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A dispersion-theoretic method is developed to det~iyte the axial-vector background amplitudes

appearing in the on-shell mN %'ard identities. These current-a1gebra constraints are then found to be
completely consistent with low-energy data and a nucleon cr term of 73 + 21 MeV. A11 threshold s-
and p-wave scattering lengths are correctly predicted by our model-independent approach.

I. INTRODUCTION

Up to now, the current algebra constraints on
the on-mass-shell pion-nucleon scattering am-
plitude' 4 have been tested in a model-dependent
fashion. The Ward identities of axial-vector nu-
cleon scattering have been saturated with the s-
and u-channel nucleon and A(1221) field-theory"
or "dispersion-theory' poles. Alternatively, the
phenomenological nonlinear (current algebra) La-
grangian has been approximated by s- and u-chan-
nel nucleon and a(1231) field-theory poles along
with t-channel p and o' poles and contact terms. '"'
Unfortunately the spin-& field-theoretic propagator
is not unique; likewise the cox responding disper-
sion-theory spin-& projection operator has thus
far been accompanied by the arbitrary and non-
unique assumption of unsubtracted dispersion re-
lations (USDR) for all axial-vector-nucleon in-
variant amplitudes. ' The situation has been well
summarized by H5hler, Jakob, and Strauss (HJS), '
who compare the various models with the HJS
low-energy phenomenological parameters extracted
from experiment. In effect, the current-algebra
Ward identities have been used to test these field-
theoretic and dispersion-theoretic models.

In this paper we develop a dispersion-theoretic
expansion of axial-vector-nucleon amplitudes
which minimizes the number of USDB assumptions
by using current-conserving eovariants whenever
possible and accounting for the resulting kinematic
singularities thus induced. This method is an off-
foxward generalization of Bjorken's' technique fox
forward vector (or axial-vector) nucleon Compton
scattering. The USDB assumption will be applied
only to amplitudes which obviously vanish asymp-
totically in the lab energy variable v; tn this sense
our approach is model-independent. Upon reex-
amining the mN Ward identities we conclude that
the isotopic-odd Adlerio Weisbergerx~ forwar
constraint as well as the spin-flip current-algebra
constraint notably agree with experiment.

It is then natural to extract the nucleon 0 term
from the Ward identity for the isotopic-even for-

ward amplitude. Here the background axial-vector
amplitude can be shown to be small in a particular
kinematic configuration' which we verify in our
approach. However a new problem arises: to de-
termine the exact low-energy experimental gN
amplitude. Previously there has been a discrep-
ancy be@veen the o-term determinations of Cheng
and Dashen (CD)" and Altarelli, Cabibbo, and
Maiani (ACM)" of o„-110, 80 MeV with the much
smaller value found by HJSx4 of o„-40MeV W
have reexamined the data analysis of HJS leading to
their low-energy par ameters and find that these
are somewhat closer to the CD values than had
been formerly claimed. ' " In fact we find that the
HJS and ACM approaches are very similar; the
former leading to the value of o„=73+21MeV.
The final diserepaney of 30 MeV between our val-
ue and that of CD is due to an overemphasis of the
low-energy contribution by thej. r broad area sub-
traction technique, as explained by HJS."

The threshold scattering lengths play a central
role in determining the HIS low-energy parame-
ters. We have found that the effect of the thresh-
old cusp does not significantly alter the extrapola-
tion of any of the two s-wave or four P-wave scat-
tering lengths down to the symmetry point v = t =0
or current-algebra(CD) point v=q' q=0. Con-
versely we can solve for these scattering lengths
in terms of the current-algebra Ward identities.
Using our dispersion-theory model-independent
method to determine the axial-vector-nucleon
background, excellent agreement is found in all
six cases. Previous model-dependent calculations
yielded much too small a value for the isotopic-
odd P-wave J=-,' scattering length a» —a».

We review the current-algebra constraints for
nN scattering in Sec. II and apply the dispersion
theory of axial-vector-nucleon scattering devel-
oped in the Appendix to resonance exchanges in
Sec. III. In Sec. IV we discuss the HJS low-energy
parameters obtained from scattering-length data
and once-subtracted dispersion relations, and in
Sec. V we test the mN Ward identities against
these parameters while finding 0„=73 ~ 21 MeV.
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We conclude in Sec. VI with a discussion of the
significance of such a large 0 term, both for the
o model and for the SU, &&SU, breaking scheme of
Gell-Mann, Oakes, and Renner. "

II. REVIEW

We begin by reviewing the kinematics and cur-
rent-algebra constraints on the scattering process
wi(q)+N(p)- v'(q')+N(p'). We define the ampli-
tude" as

T ~ —T( ) pi~+ T~ ) jfi~~ T~ t

FJ+ (v, t) =A~+ (v, t)+vBv')(v, t)+g /m. (8)

where vs=-q' ~ q/2m =(t —2p, ')/4mis the value of
+v at the s- (u-) channel nucleon pole. It is im-
portant to realize that these pole amplitudes are
defined in the dispersion theory sense that the
numerators of the poles are evaluated at v = vB,
except for one power of v in BP' and + which
displays their crossing-odd nature. Thus F'v can
be obtained from B 1, according to (6), but F~v
instead is given by

T ' 3(T»2+2T3/2),

= ~(Tiia — 3~2) ~

The momentum decomposition is (g=—y Q)

(2)

(3)

where T ' ' are the t-channel isotopic-even and
odd amplitudes related to the s-channel isotopic
amplitudes by

Consequently the remainder background ampli-
tudes defined as

A '
(v, t) = A '

(v, t),
B '

(v, t) = B '
(v, t) —B '

(v, t),

(v, t) =F (v t) —F (v t)

(9)

T~ =u(p')[A ' (v, t)+B' (v, t)g]u(p)

=u(P ') F '
(v, t)+B '

(v, t)—1

x [g', g] u(p),

(4)

(5)

are related by

F '(v, t) =A (v, t)+vB '(v, t),

but (6) and (8) imply

F' (v, t) =A '
(v, t) + vB '

(v, t) —g'/m.

(10)

where the generalized forward amplitude E is re-
lated to the more commonly used amplitudes A
and B by

We note that the Adler consistency condition"
states

F ' (v, t) =A '
(v, t)+ vB '

(v, t), (6) A ' (0, p, '; q' =0, q" = p, ') =gg(0)/m -27p-',

2

v 'B~'i(v t) =—
B

2

B,'-&(v, t) =&

(7)
2 v 2 2

F '
(v t)=— v 'F '(v t)=-P t m V2 V2t P t m V2 V2 t

B B

with & =
2 (p'+ p), Q = 2 (q'+ q), & = q —q'=p '-p,

and t=n.', v=& Q/m, m„=m, m„= p, .
With these definitions the contributions due to

the s- and u-channel nucleon pseudoscalar poles
are (H,» gy, r' )—-

Av('~(v, t) =0,

whereas

(12)

F"(0, p'; q'=0, q" = p, '} gg(0)/m-gg(0)/m

=0 (13}

Thus for on-shell amplitudes it will prove more
convenient to use g ' which will be -1p, ' in the
low-energy region. "

Next we list the constraints on the mN ampli-
tudes due to the algebra of currents. With the
definitions

&01 Aq I v'(q)) =if,q~5'i,

(N(P')i A&i N(P)) =N2T i[g~((P ' —P) )y& ys+hz((P ' —P} ) (P' —P)„y~]N,

(N(p')i V& i N(p)} =N2r [F|((p'-p} )y& +F2 ((p'-p) ) [y' (p'-p), y„]/4m]N,

(14)

(15)

(16)

where' f, =91.7 MeV=0. 657 p, and'0'og„(0}~g„
= 1.24, with F, (0) =1, F, (0) = ~"=3.V, the Adler-
Weisberger low-energy theorems are

F '
(0, 0;q'=q' =0}=-~,

where the nucleon 0 term is defined as

(18)

v 'F (0, 0;q'=q' =0)= 2(l-g„), (17) 0'p N d g Ap x t i & A (19)
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The analogous theorem for on-shell pions in-
volves the "Compton" amplitude M„„(where T„„
=uM„„u) for axial-vector currents with their pion
poles removed. ' Defining the background ampli-
tudes C ' and D ' by

q'"M„'„q"=f,' y'„' (v, t)+C&" (v, t)

(20)

the on-shell current algebra constraints are'

F+ (v t)= 2+C+ (v t), (21)

v 'F' '(v, t)= '', ' — '+v 'C' '(v, t),2 ~ 2m
(22)

v ' B '
(v, t) = v ' D + (v, t),

B'-& (v, t) =, [Z,'(t) +Z,'(t)]
2

, +Dt ](v, t) .2m' (24)

Notice the change in sign of the 0 -term contribu-
tion in (21) as compared with (18). It arises from
a factor q'p, '+ q 'p ' —1 multiplying o~ dictated
by the Adler consistency condition. " Note too that
g„/f, in (17) is replaced by its Goldberger-Trei-
man analog g/m in (22) and (24).' Our dispersion-
theory method will give slight corrections to the
nonpole nucleon contributions of (21)-(24), which
we shift into the background amplitudes C ' and
D '

~ This will be explained in more detail in
Sec. III.

III. RESONANCE SATURATION OF THE
AXIAL- VECTOR -NUCLEON

AMPLITUDES

In this section we briefly describe our method
and give our formulas for calculating nucleon and
decuplet contributions to C and D. Attempts have
been made to calculate C and D by both field the-
ory and dispersion theory. However, the con-
sistency of a theory of the spin- & field is at best
controversial, and it is well known that the prop-
agator is ambiguous. Practical difficulties also
appear in calculating the cross-channel contribu-
tions in an interference model. ' Furthermore, a
straightforward approach to dispersion theory'
has proven to be little better. Calculation of C '
involves many amplitudes of comparable magni-
tude, for each-of which a USDR must be assumed.
Since each amplitude contains a mixture of spin-1
and spin-0 axial-vector current contributions, it

is difficult to analyze the USDR assumptions,
which are the keys to resolving the ambiguity in
dispersion theory. We have found a set of 20 co-
variants for M„„such that 18 have the property
q'"M„„q"= 0, and all kinematic singularities aris-
ing from divergence constraints are properly taken
into account. Thus, in calculating C and D, only
the two spin-0 scattering covariants and some con-
tributions arising from singularities remain out
of the twenty original covariants.

The dispersion approach of Schnitzer' does not
take account of two "equivalence theorems""
which relate two of the possible covariants to the
others. Goldberg and Gross" and Gerstein"
implement these constraints in order to find the
spin-flip sum rule in the soft limit. These equiv-
alence theorems are isolated in the spin-1 transi-
tions for the axial-vector-nucleon amplitude and
can already be seen in on- shell photon-nucleon
Compton scattering. ' Therefore our choice of
current -conserving covar iants will essentially
eliminate their role in the mN spin-0 transitions.

Our working assumption will be that all relevant
amplitudes can be approximated by an unsubtracted
dispersion integral over the direct-channel res-
onances; e.g. , that the crossing-even coefficient
A, ', of q„' q„ in the expansion of M„„can be written

/2

7T V —V resonances

(26)

( )
m q —p,

(26)

~h~~~ q -=p' —p. Evidently g(p') is the pion-nu-

This assumption comes into question for three of
the amplitudes contributing to C ', only one of
which contributes at q' q = 0. We find that the
presence of subtraction constants would do little
harm to the predictive power of the theory, since
they can be treated as part of an unknown back-
ground which we must deal with anyway.

We now present our results for the nucleon and
6(1231) resonance contributions to C and D, post-
poning the detailed exposition of our method until
the Appendix.

To obtain the on-shell Ward identity relations
(21)-(24), the pion-pole contribution to A„must
be extracted after being defined as follows':

(N(P ')
i
A'„

i f]t(P))
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cleon coupling constant and f,g(0)/m= g&. Then h„'(q') always drops out of q&M""q„. To calculate C„' and
D~' me expand the relevant s-channel on-shell spin- —,

' exchange structure,

q2)2
, Y,Y,($'+0+ m)Y. Y,

g(q')' 1
2 (—2mgpu m[Yp~ Yu]+ a (Yp O'Yu Yu O'Yp) +Yppu+&p Yv+(qg Yv+ Ygqu) +

4 gpu[d', 0] vgpu]'~

(27)

in terms of our covariants, find the s-channel nucleon-pole contributions to the corresponding invariants,
multiply by q'"( ) q', and identify contributions to C~'l and D~'~ using crossing symmetry. (This procedure
automatically incorporates the u-channel contributions. ) If we define

[g(q')]' = h, +h, q'+h, (q') q', (28)

our resulting corrections to the pseudovector nucleon contributions from field theory are (using Table IV
in the Appendix)

2
C(+) . & g 2

V jc( ) 2~ -la(+) O D(-) @II + 4Pg ——
2 2 gpss V g =

2 p V Nm m 2 Spy
0

Because these corrections are very small, me shall absorb them into the non-6 background C and 2) in
Sec. V.

The analogous procedure for the decuplet involves the definition

(29)

(n'(K) ~A„'jp{p))=-(3)' 'f„u" (IC) g*(q') g„&—," ", +(three other covariants) u(p), (30)

where q =K —p and g*(p') ~g~ = pion-nucleon-A coupling constant.
e choose the three other covariants to be divergenceless, at least on the decuplet mass shell. Their

contributions to C and D, though unknown, will be suppressed by [(M~ -m„)/m„] (Ref. 25) and we ignore
them. The relevant s-channel structure is then just the spin-~ projection operator (M&=M, m„=m)

g*(q')'I &'„'&{IC)= -g*(q')' g„„— ", " (jf'+M) +-', Y„+—" (g -3f) Y„+—"

=z'(a')* (M.
" -z,.) &l ~+'0'k( +~)b„,&.I

--, [Y„4Y. Y.4Y, ] --6 &„Y.+M — Y~+M ~. —
8M 0~[4 Y] [+~Yi(I]&.)

leading eventually to the contributions (using Table V in the Appendix}

d~'(v, q" q) = », a(q'q)-, ([h, ( p,'+-,'(M' —m'))((M+ m)' —q'q)+h,*(y.'--,' q'q)(M(M+ m})

g2 l

+-,'h*l '(M'-m' —q'q)((M+ m)'- q'q))

(33)

„-gD(+) 2 g P(q 'q)—
3

V~ —V

, g~ v~P(q'q), m ~ 2h*,mv~
m V '- V' 'M 9M'V~ —V

(35)

n(q'q) =(E ' —q'q) [(M+m)' —q'q]

+u('- 'q)q(M[+)m&. --'(l'+q'q)]
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p (q" q) = E ' - ,' (M—+m E—,)' —q' q,
M2 m2 qf. q

2m
(36}

and E„=(M2 m'-+ p'}/2M is the c.m. energy of

the pion at resonance.
We use the value of g~ obtained by HJS (g&/4m

=0.264' ' = 13.5 GeV ') by fitting data away from
the peak in the narrow-resonance approximation.
This is 40%%uq lower than the value obtained by a
narrow-width calculation of the n decay rate (used,
e.g., in Ref. 1). Since we are not evaluating dis-
persion relations for F and B, however, we prefer
to use M=1231 MeV instead of the HJS value M
=1219 MeV. Our results are insensitive to this
choice in any case.

It is characteristic of our method that nonpole

contributions depend somewhat upon the behavior

of coupling constants off the pion mass shell-
i.e., corrections to the generalized Goldberger-
Treiman relation. That this result differs from
naive perturbation theory should not bar its accep-
tance, for it is well known that a similar phenom-

enon occurs in calculating the generalized Born
contribution to pion electroproduction" and weak

pion production. "
At any rate, the coefficients h& and the analo;

gously defined h& should be determined. Since

g(0) =mg&/f, is known, this is easy for h, . De-
fining

~g (0) g g(0 p p65
g g

'
m

we see that g' is large, so that we might neglect
g" to give

h, =g(0}'= (1 r)'g', —h, =2g'g=2rg',

v 'C ', and D are constant in v.
The first theorem was proved by CD and veri-

fied for field-theory models in Ref. 1. The second
theorem significantly sharpens the original Adler-
Weisberger relation and follows from the absence
of the E»' covariant of (A22) in the spin--,' con-
tribution to M„„(27). Such terms completely
vanish in field-theory models. ' The third theorem
has been previously invoked at threshold to help
justify decuplet saturation. '

The fourth theorem seems to hold only for our
method, since it arises directly from our tech-
nique of identifying divergenceless covariants.
It is in harmony with the absence of any current-
algebra contribution to the Ward identity for B ' .
The theorem ensures that a test of this identity
reduces to a test of the USDR for B ' .

The fifth theorem leads to the expectation that
most of the v variation in F and Bwill arise from
the lowest-lying pole contribution, the A. HJS
have already found this to be the case, to very
good accuracy everywhere except perhaps in Ft'i.
Hence, we do not need to discuss most of the
higher-order HJS expansion coefficients.

Furthermore, our form for q'"M»q" as given

by (A22) provides an explanation for the fact that
the decuplet does not account for all the v and t
variation in F '~, whereas it does for the other
three amplitudes. The demonstration of this
point along with proof of the theorems is reserved
for the Appendix.

IU. LOW-ENERGY DATA ANALYSIS

In order to evaluate the background sN ampli-
tudes at various low-energy configurations of v

and t, HJS suggest the expansions'

and

Itn =g +g"g- r'g' .
X ' (v, t) =a,'+a,'t+a,' v'+a4 v't+a,' v~+ ~,

v 'Bt'I (v, t) =b~++b2 t+bs va+b4 v t+b,+v + ~

In the absence of a, determination of g~(0), a rea-
sonable bound for r* is ~r*~ &0.065. On this basis,
we find that our results are not sensitive to the

value of r*.
We conclude this section with some general

observations which will be useful in assessing the
comparison with experiment. We begin by stating
five theorems:

(i) C ' (v=p, q'q=0) -O(v. ) .
(ii) All contributions to v 'Ct ~ (v=p, q'q=0)

from —,
'' resonances are likewise of O(p4). (Other

contributions, notably the ~, may be of order p'. )
(iii) The —,', —,', and all higher-spin resonances

are suppressed by angular momentum.
(iv) The direct-channel resonances contribute

only poles to D ' .
(v) All nonpole resonance contributions to Ct'~,

(39)

v 'X (v, t) =a, +a, t+a, v'+a, v't+a, v'+ ~ ~ ~,

B (v, t)=b, +b, t+b, v'+b4v't+b, v4+ ~ ~ ~,

where the constant coefficients are determined
directly from fixed-t dispersion relations and are
listed in Table I." Likewise one can expand the
"forward" background amplitudes as

F + (v, t) =f,++f+, +f', v'+f ~v t+f+, v4+ ~ ~

(40)

v 'F (v, t) =f, +f,t+f, v'+f ~v't+f, v4+ ~ ~ ~,

and these coefficients are also given in Table I.
Using (10, 11) one can compute the f ', 's directly
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TABLE I. Coefficients of low-energy expansions,
Eqs. (39) and (40).

to the right-hand side (RHS) of (44). The average
of the three most accurate determinations of a,
+2a, (Table II) is a, +2a, =-0.02' ', giving
—0.10' ' for the LHS of (44} and therefore

a+i 26.1 + 0.3 1.32 + 0.10 4.4

-3.28 0.19 -0.92

-1.40 + 0.15 1.27 + 0.15 1.12

0 1.12

0.09 -0.28

0.19 0.20

P+ l (th) = 0.05 y.
' (45)

Next one writes a once subtracted dispersion re-
lation for F ' (th):

a,. -8.4 -0.45 -1.15 0.02 -0.2 9 F(+) (th) f+ l d I w o(v )+ ~+a(v )
v vi ( vI2 —p2)1 I2

b,. 7.9 0.29 0.99 -0.06 0.25

-0.52
(-0.44)

-0.16 -0.16 -0.04 -0.04

from the a~~'s and b&"s. However for the cases
where the cancellation between the a& and b& is
almost complete, the f, can be found from the
HJS coefficients c„also found directly from dis-
persion relations. Table I reflects the HJS num-
bers, save for three notable exceptions":

f,'=a,'- g' /m=(-1. 40+ 0.15)y, ',
f,'=a,'=(1.27 +0.15)p ',
fi = —0.52 p, ',

(41}

(42)

(43)

4g 1+—
~ a, +2a,

2
= -g' ",(1 —y,'/4m') '+F" (th). (44)

The nNN coupling constant error is then insignif-
icant, leading to a pole contribution of —0.15'

instead of the HJS values a~+-g'/m= —1.6 +0.3,
a2+=1.13+0.10, and f, =c, = —0.44+0.02. The
reason for these discrepancies will now be ex-
plained.

Given a,'=(26.1+O.t3)g ' (Ref. 7) and the usual"
value of g'/4v=14. 64+0.6, one finds f,' = —l.3
+1.4, and although this central value agrees with
(41), the errors are much too large for this to be
a meaningful determination of f,'. Instead one first .

finds the amplitude E") (th) at the physical thresh-
old v= p, t=0 from the s-wave scattering length
—', (a, +2a, ) by

=1.46, 1.45, (46)

as obtained by HJS' and by Samaranayake and
Woolcock 2' Combining (46) with (45), one finds

f,'=-1.4p '.
This estimate of f~+ should be contrasted with

the HJS number —1.66 used to find v„-40 MeV
in Ref. 14 or —1.6 + 0.3 in Ref. 8, and the CD value
of —0.95. The different values are due to the rel-
ative importance of the low-energy data in de-
termining the scattering, length. While the num-
bers in Table II give a, +2a, --0.02'. ', Jakob'
uses the latest CERN 71 phase shifts and follows
the HJS philosophy of deemphasizing the low-en-
ergy data to find a, +2a, -- 0.04' '. On the other
hand, the most recent determinations of a, +2a,
are near zero."' We therefore believe a fair
estimate at the present time is

a, + 2a, = (-0.02 + 0.03) p ', (47)

which leads to (41).
At this point we would also like to point out that

the "no cusp" solution of (46) is

F~+l (th) —f,+=f,++f+, = —1.27', ', (48)

which would imply f,'= —1.23p. '. While cusp
effects do exist, we see that they are rather small.
Hence we shall continue to use the no-cusp solu-
tion as a guide to the size of the other low-energy
vN scattering length determinations. Furthermore,
since we shall be approximating cut corrections to
the background amplitudes C and D of (21)-(24) by
a series of resonance poles which have no cusp
effects, it will prove advantageous to use the no-
cusp values of the HJS parameters when testing
the Ward identities against the resonance satura-

TABLE II. s-wave scattering lengths (in p, ~).

Lb HSS c SWd

a~ -a3
a~ +2a3

0.271 + 0.007
-0.002 + 0.008

0.266 + 0.017
0.056 + 0.022

0.288 + 0.010
-0.021 + 0.010

0.277+ 0.009
-0.026 + 0.008

Experimental values determined by J. Hamilton (H), Phys. Lett. 20, 687 (1966).
C. Lovelace (L), Pion-Nucleon Scattering (Wiley, New York, 1967).

c HSS (Ref 31)
dSW (Ref. 33).
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tion theorems (ii)-(v) of Sec. III.
Now we find f,'= a2 from the P-wave k'cos8 scattering-length formula at threshold (a generalization of the

result of ACM"):

-', w, (a, +2a,)+(a»+2a»)+2 1+2 (a»+2a, ~}4~2 I 3 11 31 2m

g(12/42)J(1 /2)$~7+(th)P, F+(th)(49)

f~+f~+ (fs +2f,+) =(1.53)„~ (1.72) . (50)

Assuming the value for f+, 4, in Table I, (50)
leads to the no-cusp values

f,'(no cusp) = (1.23)„sin (1.42)csw

= 1.32 +0.10, (51)

and the central value in (51) agrees with Cheng
and Dashen. " The value f;= 1.13 obtained by in-
terpreting mutually inconsistent data in the man-
ner of HJS'4 requires a significant cusp suppres-
sion from their threshold value of f;=1.23.' Tak-
ing into account the low-energy data points, we
estimate the P-wave cusp suppression to be 0.05
+0.05 which, when combined with (51), leads to
our final value (42).

We can further probe the effect of the cusp by
evaluating the P-wave k'sin8 scattering length
formula

8m—m' (1 + V, /m) [(a„+2a») —(a» + 2a»}]

2
= -g—[(1 —p/2m) '+ g/2m]

+g(m+ p,) v 'B+ (th) —~F ' (th) (52)

TABLE III. p-wave scattering lengths (in p 3).

The LHS of (49) is 1.69 p,
' fromtheworkof H6hler

et al. (HSS)" or 1.88p ' from the work of Collins
et aL (CSW)" (see Table III}. If we assume that

cusp effects are small, then (49) becomes

at threshold. The experimental value-of the LHS of
(52} is (-246', '}~s or (-257', ')~w compared
with the RHS of (52) found by the no-cusp values
in Table I, -248' '. Cusp effects would be
harder to detect here because the g' term dom-
inates the RHS of (52); yet a 10% cusp effect would

alter it by 4p, '.
At the on-shell point v= 0, t = p,', we find

5 +~(0, p') =f, +f, =(-0,13+0.21)p ' . (53)

Comparing (53) with the Adler consistency con-
dition (ACC) (13), we see that off-shell effects of
the q' extrapolation from 0 to p,

' are small. Put
another way, if these effects were negligible then
we would have

f,'(ACC} = —f,'(ACC}= —1.3 to —1.4 g ' . (54)

Our choice for f, corresponds to Adler's value

of 8, .' While HJS may be correct for physical
vN scattering, the Adler value of f, = —0.52 seems
to correspond to the no-cusp limit of HJS (Fig. 1

of Ref. 8). As explained earlier, we shall need
this number to test the on-shell Adler-Weisberger
relation (22) when saturating with resonances.
One could in principle find f, directly from scat-
tering lengths. The s-wave isotopic-odd scatter-
ing length —,'(a, -a,) obeys

4v(1+p/m)-, '(a, -a,}g '

2

, (1 —p'/4m') '+v 'F (th) . (55)

The mean value of a, -a, given in Table II agrees
with the Samaranayake and Woolcock" value of
0.277', '. Thus (55} gives

RWF HSS c CSW d
v 'F (th)= —0.72' ' (56)

+ii ~si
i3 33

6 ii + 2Q3i
Q i3 + 2933

-0.073 + 0.015
-0.255+ 0.015
-0.177+ $.015

0.396+ 0.015

-0.003 -0.051
-0.243 -0.243
-0.117 —0.168

0.402 0.396

-0.049
-0.250
-0.160

0.431

compared with the no-cusp solution (with f,
= —0.52} at v= p, , t=0 (Ref. 1}:

v ' F (th) =f, +f~ +f, = —0.72 p (57)

Experimental values determined by J. Hamilton and

W. S. Woolcock (HW), Rev. Mod. Phys. 35, 737 (1963).
L. D. Roper, R. M. Wright, and B. T. Feld (RWF),

Phys. Rev. 138, B190 (1965).
c HSS (Ref 31)
dCSW (Ref. 32).

While cusp effects again appear to be small, the
error associated with (56) is too large to decide
between the Adler and HJS value of f, .

It is interesting that our version of the off-shell
Adler-Weisberger relation (17}appears to be best
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satisfied with the HJS value of f, = -Q.44, while
the original version [with f„replaced by mg&/g
in (17)] is best satisfied with f, =-0.52; that is,
both lead to the present experimental value of

To complete the picture, we evaluate the P-wave
threshold scattering lengths for the isotopic-odd
amplitudes. The A'cos8 formula is

the 6 contribution. Taking into account the mea-
sured slope F, (0) =0.046y, ' (Ref. 34) or
f„'E, (0) =0.11, we find from (22) that

f, + 2f, = —0.84

= {1.16+0.11)—2.04 —0.11

+ v ' Ci «(0, 2 «12),

giving for the non-6 background,

v ' C~ «(0 2«12) = 0 04 (62)

+ p, —v 'E «(th)+, v 'Fi «(th)
8 p, 8

Bt 2m ev

+ v ' F ' (th)4m',

and the k'sin8 formula is

«3«vm2(1+ «1/m) [(a„—a„)-(a„-a„)]

(58)

2

(1 —«1/2m) '+(m+«1)fl' '(th)
2m

——,
'

«1 v ' F ' (th) . (59)

V. ON-SHELL TESTS OF THE %PARD H)ENTITIES

Now we are able to compare the current-algebra
constraints (21)-(24) with on-shell data. Since
these identities are functions of v and t, we shall
evaluate them at four points which will enable us
to probe their y and t dependence: the Cheng-
Dashen point CDP, v=o, t=2 «(1q2'q=o); the
symmetry point SP, v= t=0; the threshold point
TP, v= p, , t=0; and the subthreshold point STP,

i=2«1'{1f'e=o).
First we investigate'the j «Adler-Weisberger

Ward identity (22). Writing v 'C~ = v 'C ~'+
+ v ' C~ «, our theory (33) implies that at the CDP

v 1 C~~«(Q, 2«1') = (- 1.24) p + (1.13)«e,

= —0.11, (60)

where P (NP) indicates the pole (nonpole) part of

The LHS of (58) gives (-1.36)„33, (-1.38)c3„, and
the no-cusp assumption on the RHS of (58) yields
—1.36«1 '. The LHS of (59) is (83.8}„33, (87.7)cd
and the no-cusp assumption for the RHS of (59}
gives 85.9«1 '. Cusp effects of 10% would change
the RHS of (58) and (59) by 0.03«1 ' and 7«ti ',
respectively. Certainly this would not be accept-
able in the latter case.

Thus we see that all six s- and P-wave scattering
lengths are consistent with reasonably small cusp
effects (of the order of 10/o or smaller)

Di «(0, 2 «12) = 0.04 . (65)

This non-6 background is small compared with
the 6 contribution (63), and therefore (64) rep-
resents a reasonable test of the B( ' Waxd iden-
tity. Because C» in {A22) is not suppressed at
any special kinematic point, we must also check
to see that there is no wild variation of B( at
other values of v and f compared with (65). At
the STP we have Di~«(«1, 2«12) = (4.71)p +(0.54)N2
= 5.25 giving D~ «(«1, 2«1') =0.34; at the SP
D~~«(0, 0) =(4.07)p+(0, 65)~=4.72, implying
D(0, 0) = —0.23; and at the TP D~~«(p, , 0) =(4.97)p
+(0.65)N2= 5.62, leading to 3(p, , 0) = 0.11 by (24).
All of these non-h backgrounds are small com-

The smallness of (62) is a reflection of the 0(«13)
theorem for v ' C~ (0, 2«12) (theorem ii) and
therefore (61) represents a deft'nitive test of the
Adler-Weisberger Ward identity. At the STP we
find v ' Ci~«(«1, 2«1') =(-1.50)p+{1.13)Np = —0.37
and (22) then implies v 'P («1, 2«1') =0.02. This
small variation in v between the CDP and STP
is due to the suppression of the C„ term in (A22)
for higher resonant v„values («1/v«2)2 (see Ap-
pendix}. This is therefore a second definitive
test of (22). At the SP we have v ' C~~«(0, 0)
= (- 0.93)p+(1.13)Np = 0.20, and (22) leads to
v ' C '(0, 0) =0.26, and at the TP v ' C~11 («1, 0)
=(-1.17)p+(1.13)NP=-0.04 or v ' C~ «(«1, 0) =0.20
from (22). Both non-6 backgrounds are signifi-
cantly larger than (62) (but still small) because
of the C, term in (A22) which is not suppressed
away from q'q=0. Thus the entire v and t depen-
dence of the Adler-Weisberger Ward identity is.
completely understandable in our approach.

Next we probe the on-shell IT( Ward identity
(24}." Our theory (35) gives at the CDP,

Di ~«(0, 2 «12) = (3.89)p + (0.54) Np
= 4.43,

and using" E," (0)+E, (0) =0.266 «1 ', (24) becomes
with D( ) —D( )+D( )

b, + 2b2 = &.50

= 6.07-2.04+4.43+D&-«(O, 2q'), (64)

giving



1552 MICHAEL D. SCADRON AND LAWR ENCE R. THE BAUD

pared with the corresponding b, contributions D ~ .
Since this should be the case because of the ab-
sence of the covariant v'[g', g] in (A22) (see Ap-
pendix), we conclude that these four points col-
lectively represent a definitive test of the Bt l

Ward identity (24). According to HJS, field-the-
ory values of D ~ can be up to twice the size of
(63), thus violating the B Ward identity. It is
important that 3 ~ be approximately one-half the
LHS of (64) if the B Ward identity is to be valid.
Put another way, it is one of the deep constraints
of current algebra that the LHS of (64) is not dom-
inated phenomenologically by the 4 resonance.

As was noted before, the B ' Ward identity (23)
is not constrained by the current commutator or
nucleon background terms, and it is therefore
proper that all nonpole background contributions
v Dt ~ vanish [theorem (iv)]. Thus (23) is sim-
ply a test of how well 6 saturates B '~, but not
of current algebra per se. At the CDP we find
from (34)

We expect the first term in (70) to be dominant if
g* differs appreciably from g,*. The nucleon
Goldberger-Treiman difference of 6/q is most
likely an upper bound (see Sec. III), giving a
5-MeV reduction of the o term. However, the
finite-width suppression of g* by 20$ makes this
difference significantly smaller, i.e., r -+0.01,
indicating that the first term in (70) might be
-+1 MeV, which is the same size as the second
term. The third term in (70) as well as the O(ti')
subtraction constant presumably give much less
than a 1 MeV correction. We conclude that indeed
the entire background amplitude C '~ (0, 2ti') is
negligible (which agrees with field-theory models" )
and that o„ is given by (69).

It should be pointed out that the non-~ back-
grounds C ' vary more rapidly in v and in t than
do v 'C' ' or B '. We find that in order for (69)
to remain valid with o„ independent of t,

C' (0, 2p, ') =0, C' (p, , 2p, ') =0.84,
(71}

v ' Dt~ ~ (0, 2 p, ') =(-3.25) p, (66)
C' (0, 0) = -0.88, C ' (ti, 0) = -0.88.

which differs from HJS because we evaluate this
pole at M = 1231 MeV rather than at 1219 MeV.
Then (23) becomes

b, +2b2+=-2.90

= —3.25+v 'V+~(0 2p, ') (67)

f,'+2f;=(1.14+0.33) ti ' = (68)

or (with f„=94 MeV, as used in other determina-
tions of o„)

o„=73+21 MeV.

While A» of (A22) causes Ct' to be given by a
once subtracted dispersion, a USDR for this
term causes a small error O(ti~). From (32) we
find

(69)

2Ct+~ (0, 2ti') =
~ ~ 2hi~ vzm(M + m)(2M +m)

9M ng vg

+ 4g~ (M'+m'+4Mm)

+h~ v~'m'(M+m)'

(7o)

giving v '3'~(0, 2p, ') =0.35 or a 10% correction
to the 4 contribution. The other three points just
map out b,', b,', b4, and b', as given in HJS and
therefore v '3 ' = 0.35 at these points as well.

Lastly we investigate the Ft' Ward identity (21)
and determine the value of o„. Because of the
O(ti') theorem of Sec. III for Ft' at v=q" q=0,
we neglect Ct'l (0, 2p, ') and write (21}at the CDP
as

The large variation of (71) in t is a reflection of
the C, term of (A22) and the somewhat smaller
variation in v is due to an enhancement of the
higher resonances by v„ in C",, relative to C', , in
(A22).

At this point we relate the HJS phenomenological
parameterization of the LHS of (21) to the work of
ACM. The latter begin with the Weinberg
"smoothness" assumption" ":

7'~(v, t; q', q") =A+Bt+C(q'+q")+Dv'. (V2)

They then demand that 7'~(0, p, ', 0, p, '}=0 and
7'~(0, 2p, ', p, ', ti') =-F(0,0;0,0) =o /f, '=-A. How-
ever F'(0, 0; ti', ti') =A+2C=f,' =-1.40+0.15.
The combination B+ (p, /2m)D is determined from
the h'cosep-wave scattering length. In their sec-
ond paper, "ACM include the tv' and v dependence
of ('l2), which effectively leads to (51) or B=f ',

=1.32+0.10. Ignoring the cusp suppression, the
ACM analysis gives -A ~f ', + 2f ', = 1.24 + 0.25,
which predicts o„=79+ 16 MeV. The fact that C
=f ', +f ', = -0.08+ 0.21 again reflects that off-shell
effects are small.

In Sec. IV we have related scattering lengths to
the low-energy amplitude and in this section we
have demonstrated that the latter are consistent
with the current-algebra Ward identities. There
are no further constraints. However, in order to
compare our results with the work of Weinberg, 37

Schnitzer, ' Raman, ' and Peccei, ' we now combine
the two analyses and compute threshold scattering
lengths directly in terms of the Ward identities.
Following Ref. 1, we write the isotopic-odd s-wave
scattering length from (55) with (22) at the TP:



—,'(a, —a,) = p, [4w(l + p, /m) J
' clear that our dispersion-theory approach succeeds

where other models fail.

", (1-Il3/4m3) '
4m'

+ ~ + C"(Il, 0} (V4)

Weinberg assumes that all three terms on the RHS
of (V4) are small, so that Ia, +2a, ) =0. We have
found that the o term is not small but almost com-
pletely cancels against CI'(Il, 0) as given by (Vl).
Also, three of the four p-wave scattering lengths
are dominated by the nucleon pole and agree rea-
sonably well with experiment, "but the fourth,
a~,~„has a suppressed nucleon pole similar to
(V3) and (V4) and therefore is a sensitive test of
models for D 1(Il, 0). Combining (59) and (24) we
write at the TP

1 gzp 1+xv
X(all a31) X(a13 a33) 3 + 38wm 4m 2f,

+D' '(Il, 0)

(V5)

Following Schnitzer and Peccei, we approximate
D '(Il, 0) = D~ (p, , 0) (which we find is true in any

case), and using our value of D~~1(Il, 0) =5.62, the
RHS of (V5) becomes

Qa„- a„)-Qa„—a„)= -0.001+0.032+0.033

=0.064' 3, (VS)

which is in perfect agreement with experiment
(Table Hf). We also obtain the experimental value
of Q&a» —a33) = -O.OSl p.

' from (58) and therefore
(VS) predicts ga» —a») =-0.01Vy, ', again in
agreement with experiment. Contrast this with the
Schnitzer "dispersion theory model" value of
+3a» —a») = -0.005 and the Peccei field-theory pre-
diction of —,'(a» —a„)=+0.003. Once more it is

+ v 'CI &(p, , 0} (V3)

Weinberg neglects the small nucleon-pole term
and the n contribution by PCAC (partial conserva-
tion of axial-vector current). This leads to
Qa, —a, ) =O.OSOIl '. He also replaces f„byfp
which gives —,'(a, —a, ) =0.091p, ', which is in excel-
lent agreement with experiment, 0.092'p, '. From
our viewpoint, the threshold amplitude v 'CI 1(p., 0)
converts 0.080' ' to 0.091@, ' (the nucleon con-
tribution is 0.001Il '). Likewise the isotopic-even
s-wave scattering length can be written as

3(a, + 2a, ) = [4v(1 + y, /m) j
'

Vl. CONCLUSION

Vfe have presented a dispersion-theory analysis
of the current-algebra %ard identities for nN
scattering. Our results include two definitive
tests of the on-shell forward (Adler-Weisberger)
%'ard identity for E~ ~ and two definitive tests of
the on-shell spin-flip Ward identity for 8 . %'e

have also extracted the gN v term from the on-
shell %ard ideritity for E~' and find o„=73+21
MeV. The two s-wave and four p-wave threshold
scattering lengths are completely incorporated in-
to our analysis of the low-energy data in terms of
the HJS-type coefficients f,' and O', . Conversely,
we ean also predict all six scattering lengths from
the Ward identities and obtain perfect agreement
with experiment.

Our value for the o term is approximately rnid-
way between the CD and HJS values of 1IO MeV and
40 MeV, respectively. We have followed the meth-
od of HJS and have expanded the amplitude about
the symmetry point v = t = 0, but do not agree with
their extrapolation of the data. In particular we
reject their value off ', =-1.66p, ',"which is
based upon the estimate c, +2as= -0.0'75p, '. In-
stead we take a, +2a, = (-0.02+ 0.03)Il ' which gives
f ', =(-1.40+0.15)p, '. We also find that taking into
account the various determinations of the p-wave
isotopic-even scattering lengths increases the HJS
value of f ', to 1.2V~ 0.15, closer to the CD esti-
mate. Thus we conclude that the low-energy meth-
ods of HJS are in substantially better agreement
with the broad-area subtraction technique of CD
than had been previously realized. %'e have also
related the "smoothness method" of ACM to the
on-shell technique of CD and HJS. The ACM meth-
od ignores f; cusp effects and leads to a„= '19+ 16
MeV.

Owing to the 0(p ) theorem, the dispersion-the-
ory C~~ amplitude does not play a role in obtaining
o„. Nevertheless, our expression for CIz,'1, (32),
is intimately linked with a large 0 term. At the
Adler consistency point v=0, I= Il', (54) demands
that C ' cancel a„. Since CI'(0, Il') =C~'(0, Il )
+p&'&(0, p3) =-0.8-0.4 from (32) and (Vl), we see
that this is indeed the case.

The implication of ACM that a„(1=0) =&&„(I=2133)
may not be correct, as it is possible that a~ may
have a slight dependence upon the variable t. Our
analysis is on-shell and avoids such a statement.
Pagels and Pardee" have shown that the 2m contri-
butions to the o term could be nonana1ytic in p,

'
and decrease the o term by 14 MeV from t=2&z to
f =0, leading to a reduction of our value to a„(t=O)
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-60 MeV. This is consistent with Hakim" who

finds o„(t=0) = 51+9 MeV by applying the lab-frame
analysis of Fubini and harlan. '

We now discuss some fundamental implications
of such a large nucleon 0 term. In terms of the
cr model, ~'~ a„=65-'l5 MeV is not difficult to
understand. The prediction o„=(p'/m, ')m„-70
MeV implies m, -500 MeV which in turn predicts
the width I', -300 MeV in the 0 model. Thus the
I=O, u particle mould be very hard to detect.

The "experimental" value for 0„is a factor of
four larger than the favored value" of v„-10-20
MeV as predicted by the (3, 3)+(3, 3)-breaking
scheme of Gell-Mann, Oakes, and Renner, "

K&2 q 2q &i q, qiq

However there is one further covariant,

Kp =q

(A2}

(A3)

which can be eliminated in terms of the other two

by the relation

q'q'K& =q K~+q'PK~ . (A4)

+A, ( v, q'q, q')K&, (A5)

Hence, given a perturbative calculation which for-
mally leads to the KSF amplitudes (v= q P),

M„=A, (v, q'q, q')K„'+A, (v, q "q, q')K„'

o„=k(~+c)[~(u,)»»+ (W}»»1 (77}
one can eliminate K' in favor of K' and K' by (A4)
and write

(uo/u8)»» = 1, (78)

independent of c and fr. Combining this with (77}
and ON-'70 MeV leads to c--1.0. This is consis-
tent with the von-Hippel-Kim' estimate" of
o(KNO) =0, o(KN, ) =170 MeV, which in turn implies
c- -0.95 or o(vN) -90 MeV.
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where H=H, +H'=u, +cu„with c=-1.25 as deter-
mined by the quadratic pseudoscalar mass formula.
In a recent paper" we have shown that a model-
independent estimate of the isotopic zero KN a

term o(KN, ) implies

M& = A,'(v, q 'q, q '}K„'+A2 (v, q' q, q ')K„' .

(As)

Then A,' and A,' contain an intrinsic kinematic
singularity in q q' which can be removed by the
constraint cond jtion

&A,'-q'A, '=finite as q q'-0, (A7)

as can be seen by expressing A,', in terms of

Aj 2 3 In practice, finding the exact KSF expan-
sion (A5) is very difficult and alternatively being
saddled by the constraint condition (A7) is at best
cumbersome. Instead we shall respect this kine-
matic singularity by expanding A, (v, q q, q') in a
power series in q'q and converting all but the
(q'q)' term into A, and A, by (A4}. The "resid-
ual" term must be included in the resulting ex-
pansion:

APPENDIX: DISPERSION THEORY OF AXIAL - VECTOR
NUCLEON AMPLITUDES

M„=A,"(v, q'q, q'}K„'+A,"(v, q" q, q')K„'

+B(v, q )K&, (AS)

&p =q' q Pp -q'&q p (A 1)

It has been conjectured" and demonstrated for
massive particles" that hadronic reactions of the

type A+B-C+D can be expressed in terms of in-
variant amplitudes which are free of kinematic
singularities (KSF) in v and t. Even processes in-
volving on-shell q'=0 photons can be specified in

terms of gauge-invariant amplitudes which are
free of kinematic singularities (and zeros) in v

and t.'4'46'4' However virtual photon (or axial-vec-
tor) processes do involve intrinsic singularities
because of the constraint of current conservation.

To illustrate the way in which such kinematic
singularities can be treated, we consider two sim-
ple examples. In spinless electroproduction ygq)
+B(p) C(p')+D(q'), there are two independent
current-conserving covariants K& obeying q "K&

0o

where all three amplitudes A,", and B are then
KSF in v, q'q and q'. (Strictly speaking, only
ImB is independent of q'q. ) Eliminating K„' in

(A4) alternatively leads to an equivalent KSF ex-
pansion in K&" and the residual term C(v, q'q)K„'.

The forward Compton scattering of virtual-
charged photons off a spinless target y„(q)+ N(p)
-y„(q)+ N(p) gives further insight into such in-
trinsic kinematic singularities. Bjorken' has ob-
served that the four "natural" covariants in the
expansion

~j u =&(v~ q }p up v + B(vi q )(p Hv + qv p p )

+ C(v, q')q„q„+D(v, q')g „ (A9)

cannot be expressed in terms of the same number
of current-conserving (CC) and non-current-con-
serving (NCC) amplitudes. Instead one must write
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M =Mcc + Mwcc+MREs
pv pu pv pv

where (setting v p q, m=1)

(A10)

At q' = 0 it is clear that the entire (nonpole) ampli-
tude is given by C(v). lt is important to realize
that the current-conserving amplitudes A, and A,
remain KSF in v and q '.

Now we are in position to treat the problem of
interest: virtual-charged Compton (axial-vector}
scattering off a spin- nucleon target as a function
of the three invariants f, v (again set m=1}, and
q' (we take q" =q' to simplify matters slightly).
In analogy to (A9) there are 20 "natural*' covariants
(although there are 22 obvious covariants, there
are two "equivalence theorems'"' "which reduce
the number to 20). We then write

M„,(20) =Mcc~(12)+Mc, (5)+Mwcc(2)+M"s

where there are 12 spin-1-spin-1 transitions, 6
spin-1-spin-0 transitions (current-conserving only
in both momenta q'"M„,'q'=0), 2 spin-0-spin-0
transitions plus a number of additional residual
amplitudes of both the electroproduction and for-
ward Compton type as yet to be determined.

First we define eight auxiliary amplitudes
(m=1, 4=y 0):

1g„,=q„q„+q„q„,

Mp, =&z(v~ q )[qÃu —q~Z»]

+&2(v~ q )[q p @pe —v(pvqu+qvpp)+v Z»l ~

Mjg~~ =By(vs q )(ppq„+qvpv)+B2(v~ q )Z» si

(A11)
M'„as= C(v)p „p„.

The additional "residual" amplitude C(v) must be
included; without it B, and B, would contain a kine-
matic singularity in q'. To see the effect of this
term we compute q'"M„,q" [which can be inter-
preted as the background nN forward amplitude
(20)]:

q'"M„,q'=q'vB, (v, q')+q'B2(v, q'}+v'C(v) .

Next we display the six doubly current-conserving
covariants of M~~' corresponding to spin-1-spin-0
transitions which we label by L,„„:

L]I„=2q 'qqpq„—q &p

Iv„=,
q' 'qR» —vR'»,

I„'.= [0', 4) q„'q. —q'R„'. ,
(A15)I„'.= q'„[0, y.]+[y „0']q. ,

I,„',= [g', $]R„'„-4vR„', ,

I,„',= [)', g]R„'„-2q'qR8„,
where q'"I„„q"=e'"I.„„&"=0,but q'"I,„„WO,
I.„„q"o0. Then we express the 12 current-con-
serving KSF covariants of M&~' in terms of the
above covariants ([y@]„„=-y„igy„-y,{NIy„):

K],v=qpqv —q 'qsI, v ~

K„'„=q'qP g, —v(R„'„-vg»),
K~„=I p„-q (R~„-vgv„)+q vg»

4 1 r,'qqpqp+q gyp ~

K„'„=q'q(R„'.—l [y4y]„.)+ l v(l&', 41r,.-4R,'.}
K„',= [0', 0)pg„- v(2R„'„+[y4y]„.}
K„'„=I„'„-2q'[yQy]„. ,

K„'.=2I „',+q'I.„'.+q'[y„, y.]-[0',0]q,'q. ,

K„",= 2R„'„+R„',—[g', g]g„,-q'q[y „,y„),
K„"„=[g', g]R„'.—4vR4 —2q"q[y@]„, ,

K„",= I,„'„+2q'(R„'„- [g', gjg„„),
where q'"K„'„=K„'„q"=0. The detailed explanation
and prescription for obtaining K„'„as a. gauge-in-
variant set of covariants is given in Refs. . 24, 46,
and 4'7. The covariants K', K', K', K', K", and
K" correspond tothe KSF set for realphoton Comp-
toll scattering, '~'~' ' and K' and K'become the two
KSF covariants for forward virtual Compton scat-
tering in (A11). There are actually two more co-
variants, [g', g]K„'„and

q'q(I'„[4 y.]+[y „Q]I'.) vR„', + [0' 4—)(vr„.—'R„'.}-
B~„=q~I,+I ~q,',

3 =R„,=qg, +P„q, ,

R„'.=(q&, +I'„q.') -(q„y.+y„q.'),
Rg~=(qP p+&gq, ) —(qpyv+ypqu) ~

R„',=2I ~„-(y„I.+I „y,),
R„'.=q„[@y,]+[y„,Q]q.',
R„'.=q„'[0, y. ]+[y„,4]q. .

(A14)

which can be expressed in terms of the above 12
gauge-invariant K„'„by the "equivalence theorems"
of Refs. 21, 24, and 46. This is one of the crucial
points in our approach. Once having identified the
two additional gauge-invariant covariants to be
eliminated by the equivalence theorems, we need
not concern ourselves with the equivalence theo-
rems, per se. The remaining two spin-0-spin-0
amplitudes M„"~ can be specified by the covariants
N„, which obey e'"N„„=N„„c"=0and are not gauge-
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invariant. They are obviously

1 r
&pV=qpqV y

N„'„=[4', (](]q„'q„
(A1V) Covariants contributing to

spinor 1 Contribution

TABLE IV, Contributions from natural covariants of
current-nucleon elastic scattering.

Finally we determine the additional residual am-
plitudes M«s needed to avoid introducing the in-
trinsic kinematic singularities into the above set
of 20 covariants. In analogy with electroproduc-
tion, there are the additional. covariants

-q ~~. -2vq

(A18)

K„'„=q (2R&v —[rely]» —v[y„, y ]v)+vL& v,

gpv

qpqv
qpqV

q~qV +q~qV

g (q&PV+P&qv)
g'(qvP„+P„q, )

g P„P2

Covariants contributing to
spinor [g', g]

q' 'q
(q' q)
q4

[2g &+ho (v —v&)] (q' q)
[2g v&+2ho(v- v+)lq

z +(ho+ H )(( +] s)( —z)

Contribution

which are related to our above set by

I ~ 7 2 2 1
q 'qLp =q ~p —vLp

q/ q+13 q 4+2 q 2v+3 + v 2+4
Pv PV PV

q'qK" = 2q 'E' + q 'vK" + vK'
P,v PV Pv PV

(A19)

Following (A8) we therefore include the electro-
production-type residual terms (EP)

M"~(EP) = B,(v, q')L„', +B,(v, q ')K„",

+B,(v, q')K„", .

By inspection of our sets L„,(6) and K„„(12), one
can also infer the forward Compton-type residual
terms (FC) analogous to C(v)P„P„which one must
add to the amplitude in order to ensure KSF-in-
variant amplitudes:

(A20)

MvaP (FC) = C, (v, q'q)R„'„+ C, (v, q'q)(R„'„—vg„,)

+ C, (v, q')R' + C~(v, q'q)(2Rv„- R„',)

+ c,(v, q"q)[rQr]„.
+ C,(v, q')(R'„„s[rQr]-„.)

+ C, (v, q"q)(R„'„-[g', q']g„„)

+ C,(v, q'q)R„'„

+ [C,(v, q"q)+ C,'(v, q'q)q'Jg„.
+ [c„(v,q"q)+ c,'.(v, q'q)q'][r„r. J

+ [c„(v)+ c,', (v)q ']p„p„. (A21)

Table IV shows the result of expanding each of a
set of 22 natural covariants in terms of ours, cal-
culating the invariants at a resonance position
v = vz and multiplying with q'"( )q". To prove that
our choice of (A15), (A16), (A17), (A20), and (A21)
leads to a KSF expansion (A13), one simply solves
for the natural covariants in terms of our set and
verifies that no kinematic singularities in v, q"q,
or q' are thereby introduced.

Finally we compute q„'M"'q„ from (A13). All of
the contributions come directly from (Al'l) and

q'„q, V'. 4l
(q'„q', +qvqv)hP
y„([)y.-r.([)r„
(qvPv +P„q'v)[4" 4]
(qpPV+Ppqv)tc' 4'l

[&p &vl

qq fl.vvl + h'q. Qlq'v

q„'N. vv l+ h„ llqv
qqPV +P„q', —(qppv +pqqv)
q&Pv +P&qv —(q&pv +p&qv)

g PvPv[&f', g]
g {2P&Pv —(rvPv+Pvrv))

q' q[4' 4]
(q' q)'hf' d].
q'[q" q']

2q'(q' q)~e' l]
0
2vs(q' q)[g', g]
2 veq'[g', g]
[q' 41
q' qhP q']

q'[q". q']

kq' qle" 4]
2q'V' d]
v[f g]
[g ve +hpvs(v —vs)][/, g]
[sg' z+s 0( —z)][q" &]

(A21) with MvN~ =A, sN„'„+A,oÃ„v:

q„'Mvvq„= C, (v, q"q)2q'(q "q)
+ C, (v, q"q)vq'q+ C, (v, q')2q '
+ C,(v, q ')-,' v[g', t[]+C,(v, q'q) ,' q '[y'', 4]-
+ [c,(v, q"q)+q'c,'(v, q'q)]q "q
+ [C„(v,q'q)+q'C, ', (v, q'q)][{f', 0]

+ [C„(v)+C,', (v)q']v'+&, .(v, q"q, q')q'

+&,(v, q 'q q )q [q q]. (A22)

On the assumption that I' ' is the only pion am-
plitude requiring a subtraction in v, (A22) leads
us to expect that all amplitudes except the cross-
ing-even parts of t"„Q„and A» will obey USDR.
The contribution of C„ is suppressed relative to
C, by an extra factor p.

2 on shell. Furthermore,
only A» contributes at q'q =0.

The subtraction in Q, is just what is needed to ex-
plain the fact that the decuplet accounts for only 3

of the experimental t variation in Q '. The sub-
traction in A» will share the general p, suppres-
sion, and may even have a small effect when com-
pa~ 'c' to a large decuplet pole contribution. Hence
the working assumption that all amplitudes are un-
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subtracted is not an essential input to obtain our
results.

Since the C, are KSF by instruction, from (A22)
we see that only A» will contribute to C ' in the
limit q'q = v =0, which establishes theorem (i}.

To begin the proof of theorem (ii), note that only

C3 C» and A] 9 contribute to C ' when q ' q = 0,
and that the factor v' prevents C» from contribu-
ting to v 'C at v=0. The proof of the theorem
thus consists of showing that R, is absent in the
expansion of y„(ff+M)y„, where K„=P„+Q„in the
s channel. Since it is easy to see this for y„y„
we need only establish it for the expression (27),
a straightforward task from Table IV.

Theorem (iv) arises from the absence in (A22) of
any term of the form v'[q', g]. The reason is easily
seen to be the fact that P+„[g', q] can be written
directly in terms of K„'„without inducing a residual
term. Theorem (v} results from the absence of
any terms of order v' or higher in (A22).

Note that the nucleon nonpole corrections C „'),
6„'l satisfy the theorems separately, so that they
can be treated as part of the backgrounds C ') and
ZY" of Sec. (V).

We now show that high-mass resonances are
more likely to cause significant v' variation for
C') than for v 'C~ ), v 'D('), or 3 . First note

that the dominant contribution to C ' away from
v=0 comes from C», which also is responsible
for most of the v variation. Writing the contribu-
tion of a resonance at vR as

of V CE V
2 2+

VR V VR

so that for VR» v

~(+) ~( -)
C„(p)v' = v'+, U')

we see that an extra factor v„enhances the contri-
bution to C' over that to v 'C . Put another way,
the dispersion relation for C[',~(v) converges more
slowly than that for C[,l(v).

No similar situation exists for Ill' because of the
absence of a term in (A13}proportional to v'[g', g].
The greatest v variation in D will come from C,:

c,"()= ".",+
Q+) (-) v

VR —V VR —V

contributing P ~/v„ to v '6'l and v'g l/vs' to 6 ~.

The resulting variation in D is suppressed by an
extra factor 1/v„. It should be emphasized that
this result for D') is valid only with our approach.
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