses a solid core. Pines, Shaham, and
Ruderman" have made convincing arguments to
explain the significant Vela pulsar speed-ups as
arising from core-quakes suddenly releasing the
elastic energy stored in the inner, solid neutron
lattice. This is due to the fact that the shear
modulus of the core is some five orders of magni-
tude larger than that of the crust and as a result
the core has sufficient elastic energy "to power
the starquakes of this magnitude (&0/0 -10 ') and
frequency (every few years). " The presence of a
solid core also substantially reduces the ratio of
the superfluid moment of inertia to that of the rest
of the star and this feature is in accord with the
observed structure factor for Vela. In conclusion
we could say that the speed-ups observed in
pulsars have distinctly contributed in shifting the
idea of a solid core inside a heavy neutron star to
the plausible end of the credibility spectrum.

X. OPEN PROBLEMS

Now that the results have been presented, it is
necessary to consider in which directions the pres-
ent computation has to be improved. First of all,
the Hamiltonian (12) does not possess the right
properties under parity inversion, r -—r. This

------ I.66 {F LUID MODEL)

I.39(SOLID MODEL )
I

I

decrease in the radius of the star. The curve be-
gins to rise in the r'egion of stable neutron stars
up to a central mass-energy density of 5.2x10"
g/cm' where the radius of the neutron star at the
maximum is about twice the Schwarzschild radius
and as a result general relativistic effects over-
whelm the stability of the model upwards of the
density of 5.2x10" g/cm' causing a decline of the
mass-e, curve shown in Fig. 10.

Finally, we might say that the theoretical com-
putations indicate that there is a very good chance
for neutron matter to solidify at very high density,
but the proof for such a proposition has to come
from astrophysical considerations. There is in-
deed one piece of observational evidence which
lends credence to the idea of a solid core inside
heavy neutron star s. This pertains to the fact that
the starquake theory of pulsar speed-ups and the

O

X

l l i i i i l l

IO IO IO IO IO IO IO IO IO IO

CENTRAL DENSITY (g/cm }

FIG. 10. Neutron-star mass in units of the solar mass
vs the central mass-energy density (g/cm~). The dashed
curve is from Baym et al. Puef. 31).
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comes about from using, for U(1) and U(2), simple
harmonic oscillator potentials located at the two
different lattice sites. In every equation except
the B-G equation we have employed antisymme-
trized p's, i.e., both in the energy expressions
[Eq~. (26)] and in the determination of U(0) [Eq.
(34)] .

The unwanted waves like 'P„'S„etc., however,
make their presence felt dynamically through the
parity nonconserving B-6 equations. This pecu-
liar behavior has to be modified in such a way that
only the appropriate waves enter both in the energy
and the dynamic equation.

Second, the treatment of the noncentral forces,
especially the tensor force, requires special care.
In a liquid at high density such a force has no
great effect and one could stretch the argument
and suppose that this is also true for a quantum
crystal. However, this statement can be proven
only by an explicit computation. An exact computa-
tion would require that the angle between r and A
that enters in the new parity-invariant Hamiltonian
has to be understood as

cosy = cos 9, cos8, + sin9, sine, cos(y, —y,),
where (H„y,) refer, say, to r and (g„y,) to Z.
The angles (8„y,) are given by the crystallograph-
ic position of the distinct lattice points, i.e., the
direction cosines have to be specified. With such
a complicated geom, etry the B-G equation is ex-
tremely difficult to analyze and the authors think
that it is worth doing it only when a parity-con-
serving Hamiltonian has been found. As we said
earlier, this exact geometrical treatment would
ensure a thoroughly correct account of the tensor
force which is however mostly contributed by one-
boson exchange potential (OBEP). This contribu-
tion is known to be relatively unimportant at high
density and one has therefore to weigh carefully
the gain obtained by such a complicated treatment
against the importance of tensor forces at high
density. Their importance cannot be totally ascer-
tained at the present time since the Bethe- Johnston
potential has not yet been developed and no definite
statement can be made regarding its tensor com-
ponent. All these problems are under study and
the results will be communicated elsewhere.

APPENDIX: NUMERICAL METHOD

%'e shall present a symmary of the numerical
method employed to solve the three sets of Eqs.
(22). The principal problem is to obtain both the
eigenvalues and the corresponding eigenfunctions
numerically; in particular, we are interested in
locating the lowest eigenvalue and its eigenfunction.
Each set in (22) contains a certain number of

coupled second-order linear differential equations
satisfied by functions E, 6, H with the boundary
conditions that the functions vanish at the origin
and at infinity. This is clearly an eigenvalue prob-
lem, for the solution of which we proceed in two
steps. First we reduce the problem to obtaining
the solution of a set of linear equations which is
also an eigenvalue problem for a matrix. Second-
ly, we use a numerical method for finding the low-
est eigenvalue of the matrix and its eigenvector.
This method, which is known as the power method,
is used extensively in numerical analysis and is
briefly reviewed here.

Assume that an arbitrary n-dimensional vector
X can be expanded in terms of the eigenvectors of
a matrix A, i.e., write

X = c,U, + c,U, + ~ + c„U„,
where U~ is the eigenvector corresponding to the
eigenvalue ~,-, i.e., AU,-=A,. U, , and for definite-
ness we arrange the eigenva)ues in a descending
order, A., & A., & A. & ~ ~ ~ & A. .

We then have

AX = c,AU, + c2AU2+ + c„AU„
= c, A.,U, + c2 A,2U2+ ~ + c„A.„U„.

Repeating the procedure k times, we have

A'X=c,A.,'U + ~ ~ ~ +c A, "U. + ~ ~ ~ +c A. 'U .
This is a power series with the term with the
largest (in absolute value) eigenvalue dominating
the series.

A similar argument can be made for the inverse
of the matrix A to get

A 'X=c~A.x Ux+c2~2 U2+ ' ' '+cn~n Un

and in general

(A ') X = c,X, U, + c,A., "U, + ~ + c„A„'U„.
In this power series expansion the smallest (in

aboslute value} eigenvalue would evidently domi-
nate. If we now subtract a constant, say A,„times
the identity matrix I from the matrix A, then the
eigenvalues of the matrix (4- a, f) are clearly
(&;—A.o) (j= 1, 2, . . .n) and those of the inverse
(A —A.,&) ' are (A,~

—X,) ' (j =1,2, . . . s) with the
corresponding eigenvectors U, . Taking powers of
(A —A.OE}

' applied to an arbitrary vector X which
can be expanded in terms of the eigenvectors U~,
we get

(4 —AOI) X = c,(A., —A.0) U~+ ~

+ c;(A~ —A,o) UJ+ ~ ~ ~

+ c„(A.„—Ao) U~ ~

We shall call the constant A., the shift of the eigen-



values and clearly in the power-series expansion
for sufficiently large k the term which dominates
is the one with the eigenvalue closest to the shift
A,„i.e., if ~z is the smallest eigenvalue and A.,
& Az, the series converges to

(A-x I)-"x=
(z,.—~,)' '

A, ~ is then given by

(A —x,I) "X
' (x ~ I)-'"'~

and

If we apply central differences to this set of equa-
tions we have at the ith point (with k = x "'—«'):

Et+1 2Ef+ pg 1
—Uo Eo+ a(x d)E', = —EEok2 0 0 s 1 {)s

( ' )(F,'-2F,')=-SF f

k2

We thus have a method of arriving at the lowest
eigenvalue which involves choice of A., of various
depths to find the eigenvalue closest to it in each
case. Should the computation yield the same eigen-
value repeatedly, one may reasonably conclude
that the lowest eigenvalue has been obtained.

We shall illustrate the method by explicitly
showing how it applies to the first set of equations
in (22) which when written in full give:

E,"+(& —U,)F,+ a (x, d)E, = 0,

E,"+(F—U,)E,+ pa(x, d)(Eo —2E~) =0,

E,"+(E U,)F, -a(x, d)(—2E, 3J,) =0,—

E,"+(E —U, )E~+~~a(x, d)(3F~ —4F4) = 0,

E,"+(E —U4)E, -~Qa(x, d)(4E, —5E,) =0,

E~"+ (E- U, ) + ~a(x, d)(5E, - GE6) = 0,

Fg" + (E —U,) -~sa(x, d)(6E,) =0 .

(2E,' —3E~~) = —SF2

E,'+' —2E'+E
U F ( a(x, d) (5E,)6 6 y3 5 6

Here E,'=E,(x'), E', = E,(x'), etc. and 1 «i «

(N«2), N-being the number of points in the in-
terval; j = 1 is the point next to the left end-point
and i =N- 2 is the corresponding point next to the
right-hand end point. The zero boundary condi-
tions at the end points evidently demand that E' '
and E"' vanish at those points.

Let us consider a vector U made up of blocks of
elements when the ith block consists of the set
(E,', E', , E,', E,', E,', E,', E,'). Then the equations
may be cast in the form of a matrix equation

AU=-k EU,

E~,] ll] 0

[I]l~.][I]
0 lf] Ã.]P]

y E-2
0

yN 2
1
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-2-O'Uo a(x, d)O'

-
& a(x, d)O' -2 —O' U, —3a(x, d)O

—Sa(x, d)O -2 —O U2

-&a(», d)O'

-+Qa(x, d)O' -2 —O'U4 ~9a(x, d)O'

~i,a(x, d)O' -2 —O'U, -~ia(», d)O'

-~a(», d)O' -2-O'U,

The above formulation can be extended to any number of equations and the power method can be used to
look for the lowest eigenvalue for this matrix equation.
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Energy of neutron-star matter*
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It is generally believed that the interior of some neutron stars is dense enough that the
neutron-star matter (NSM) contains not only neutrons, but also protons, electrons, and

various hyperons. In the present paper we calculate the effect of some hyperons on the
composition and energy of the NSM. We ealeulate the energy per baryon and the fractions
of the various baryons present, as a function of the baryon density, ranging from 0.1 to 2
baryons per fm, using two slightly different modifications of the Reid-soft-core interaction,
one developed by Sawada and Wong, and the other by Campi and Sprung. The interaction
energies are based on reaction matrix ealeulations by the above authors. We consider first
a pure neutron gas. However, even at subnuclear densities (~ 0.15 baryons per fm ) it is
generally agreed that there are protons present (and also electrons to keep the system
neutral. } We calculate the effect of the protons (which constitute less than 10% of the baryons)
on the energy. We then study the effect of what, we believe, are the most important hyperons,
namely, Z, A, 6, to the composition and energy. The baryon-baryon interaction energies
are assumed to be essentially the same as those between nucleons, except that (1) the inter-
action energy is different between like baryons (AA or pP) and unlike baryons (AZ or np);
and (2) there is a special factor of & in the strengths of the long-range attractive part of the
hyperon-nucleon interaction, as compared to the nucleon-nucleon interaction. The latter is
argued on the basis of a quark model. On the other hand, the short-range repulsive part of
the interaction is assumed to be the same between all baryon pairs. Four different models
are used. One of our main conclusions is that, in the most realistic of the four models used
here, there are relatively few protons and hyperons present (no more than 15% of each
species even at the highest density considered} and the energy is only slightly less than for
a pure neutron gas (20% and 10%, respectively, for the Sawada-Wong and Campi-Sprung in-
teractions). Finally, we calculate the magnetic susceptibility of NSM treated as a pure
neutron gas with Sawada-Wong interaction energies. No evidence of a transition to ferro-
magnetism is found.

INTRODUCTION

Neutron stars have been a subject of great in-
terest for many years, but especially since the
discovery of pulsars in 1967. An important aspect
in determining the stability of neutron stars is the
equation of state (EOS) relating the pressure to the
density. Thus for different EOS used, one obtains
a maximum gravitational neutron-star mass up to
about 2 solar masses. ' In order to discuss the
EQS we need some model of neutron-star matter
(NSM). The EOS up to about normal nuclear mat-
ter density (2.7 x 10"g/cm' or 0.16 nucleons per

i'm') is now quite well understood. At densities
above about 10'' g/cm', NSM is believed to be
made up of neutrons, protons, and electrons2
(together with a few muons). At even higher den-
sities, hyperons appear. ' Their presence is, how-
ever, quite sensitive to the interactions among
hyperons and nucleons.

The properties of NSM including hyperons have
been studied previously by, for example, neglect-
ing all interactions and taking only the kinetic en-
ergies of the baryons (and electrons) into ac-
count. "More recently, Tsuruta and Cameron'
and also Langer and Rosen' considered the prop-


