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In a recent letter we suggested that the momentum dependence of the exact meson propagator
may be responsible for the dipole-like behavior of the nucleon electromagnetic form factors
over the limited range of data available. In this paper we extend the analysis to include more
than one vector-meson propagator, and, : by assuming a simplified form for the imaginary part
of the level shift, we calcu1ate the form factors explicitly. The nucleon electromagnetic
form-factor data are fitted for momentum transfer to 2 GeV/c assuming just one isovector-vector
meson and two isoscalar-vector mesons. The resulting fit is much better than that obtained
using the dipole formula, and ming2 occurs for values of the masses and widths of the vector
mesons close to the experimental values of the p, co, and p resonances. The six independent
meson-nucleon coupling constants are determ~ried. Their values are consistent with the
assumption that the nucleon charge and the magnetic moment distributions are extended, that
is, that there are no hard-core contributions to the form factors. This assumption com-
pletely determines the isoveetor coupling constants and reduces the number of independent
coupling constants to two. The pion and kaon charge form factors, as deduced from the
nucleon charge form factors assuming universa1ity, are compared with the availab1e data.
The pion form factors Qt the data in both the spacelike and the timelike regions, including
the resonance shape for the p contribution to the pion form factor. The kaon form-factor data
disagree with the assumption of universality in both the spacelike and timelike regions.

I. INTRODUCTION

In recent years the vector-dominance model
(VDM) has lost favor with theorists as a prescrip-
tion for calculating the nucleon electromagnetic
form factors because the model predicts a single-
pole form whereas observations show a double-
yole or dipole form. Because the isoscalar part of
the nucleon form factors, from the VDM point of
view, should depend upon a linear combination of
the (d and cp meson proyagators, it is possible to
generate, over a limited range of data, a dipole-
like dependence by a careful selection of the pa-
rameters. However, for relatively low momentum
transfers, the isovector part of the form factors
should be dominated by the p-meson contribution
alone, little influence being made by more massive
mesons such as the p'. Consequently, VDM would
predict a single-pole behavior for the isovector
contribution, whereas observations show a dipole
form.

In a recent letter' we suggested that the single-
pole form for the isovector-vector meson is too
severe an approximation to the exact propagator,
that the cut contribution cannot be ignored. This
observation can be based upon the fact that the
general expression for a single-particle propaga-
tor is a function of three parameters: the mass
and width of the resonance and the decay threshold
value. The single-pole form is extracted from the
general expression only if both the width and
threshold value are smaQ compared to the mass.
These conditions are not well satisfied for either
the p, ~, or y meson parameters.

In an attempt to elaborate this point in a model-
independent way, ' we expanded an expression for
the exact propagator in powers of the momentum
squared (k') to see if the parameters could be cho-
sen in such a way as to approximate a double-pole
behavior to order k~. This expression drew criti-
cism from two sources. '

The most direct way to establish our point is to
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calculate the vector-meson propagator and show
that the resulting form factors are a significant
improvement over either the single-pole approxi-
mation or the dipole form for an extended range of
the momentum-transfer variable. We have done
this for values 0 &k' ~4 (Gev/c)', a range which
includes all the existing data for the neutron form
factors and the proton electric form factor, yet is
sufficiently low enough that the p meson should be
the dominant contribution to the isovector part of
the form factors. The resulting minX' values are
shown in Table I. We find that the theory is sensi-
tive (see Fig. 2) to the values of the masses and
widths of the vector mesons and that those values,
as shown in Table II, are close to the experimental
masses of the p, (d, and y mesons. Most impor-
tantly, the meson-nucleon coupling constants, de-
termined by our fit, satisfy sum rules which imply
that there is no direct coupling (hard-core terms)
between the photon and the nucleon. On this basis
the nucleon has only an "apparent" charge and an
"apparent" magnetic moment since the photon
must turn into a vector meson which in turn inter-
acts strongly with the nucleon.

We find that our fit to the isovector part of the
nucleon form factor also fits the p contribution to
the pion charge form factor for both timelike and
spacelike values of k'. However, a fit to the K'
charge form-factor data is possible only if the

p, K coupling constant is taken to be zero.

II. THE NUCLEON FORM FACTORS

The Dirac charge and Pauli magnetic form fac-
tors, as obtained in our previous paper, ' are

f i' =6Np 'Qf i' G~(k )

f 2 "=(0„/2M„)—i Q f p
'" G„(k ),

QN —f ~ ~ N (km/2m )f~ ~ ~

QN f e, N+2 mfe, N

The quantity G„(k') is defined as before':

G„(k ) = I„'(0)+k [I„(0)—l„(k2)], (4a)

m

Qi

x(k'+m" —ie) ', (4b)

where K)(m', m„, ms~) satisfies the dispersion re-
lation

&(m', m„, m+)

=(m' —m„)(m'- m~~)v-'

f"(m")
(m "—m ')(m" —m „)(m "—m „*)

'

where M is an index in one-to-one correspondence
with the p, (d, and cp mesons. The letter N indi-
cates the neutron (n) or proton (p) form factors
and 5„~ is one for N= p and zero otherwise. Iso-
topic-spin invariance requires

f II, P f P. P f n, (u f P. v f n, (P f P, &P (2)

so that our theory has six independent coupling
constants. In our notation the Sachs form factors

Form factor Monopole a' Dipole b, c
Exact

propagator '

TABLE I. Comparison of ming for n data points.

m „-=m,„—i(r„/2), (6)

The contours t: and t:" are defined in Fig. 1. The
positions of the conjugate poles in the unphysical
sheet are defined by

gD

sf
QI

26
13
36
15

16
26
37

171

21
40

274
19

(A) Momentum transfer 0-1 GeV/c

22
10
24
28

where m, „and l „correspond to the mass and
width of the resonance. The poles in the integrand
of Eq. (4b) at m ' = +ik are located on the physical

Total 90 250

(B) Momentum transfer 0-2 GeV/c

gD

glS

eu

Total

31
27
36
15

109

22
74
36

151

283

28
131
274
19

452

31
52
24
30

137
-ik

, ik

Six adjustable parameters.
Two adjustable parameters.
The large min}( which occurs for the dipole is due to the break-

down of the "scaling law. "
4The large minX2 for the monopole reflects the inadeguacJJ to fit

both the isovector and isoscalar parts of the form factors.

(a) (b)

FIG. 1. The m' plane showing the singularities and the
contours in the definitions of the functions (a) I~(k ) and
(b} S (m', m~, mg.
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sheet outside of 8. The quantity I"(m") is the
imaginary part of the level shift It"(m "}:

It"(m ")= D"(m ")—iI"(m "),

S(m",mN, mN~) = m" —m, N
-ItN(m").

We assume that the significant contribution to X)

occurs for values of m" well above threshold so
that to a good approximation

I"(m")=c(Nm", m" ~A.N,

=0, m"&X„,

where X„ is the decay threshold —2m „ for the p,
3m„ for the ~, and 2m~ for the cp. The strength
a„can be estimated from the decay rate

I"(m,„)=o.Nm, N =(rN/2).

A straightforward calculation gives

rNm' (m'-XN)' m' rN ' i m„*-XN
8trm „(m„-X„)(m„-X„) m „2m,„4 m„—X„)

where the phase of (m '-
AN) is zero on the physi-

cal sheet above the cut, which can be taken from
threshold to ~ along the real axis, and Eq. (9) has
been used to eliminate e„. The poigts m„and m„*
in the logarithmic terms are on the physical sheet.
This function has a logarithmic branch point at m'
=A.„and conjugate zeros at m'= m„and m'= m„*
on the second or unphysical sheet. 4 It is easy to
verify that S reduces to the single-pole approxi-
mation

S)(m', m„, m„*)= m' —m,„ (11a)

only if the logarithmic term containing m ' is small
and

(r„/m, „)«1, (XN/m, N) «1. (11b)

I„(k')= -m,„'(k'+ m, „') ', (13)

the usual pole form for the single-particle propa-
gator.

It should also be pointed out that I„(k') tends to
zero as (1/k') and consequently G„(k') tends to
I„'(0) for large k'. The large k' behavior of-the
propagator is therefore consistent with the single-
pole approximation so that there are no "hidden"
factors of (1/k'} in Eq. (4) which could account for
the dipole-like behavior. Our point therefore is
that the "dipole" law is an empirical fit, not par-
ticularly good from a X' point of view, which ap-
plies over a limited range of data. The propagator
proposed in this paper will fit the data over this
limited range but eventually, for very large mo-

The function I„is now easily calculated using
the Cauchy integral theorem since the integrand
of Eq. (4b) vanishes sufficiently rapidly on an in-
finite circle in the m ' plane. Consequently,

I„(k ) = (m DN /2ik)[S '(ik, m N, m N~)

-& '(-ik, mN, mN}]. (12)
Again for comparison purposes, Eq. (11)can be
used to show that

8DE =(1+k'/0. 71) ', QDE =0,

8 DN 8 DE (1 PP) 0 8 DN 8 DE(All) '

(14)

The results summarized in Table I and shown
graphically in Fig. 2 were obtained assuming the
masses and widths of the p, ~, and y mesons
fixed at their best experimental values. ' As can
be seen, the ming' values for the exact propagator
represent a considerable improvement over either
the dipole or single-pole form. It might be argued
that the dipole form with scaling is still more
striking since it has only two adjustable parame-
ters, ' whereas the exact propagator formulation
has six adjustable parameters. However, it is
clear from Table I that the exact propagator fits
the isovector part of the form factors

8E, 2(N8E, N 8 , )EN (15)

considerably better than the other two formula-
tions. This part of the exact propagator also has
only two adjustable parameters corresponding to
f f )' and f f D, and as will be shown later, these
can also be fixed by the assumption that the charge
and magnetic distributions are extended.

From these results we conclude that the vector-
dominance model provides an adequate description
for the nucleon electromagnetic form factors at
least for momentum transfers up to 2 GeV/c. In

I

mentum transfers, must follow the single-pole be-
havior.

Equations (1), (2), (4), (12), and (13) completely
determine the form factors in terms of the six in-
dependent coupling constants f N(' " for both the
"exact" vector-meson propagator and the single-
pole approximation. The data' for the neutron and

proton form factors were fitted using a standard
routine' which minimized the total X'. Fits to the
data were obtained for the exact propagator, for
the pole approximation, and for the dipole form,
with the scaling law
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FIG. 2. The Sachs nucleon electromagnetic form factors vs momentum
dependence has been factored. The solid curve is our fit to the data. (a)
netic form factor; (c) neutron electric form factor; (d) neutron magnetic

addition we conclude that the single-pole approxi-
mation is too severe when describing unstable-
particle propagators over a large range of momen-
tum transfer.

Since the vector-dominance model with the exact
propagator does describe the data, it is reasonable
to ask how critical to the minX' value are the mass
and width of the vector mesons? In other words,
to what extent can the form-factor data be used to
determine the parameters corresponding to the
masses and widths of the mesons? To test this,
the number of adjustable parameters was increased
to include the masses and widths of all three me-
sons, thereby making a total of 12 adjustable pa-
rarneters. The total ming' decreased from 137.1
to a new value 123.7. A mapping of rninX' as a
function of each adjustable parameter was obtained
by fixing that parameter at a series of different
values and, for each value, minimizing X' with re-
spect to the 11 remaining parameters. The results
for the isovector meson parameters are shown in
Fig. 3. The results for the two isoscalar meson
parameters are similar with the one exception
mentioned below. Experience showed that the
minX' surfaces are sufficiently "rough" so that lo-

cal minima cause the computer program to stick
at values of X' above the minimum value. Changes
in minX &2 in many cases did not seem meaning-
ful, and, in one case, I'~ vs minX', it was not pos-
sible to find a smooth curve such as shown in Fig.
3. The error reported in Table II is our best es-
timate obtained from many different computer
runs. The other errors reported in Table II cor-
respond to a change in value of the parameter nec-
essary to cause minX' to increase 12 units to the
value of X' expected for a fit with no adjustable pa-
rameters. We want to emphasize that these errors
are not meant to be interpreted as statistical er-
rors, but are given primarily to show the degree
of sensitivity of our theory to the various parame-
ters in fitting the experimental data.

As canbe seen from Table II and Fig. 3, the the-
ory is highly sensitive to the parameters which
correspond to the masses and widths of the mesons
and the best values compare favorably to the known
experimental masses and widths for the p, ~ and

y mesons. The vector-dominance model with the
"exact" propagators therefore seems to give a
realistic picture for electron-nucleon elastic scat-
tering.
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TABLE II. Masses and vridths of vector mesons (MeV) and meson-nucleon coupling constants
as determined from the range of data 0-2 GeV/c (momentum transfer). See text for an ex-
planation of the errors.

y =2.6+0.2
g nap g nap g9sp g9spi 2 i 2

y = 7.7+ 0.8
g ns(d 8 ns(d g9e(d g9s&i 2 i 2

y~ = 6.2+ 0.9
g n, V'

g nsiI)
g 9sl'i 2 i g9 at

2

-2.6 6.25 2.6 6.67
+0.3 +0.13 +0.1 +0.13
-0.1 -0.3

16.0 -9.5
+0.04 +0.2
-1.2

16.0 10.1
+Q.Q4 +0.2
-1.2

-6.43 11.4 -6.43 -12.2
+026 +0.1 +026 +0.1

mop= 767+4
F =115+23

p -2
~ Ore 737-I5
I' =10+1

m(I(j) = 1066+ 50
I'~= 5+1

The dimensionless meson-nucleon coupling con-
stant, g", ", reported in Table II are obtained
from f,"'" according to the relationships

if i'"=mos'(2rs) 'gi'"
(16)

if,"' "= m 0„'()tN/2m„)(2r„) ' g
where y„ is the usual' meson-photon coupling con-
stant. The values shown in Table II for y„are ob-
tained from Ref. 9. Note that there are only six

independent gis "because of Eq. (5). The errors
quoted for g", ' " do not include the experimental
error in y„.

III. PARAMETER SENSITIVITY

For the case of n independent parameters, highly
correlated by the data, the only true way to deter-
mine the sensitivity is to determine the X' surface
in an orthogonal coordinate system of n+1 degrees
of freedom formed by y' and the parameters. A
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0.72
If P (GV)
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FIG. 3. Ming vs various isovector meson parameters. (a) Mass parameter; (b) half-width parameter; (c) if('~,
the isovector meson-proton charge coupling constant; (d) if f' ~, the isovector meson-proton magnetic coupling constant
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plane perpendicular to the X' axis, at some select-
ed X' point, such as 12 units above minx' as in our
case, will then intersect the X' surface determin-
ing a closed surface in a space formed by the n
parameters alone. This surface encloses the val-
ues of the parameters which determine the minX'
point. The points on this surface represent the
range over which the parameters can vary. Since
this surface is impossible to construct for a multi-
parameter system, one usually defines the maxi-
mum range for a particular parameter as the val-
ues where this surface intersects the particular
parameter axis, the origin of the coordinate sys-
tem being taken as the ming' point. This corre-
sponds to the procedure described in See. II,
which, for example, led to the results displayed
in Fig. 3. This procedure therefore never deter-
mines the full range that the parameters may vary
unless the extremums of the surface happen to co-
incide with the coordinate axis. This yoint should
be kept well in mind when studying any data analy-
sis.

This disclaimer having been made, we believe
that the sensitivity of the fits to the various param-
eters, determined as described in Sec. II, is due
to the highly constrained nature of this analysis.
Note that there are four separate mathematical ex-
pressions related by the VDM hypothesis, which
corresyond to the four Sachs form factors, each
with a different momentum dependence, although
each contains the same proyagatox s which are
identical in mathematical form. There are only
six independent coupling constants (two if the ex-
tended distribution hypothesis is also made) and
six constant mass and width parameters. These
expressions are overdetermined by 109 data points
with rather tight error flags. (Note that the gross
functional dependence has been normalized out in
Fig. 2.) The system is therefore highly con-
strained, much more constrained than if we had to
fit a single smoothly varying function such as
9„(k') with an e(luivalent number of data points.

The sensitivity of the coupling constants to the
number of form factors fitted was tested in the
early phases of the analysis. %'ith the masses and
widths of the vector mesons fixed at their experi-
mental values, the data for two of the four form
factors were fitted and the six independent coupling
constants determined. These values of the cou-
pling constants were then used to predict the other
two form factors. Although the minx' values for
these fits were excellent, in every case we found
the predicted curves bore little relationship to the
experimental data of the remaining two form fac-
tors. The values of the coupling constants varied
widely, some even changed sign, depending upon
which pair of form factors were fitted.

where

Do! ) =(.'
I

1+
Tr moN —"s

(17a)

+ 2 arctan (17b)

As can be seen from these equations, if compared
to E(l. (13), those terms responsible for the differ-
ence between the k' behavior of the exact and
monopole propagators, are directly proportional
to the width parameters. Consequently, since the
minX' values for the exact propagator reduce sub-
stantially over those obtained for the monopole
propagator, the allowable values for the widths
must be highly constrained by the data points.

%e have also tested the sensitivity of the Lo mass
parameter to the number of data points. The num-
ber of data yoints was reduced from 109 to 90,
thereby taking into account all the neutron data
but keeping the proton data to 1 GeV/c. The p
mass was found to vary from its best value of 765
MeV at a ming' value of 84 (see Table IA for com-
parison of ming' values for other fits) to values of
795 MeV and 700 MeV for an increase in y' of 12,
a considerably larger spread for this mass than
that shown in Table 11 for ihe 2-GeV/c range of
data. This behavior seems reasonable to us, since
if the model is physically correct, the inclusion of
more data must tend to fix the parameters more
precisely.

Finally, we would like to comment on the sensi-
tivity of the fits to the various width parameters.
As seen from Table I, the "exact" propagator fits
the data considerably better, from a X' yoint of
view, than the monopole fit, which already ac-
counts for the gross features of the form factors.
The exact propagator fit therefore represents a
fine tuning to the data by adjusting those parame-
ters which it contains that are different from those
of the monopole. If an expansion of E„(k') is made
(k' spacelike), neglecting only terms of order [I'„/
(~o„—&„)]'which are not directly multiplied by a
function of 0', then

(„((")=-m,„'D '(I')ll+
2w moy -A.g



164 C. L. HAMMER, T. A. WEBER, AND V. S. RIDE LL

IV. SUM RULES

The fits leading to the values shown in Table II
were based upon an analysis that implicitly as-
sumed the possibility of pointlike contributions to
both the Dirac charge and the Pauli magnetic form
factors. If both of these distributions are extend-
ed, then f; "(k'), i=1, 2, as well as their isovec-
tor and isoscalar counter parts f«(k'), f«(k')
must tend to zero for large O'. This imposes the
following constraints on the coupling constants as
deduced from Eqs. (1), (4), (15), and (16) and the
fact that to a very good approximation m, „'I„'(0)

ge

gP, p (18a)

(18b)

As can be seen from Table II, Eqs. (18a) and (1Sb)
are satisfied to within a few percent, well inside
the toleranees listed in Table II, whereas the sum
in Eq. (18c) is 1.5 +0.2 for the neutron and 1.0+0.2
for the proton. It should also be pointed out that
Eqs. (18) can be interpreted as being equivalent to
the statement that the apparent nucleon charge and
magnetic moments are entirely due to the vector
mesons vis-a-vis the vector-dominance model.
This is most easily seen by using the sum rules to
combine the terms in Eq. (1). Thus f "are ho-
mogeneous functions of the nucleon-meson coupling
constants. Note that because of the normalization
used to define g«« ", Eq. (16), the correct sign for
the proton and neutron anomalous moment is also
obtained.

(18c)

V. PION AND KAON CHARGE FORM FACTORS

An analysis similar to that of Ref. 1 can also be
made for the pion and kaon charge form factors.
This results in the expressions

f ""(k')=1 —m, e'(2y«) 'g»'G«(k')

for the pion form factor and

2f '«=1-m, '(2y ) '2g~'«G (k')

(19)

—m '(2y ) '2ge'«G (k') (20a)

2f »' =1 —me« (2ye) '2g~' G«(k«), (20b)

for the isoscalar (8) and isovector (V) parts of the
kaon form factors. With these definitions the
charge form factors for the K' and K' are

f e, «+(k«) f e, «(k«) +f e, «(k«)

f" (k')=f «' (k')-f »(k').

The assumptions of universality, "within the vec-

tor-dominance model, means a given vector meson
couples the same way to all hadrons. This implies
there can be only one isoscalar and one isovector
form factor. Comparison of Eqs. (19}, (20), and
(21) to the Dirac charge form factor defined by the
first of Eqs. (1) gives the following constraints
imposed by this assumption on the coup1.ing con-
stants:

2gP« ~ gP« + 2gP ~

gpss«P gQJ« E
1

gt«P gee &

(22a}

(22b)

which is consistent with Eq. (22b).
In Fig. 4 we have compared our fit to the nucleon

form factors to the pion and K' form factor data
available in the literature" for spacelike values of
the momentum transfer k2. Since the data do not
represent direct measurements of the meson form
factors, but are in fact dependent upon the theory
used to extract the data, biases are difficult to
estimate. We simply take the data at face value.

In Fig. 4(a) we have compared our fit with the
isoveetor part of the nucleon charge form factor
2f,» to the pion data. The upper and lower curves,
which bound the crosshatched region correspond to
the upper and lower values of the nucleon coupling
constants as obtained from Table II. The fit to the
data seems acceptable. For comparison purposes,
the vector part of the nucleon form factor as ob-
tained from the dipole rule with scaling as defined
by Eq. (14) is shown as the curve labeled F».

However, as shown in Fig. 4(b), the proton
charge form factor f e(k') does not fit the K' data.
Since f; e(k«} is a good fit to the proton data, it
follows that the proton data and the kaon data are
inconsistent with the usual assumption of univer-
sality. We do find that f"«(k') gives the closest
fit to the data when Eq. (22b) is satisfied but with
g~' =O. This implies that, in contrast with the
isovector part of the nucleon form factor, f » (k')
arises entirely from the point interaction between

These constraints require twice the isovector part
of the Dirac charge form factor 2f,»(k') to be the
same as the pion form factor and they require the
Dirac charge form factor of the proton f; e(k') to
be the same as the K' charge form factor.

Note that if the pion and kaon charge distributions
are assumed to be extended, then the requirement
that f "'(k'), f ««(k'), and f » «(k') tend to zero
for large k' also imposes the constraint Eq. (22a),
quite apart from the assumption of universality,
and also imposes the constraint parallel to Eq.
(1Sb):
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FIG. 4. (a) The pion charge form factor f'~(k ) vs momentum transfer squared (k ). The two curves labeled 2f&~(k )
represent the upper and lower limits of our fit to the isovector part of the nucleon Dirac form factor. The curve labeled
I'~(k ) is the isovector part of the nucleon Dirac form factor derived from the dipole law with scaling. (b) The K+
charge form factor Ez(k ) vs momentum transfer squared (k ). The two curves labeled f ' (k2) represent the upper
and lower limits of our fit with g~'~= 0 and g&~ ~ = g~, g& ~ = g+' . The curves labeled f&'~(k ) and fD'~(k ) are,
respectively, our fit and the dipole fit with scaling to the Dirac form factor of the proton.

the photon and kaon, whereas f ~' (k') represents
the same extended distribution as the isoscalar nu-
cleon form factor. In addition, this result seems
to imply a contradiction to unitary symmetry,
since on the basis of unitary symmetry, one would
expect a nonvanishing value for g~ ~. Consequent-
ly, the most likely candidate for the discrepancy
shown in Fig. 4(b) between f; ~(k') and the data
points is the theoretical interpretations needed to
extract the kaon form factor from the original data.

There are also data available" "for the pion and

kaon charge form factors for timelike values of k'.
The data points for the pion charge form factor are
shown in Fig. (5a) along with our upper and lower
bounds to

I
2f,~(k') ~' analytically continued from

the spacelike values for k' [Fig. (4a)] to timelike
values. The agreement is excellent when account
is taken of the e-2w contribution to the pion form
factor. This result, for the case of our upper
bound, is shown in Fig. 5(b). The solid curve is
the generalization of Eq. (19) to include the e con-
tribution,
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The only free parameters in this equation are g ',
considered complex to be consistent with the
Orsay analysis, "m, , and the total width I' . The
min)(' value for the fit is 8. The results can be
summarized as follows:

"me+
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obtained from the fit, can then be used to deduce
a branching ratio
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gp ~ 2g t 2y

This branching ratio and the value for the phase
angle a are consistent with the Orsay results. "

It should be pointed out that the spread of curves,
represented by the upper and lower bounds shown
in Fig. 5(a), is due to the changes of the various p
parameters when these parameters are correlated
by the nucleon form factor data. If we release this
correlation by also allowing g ', mop and I

p
to

vary independently within the bounds given in Ta-
ble II as well as the (d parameters, then the fit to
the data using Eq. (23) is considerably improved.
In this way minx' values as low as 0.45 have been
achieved. In this case we find Ig "I=0.31, n
=99', and B a~ =5'.

Finally the value of the p, m coupling constant

00 ~ I i I
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k (GeV/c)
2

=5 2' '2-0.6
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FIG. 5. (a) The pion charge form factor fe'"(k2) vs
momentum transfer for the timelike region (k2 &0). The
two curves labeled 2f&~(k ) represent the upper and lower
limits of our fit to the isovector part of the nucleon Dirac
form factor. (b) The pion charge form factor f ' "(k )
vs momentum transfer squared for the timelike region
(k2 &0). The solid curve represents a typical fit to the
data when the ~ -2m contribution is included according
to Eq. (23). (c) The K+ charge form factor F'&(k2) vs
momentum transfer squared for the timelike region
(k &0). The two curves labeled f '+ (k ) represent the
upper and lower limits of our fit with gp'~= 0 and g~'~
=g~' g+'~ =g+' . The curve labeled f '~(k ) is our
fit to the Dirac form factor of the proton analytically
continued to the timelike region.

is in excellent agreement with the experimental
result obtained from the decay rate. '~

The data for the kaon charge form factor in the
timelike region are shown in Fig. 5(c) along with

the solid curves which represent our expressions
for jf;' (k )I and )f '' (k2)I' (with g~' =0) an-
alytically continued from the spacelike region
[Fig. 4(b)]. Again the data imply g~' =0.

Parallel to the result given by Eq. (26), g" r
should be the same as that obtained from the de-
cay formula. Our result which includes the un-
certainty in y~ is (assuming universality)

Z& ~=+', &=-6.4~0.3
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as compared with the experimental result"

~g,'„;»
~

=4.4+0.2.

VI. DEVIATIONS FROM THE FIT

Two final remarks: The initial slope of the
electric form factor of the neutron has been mea-
sured as" (d9»/dk') =0.50+0.01 GeV '. The slope
as determined by our fit to the nucleon data is
1 16+

0 Og GeV '. Thus the 9~ data appear not to
be consistent with the slope measurement. This
inconsistency has also been noted by other au-
thors. "

The data for the magnetic form factor of the pro-
ton go to a momentum transfer of 5 GeV/c. Our
fits, as can be seen from Table I, deteriorate
slightly in going from 1 to 4 (GeV/c)'. The dete-
rioration rapidly increases when the full 25-(GeV/
c)* range of the 9»' data is used.

It is possible that these two discrepancies are
due to the following approximations which may not
be justified:

1. The 3m decay channel of the y meson and the
m, y decay channel for the ~ meson were ignored
in the derivation of the meson propagators as well
as a cut at the 2K threshold for the ~ and p me-
sons.

2. Higher-mass resonances of the p, such as the
p', were ignored.

3. The assumption was made that no experimen-
tal bias exists between different sets of data.
These possibilities will be included in a future
analysis.
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