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be shown that such a model must have more than
one odd-C trajectory, whereupon the nonlinearity
of Eqs. (42}-(45)becomes unmanageable. How-

ever, we have constructed one such model that is
worth mentioning. Consider a system of n even-C
trajectories with integer-spaced intercepts,
1, 0, -1, . . ., 2-n, andn odd-C trajectories, again
with integer-spaced intercepts, I -5, -5, . . .,2 -5
-n. If we then require that each trajectory have
nonzero double-Hegge couplings only to its nearest
neighbors, then such a solution is possible Onry

for 5=op —a =0.5, and the resultant value for
p~~ ls

For n =4 this model is then in agreement with ex-
periment.

It is quite surprising that the requirement of
charge conservation is so restrictive upon the
double-Regge analysis. In this connection it is
worth noting that similar techniques can be applied
to the fragmentation region for the incoming parti-
cle a, if the ambiguity of what rapidity should be
taken to specify a threshold can be resolved.
Then, with the double-Regge couplings determined
as in this section, the Regge residue ratios x,&

for
each trajectory i can also be determined from the
charge-conservation constraint.

~ p~ = (» -2)-'(&~ - &p) = c (s - &) . (51)
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A dual resonance model with spin is constructed for the reaction TfN- 7t~¹ The invariant
amplitudes are parametrized as sums of five-point (Bardakci-Ruegg) functions in such a
way that the scattering amplitude satisfies the following properties: (a) correct spin-parity
structure in all meson channels to leading order, (b) correct Regge limits, (c) correct
residues at the lowest poles on all trajectories. The only parameters of the model are
coupling constants, for which several sets of constraints are derived. A prediction is also
made for the D-wave/8-wave ratio in the decay B—7rcu.

I. INTRODUCTION

The discovery of the generalized dual resonance
model' a few years ago made it possible to fit
reactions in which 2 particles -3 particles. In
early applications of the model the spin of the
particles was never taken into account. This s'im-

plified the calculations considerably and neverthe-
less was enough to give an over-all rough agree-

ment with the data. ' One drawback of this ap-
proach was that the continuation of the amplitude
from one kinematical region to another was not
reliable and indeed, in actual calculations, the
relative size of various quasi-two-body reactions
did not agree with the experimental results. ' Later
some attempts were made to introduce the spin
of the nucleons in the reaction I'B-PI'8 (where P
stands for a pseudoscalar meson and B for a bar-
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yon), but no detailed fits to the data were pre-
sented. ' The method used in the latter case was
to parametrize the invariant amplitudes as sums
of B, functions. Factorization and Regge behavior
of the amplitude squared summed over spin were
used to reduce the number of parameters.

In this paper we use a slightly different approach.
The amplitude is written as a sum of terms of the
form'

K, (P;) is a Lorentz tensor made up of the momen-
ta of the external particles to be contracted
against the wave functions of the external parti-
cles. L, (B,) is a linear combination of B, func-
tions which multiplies K, (P;). The sum is over
all permutations of external legs and over all
possible trajectories in the various channels. It
will be shown that the covariants K, (P, ) determine
the normality of the trajectories to be put in the

B, functions associated with them. Unlike the
method used in Ref. 3, this approach ensures the
right spin-parity content and consequently the
right Regge behavior in all meson channels.

The method is applied here to the reaction
wN- g~N. This process was chosen because it
contains a vector particle in the final state and
the comparison of the measured density matrix
elements of the ~ with the predictions of the mod-
el will provide a test for the treatment of spin.
Also, this particular reaction has a very simple
isospin decomposition, since, as for mN- mN scat-
tering, there are only two independent isospin
amplitudes. Finally, data with good statistics
are available for this process as well as for the
quasi-two-body reactions which can be extracted
from it: nN-cuh, nN-~N, wN-pN, and mN-BN.

The material is organized as follows. Section II
deals briefly with the kinematical singularities;
in Sec. III the amplitude is constructed in the most
general case. Care will be taken to put in the spin
factors and to include both normally and abnor-
mally coupled trajectories. Several relations be-
tween the coupling constants introduced in the
model are derived. Detailed comparison with the
data will be presented in a subsequent paper.

II. KINEMATICAL SINGULARITIES

Consider the interaction between two pions (s,
and v, ), an &u meson (~,), a nucleon (N~), and an

antinucleon (N, ). The scattering amplitude can be
conveniently represented by the functions A
where a, P =1,2, 3 refer to the isospin components
of the pions andA 6 is a two-by-two matrix for
fixed n and P. The most general form for A 8 is

A, „s= 5„~A'+2 [T„,T8]A

where A' and A correspond, respectively, to the
1=0 and I= 1 isospin states in the (N4N, ) channel. As
in nNscattering, Bose symmetrywill impose some
constraint on A' and A . More precisely, A+ will
be symmetric and A will be antisymmetric under
the interchange of m, and w, . In the following we
are interested in the kinematical structure of A'
and A, and all that is said applies equally well to
both. In this section, therefore, we use the gen-
eral notation A to denote either amplitude.

Experience in calculating amplitudes for reac-
tions with spin has shown that the spin wave func-
tions introduce singularities at thresholds, pseudo-
thresholds, and conspiracy points. Since the wave
functions do not change from reaction to reaction,
these singularities can be predicted and factored
out, leaving behind only amplitudes with dynamical
information. Therefore dynamical amplitudes are
the appropriate ones to parameterize in any model.
Hence one must have an effective way for recog-
nizing and removing the spin complications and
singularities. There are two common approaches
to this problem: through invariant amplitudes and
through helicity amplitudes. Each method has its
own set of difficulties in our case.

When there are more than four particles involved
in the reaction, the existence of a minimal set of
dynamical invariant amplitudes is, in general, no
longer guaranteed"; in fact, a basis of invariant
amplitudes free of kinematical singularities has
been found only in the case of two spin-& and three
spin-0 particles or of one spin-1 and four spin-0
particles. '

In the helicity formalism, more precise results
have been obtained for the five-particle case: The
kinematical singularities have been isolated and a
set of regularized helicity amplitudes has been
constructed. ' However, this approach is not suit-
able for our purposes since we want, ultimately,
to apply our model to various channels which are
related by crossing. Theoretically, it would be
possible to check that a given invariant decom-
position generates the right kinematical singular-
ities in the helicity amplitudes, but the amount of
algebra required to carry out such a program
makes this calculation unfeasible.

We will content ourselves with a more primitive
method, reminiscent of that used in the early
days of Regge theory. ' We will show that all the
covariants which can be constructed out of the
momenta, the polarization vector ~, and the y
matrices in the problem can be expanded into. a
sum of 16 simple covariants, each one being mul-
tiplied by an invariant amplitude free of kinemat-
ical singularities. We recall that the minimum
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number, i.e., the number of helicity amplitudes,
is only 12. Hence the invariant amplitudes in our
decomposition are not a minimal set. This will
not, however, cause any difficulty in the end, due
to the method of amplitude construction adopted
in Sec. III.

The scattering amplitude for the process under
consideration must be a scalar; we claim it can be
written in the form

A =r7, (A,p, ~+A, (p4-p, ) ~+A+, a +A~ /
+ pg(Bgpg ' (d +B2(p4 pa) ' (d +Bsps ' (al + B4 (b)

+ps(C~p~' QP+ C2(p4 pa)' (a/ +Csps' (8 +C4 Q
+[p'„p, ](D,p, vv+D, (p, —p,) ~ (u

+Dga ' (d +D4 $)) t44 r (2.2)

where cv is, the polarization vector of the meson cu.

The A&'s, . . . , D&'s are functions of the +$ $ g
de-

fined by

Egx gau gafI gaP
e 8zq ezuvp =-det

Ey) 8'yu g'yv gyp

'~u Esv 8'sp

(2.4)

and of

a
upp =det gyu gyy gyp (2.5)

%e have assumed here that all particles are in-
coming. The A&, . .. are free of kinematical sin-
gularities and they carry the dynamics of the mod-
el. Although there are four independent momenta,

P, and P, do not appear because they can be re-
duced to terms already included by making use
of the Dirac equation, and (p, +p,) ~ goes away
because of the condition P, ~=0.

Calculation of an arbitrary Feynman graph for
nN- m~N may, of course, produce covariants
mhich look different from the ones appearing in
Eq. (2.2), but experience has shown that all co-
variants can be reduced to the ones appearing
above. For example, instead of using a basis
made up of four vectors we could equally mell use
one constructed from four independent axial vec-
tors of the type c a~qp,"p,sp~&. Because of parity,
only an even number of e, .. . can appear in each
term of the amplitude, and they can always be
reduced, without introducing kinematical singular-
ities, to a combination of the terms in Eq. (2.2)
with the help of

Other allowed terms in the amplitude are y,6'»~,
y,e» T y', y,eu„„y y', etc, where the free indices
are contracted with the momenta of the problem
and the polarization vector of the ~. They can be
reduced to simpler terms using the identities

hvar Y5= - ( YpYv YaYr Zv YvYar Zv aYg Yr

I'QT yuyv -ETuyp yo +gllT yuyQ

+gga Yv 'Yr +Zv vgar +Z'vair gvan r')r

(2 6)
T

epvar Y Ys f (Yp YvYa tv Ya gvaYp+gvaYv}r
0

~uvaT y Y 'Ys &fyuy yyj 2&aud y

v a r

&uvaT y"y y y 'Y5= —24& ~

In summary, any covariant which can enter the
amplitude is decomposable into a linear combina-
tion of the terms in Eq. (2.2}, each term being
multiplied by a function of the invariants in Eq.
(2.3}, which is free of kinematical singularities.

This discussion does not constitute a proof that
the decomposition (2.2) is free of kinematical
singularities but, rather, makes this assumption
plausible.

In Sec. III we will never make use of the form
(2.2), but we will express the amplitude as a sum
of terms which make the dynamics of the reaction
more apparent. Using Eqs. (2.4)-(2.6) we can al-
ways go back to the standard form (2.2).

III. CONSTRUCTION OF THE AMPLITUDE

A. General features of mN~moN; choice
of the trajectories

Before we start constructing the amplitude we
look at the experimental data to get some clues
about the dynamics of the reaction. The most
striking fact about the reaction m'p -m+~P is that
it is dominated by the quasi-tmo-body processes
w'P-B'P and s'P-&uL", which at 8 GeV/c (Ref.
Be) account for half of the cross section. Besides
the B peak the (&us) mass distribution also shows
a bump around 1VOO MeV (Refs. 8f-Sh; Sf, Sh)
which can be ascribed to the g(1680), a 3 reso-
nance lying on the p trajectory. All this suggests
that in the (&uw) channels the important trajectories
will be that of the p and of the I3, whereas the 4q
trajectories will dominate the (sg) channels. Al-
though the production of the N,*«, does not seem to
be a dominant feature of the reaction mN- m~N,
me will nevertheless include for completeness the
N -N& exchange-degenerate trajectory in the (wlV)

and (&ulU) channels.
A study of the density matrix elements of the ~
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in the reaction wN- ur4 (Ref. 10) and wN- ~N (Ref.
11) shows that, besides the p exchange in the f
channel, there must be a strong unnatural con-
tribution to account for the nonvanishing value of

poo This can be explained either by a p-p cut or
by B exchange. We choose here the second pos-
sibility since we do not know (in present dual res-
onance models) whether the Reggeon-Reggeon cut
should be dual to the background, the resonance
part, or both. " So here again, but this time in
the momentum-transfer region, we see that the

p and B trajectories are the dominant ones in the
(~w) channels.

For the reaction m'P -B'P the situation is not
as clear since the density matrix elements of the
B have never been measured with precision. The
&u trajectory will certainly be present in the (Bw)
channel since con is the only known decay mode
of the B meson. Cohen et al." studied g d
-B a'p~, „„,at 7 GeV/c; this reaction proceeds
through I= 1 exchange. The exchanged trajectory
is most probably the A„as suggested by the
rather flat t-distribution, and on the basis of the
large cross section observed (25 pb vs 40 pb for
wP -BP at the same energy) we can safely conclude
that the mA, B vertex is large.

There is no compelling need for an unnatural-
parity-exchange piece in w'P -B'P. Indeed, a
sharp forward peak is observed in the t distribu-
tion" ' '&; if unnatural-parity exchange were
important we might expect a forward dip (since
the unnatural-parity exchanges will couple only to
helicity A. = +1 for the B in the Gottfried-Jackson
frame). Furthermore, at 11 GeV/c (Ref. 9h), the
only energy at which the density matrix elements
of the B meson are known, p~~=0.25+0.05 and
p~G'y 0 0 +0.3 and this is compatible with having
only the ~ and A, trajectories in the t channel
(the prediction in the latter case is po,'= —po', ).
Note that there is no obvious candidate for unnat-
ural-parity exchange; the Bmn vertex does not
exist because of the spin-parity of the B, and A„
not being a resonance, "is out of the question.

In conclusion, we will put only co and A, trajec-
tories in the NN channel when coupling to B in the
(~w) channels, but, of course, w, &u, and A, tra-
jectories will be necessary in conjunction with p
in the (~w) channels.

Armenise et al. 'g present a careful study of
w p- w &uP at 9.1 GeV/c after subtracting the
events corresponding to the reaction n P-B p.
They show that the two multiperipheral graphs
with either the pion or the ~ at the external meson
vertex will dominate the nonresonant part of the
reaction and that baryonic exchanges can be ne-
glected. An examination of the Dalitz plot also
leads to the same conclusions. ' '8f, gf

B. Properties of the scattering amplitude

The amplitude will be constructed in the spirit
of the dual resonance model and therefore should
describe resonance production as well as the back-
ground term. It will obey the following con-
straints:

(1) Crossing symmetry should hold.
(2) It will be required to reduce the Feynman

amplitudes for all graphs obtained by taking the
residues at the lowest poles on the trajectories.
However, for simplicity, daughterlike terms (i.e.,
those terms corresponding to particles of spin
less than the one under study) will be neglected.

Also, in meson channels, the resonances lying
on a trajectory will have the right spin-parity
assignments given by their positions along the
trajectory. For baryon channels, correct parity
cannot be realized in the usual B, formalism
(fixed cuts and fixed poles are probably needed), "
and we will content ourselves with parity doublets
of the right spin. Only the N and 4 poles will be
forced to have the correct residues. As a con-
sequence, we will see that the amplitude has the
correct asymptotic behavior in the single- and the
double-Regge region when only meson trajectories
are exchanged; for the baryon exchanges all we
can say is that the amplitude squared summed
over spins will have the correct Regge behavior,
but the individual helicity amplitudes will not nec-
essarily have this property. This fact, however,
is not of great annoyance in the reaction under
study since it was seen experimentally that the
baryonic exchanges were negligible. Also there
is some evidence for parity doubling along the
exchange-degenerate N„-Nz trajectory except at
the N„(938) and N&(1526) poles.

All of the above will be enforced only at the lead-
ing level (i.e., for the highest power in s). This,
in principle, takes care of duality and factoriza-
tion.

(3) Bootstrap consistency should be valid. This
is just a pompous way of saying that the five-point
amplitude should reduce, when one takes the res-
idue at a pole on a leading trajectory, to the cor-
responding four-point function. For example, the
residue at the w (or ~) pole in the NN channel
should give the known amplitude for ww- w&u (Ref.
16) (or wu&- wee) (Ref. 17) scattering.

(4) Trajectories should have signature, except
the N~-Nz one. This will be achieved, as in the
original B, model, by adding terms with different
ordering of the external legs.

(5) Bose symmetry and isospin will, of course,
be put into the model.

(6) A somewhat less quantitative constraint is
that of "maximum duality, "which says that the
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terms in the amplitude should be leading in as
many channels as possible.

(7) Finally, we will try to use as few terms as
possible in the construction of the amplitude.

The only parameters in the model are coupling
constants, which will be determined by the re-
quirements above and by fits to the data. By way
of construction, since we work in the invariant
formalism, the amplitude has all the required
analyticity properties and therefore could be used
to fit the annihilation channel pp- w'n ~. In view
of past experience, good agreement with the data
is in no way guaranteed for that channel, since
requirements (6) and (7) tend to somewhat different
approximations in the scattering and annihilation
regions.

C. The method

As said in the Introduction we build the amplitude
as a sum of terms, each term being the product
of a linear combination of B,'s by a polynomial
covariant constructed out of the momenta, polar-
ization vectors, and y matrices. 4 These terms
do not have to be the same as those of the invari-
ant decomposition of Sec. II and their number is
not limited. As was seen before, we can always
get back to Eq. (2.2) without introducing unwanted
kinematical singularities.

In our case, the covariants used are the Feynman
amplitudes corresponding to two-particle ex-
changes. We then have to find what quantum num-
bers these structures imply in crossed channels
(those channels without our exchanged Feynman
poles). The trajectories in the B, functions will
then be chosen to have these quantum numbers. If
a meson channel appears to contain a parity dou-
blet, the corresponding trajectory will be de-
pressed so that it does not contribute to the lead-
ing order. The covariants will introduce in a
simple way trajectories with abnormal-parity cou-
pling to external particles (essentially the wp~
vertex); this coupling is absent in the standard B,
functions. In summary, the basic structure of the
amplitude will come from the covariants, whereas
their invariant coefficients will provide a way to
analytically continue the amplitude to all kine-
matical regions.

After briefly reviewing the resonance structure
of the B, we will analyze the meson channels and
then the baryon channels. The method will be
applied to some meson scattering amplitudes,
which have been calculated by other means, before
we tackle the five-body problem.

D. Spins and tensors

A particle of momentum p and integer spin J
can be represented as a symmetric tensor of rank

J denoted S&,...„, such that all tensors of rank
J-2 obtained by contracting two indices vanish
and, furthermore, satisfying the condition"

p ~jg ~ ~ ~ p 0 0
x

In the rest frame of particle J, S„...„reduces
to a 3-tensor which transforms under the irreduc-
ible representation S(J) of the rotation group. If,
under the Lorentz transformations of negative
determinants, 8„.. .„picks up an extra minus
sign, it is said to have unnatural parity; otherwise
it has natural parity. If the two subsidiary con-
ditions were relaxed, S& . . .

&
would represent a

sequence of particles of spin J, J—1, .. ., 0.
It can be shown that the residue of B„(... ,

—a, , . . .) at the pole c1, = J can be written as a
product of two symmetric tensors of rank J such
as

T (P1) ~ ~ ~ IPtn) TP ~ ~ P (Pm+19 ' ' '1P1-1)l

one of them made up of the momenta p&, p&+„.. . ,p,
and the other one of p „,..., p& „ the rank of the
tensors is independent of the number of external
legs and they always have positive parity. "Using
the definition above, this represents, in the chan-
nel u&, a particle of spin J together with all its
daughters, normally coupled to particles i, .. ., m.
Hopkinson and Chan Hong-Mo" showed also that,
provided all trajectories have the same slope, the
first daughter has only natural parity with respect
to the external particles.

We can use a similar technique to find the spin-
parity content of the covariant. To analyze the
structure in the (i, m) channel we split the covariant
into the product of two tensors, one of them con-
taining quantities (i.e., moments, polarization
tensors, y matrices) relative to particles i, . . ., m
and the other one containing all the rest. A typical
decomposition would be of the form

n &g'''& Iw(PltP1+1t ' ' Spill) (Pill+ lt I P1-1)'1

From K "1' "'(p„.. .,p ) one can extract the
symmetric tensor of highest rank, say, J, and
then study its behavior under parity to determine
its "naturality, "

nz, defined as parity x(- I)~. In
the B, functions associated with such a structure
we will put the arguments J—n&, where u&

represents a trajectory of the right naturality. We
can try now to take the residue at a& =N& J and
by combining the tensors K "~' ' ' "~ T"'
we can extract a symmetric tensor of rank N of
the same naturality as K "&' ' '"~; this shows that
if we enforce the right spin-parity at the lowest
pole it will also hold true all along the trajectory.
Note that K "&' ' "' can contain tensors of both
naturalities (e.g., the antisymmetric tensor of
rank 2) and unless we take special action it will
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give parity doubling along the trajectory.
If we now go to the corresponding Regge limit,

that is, if all

s~, = (p~+ p,)'

become large and of order s, whereas all s~ ~ /s
and all s. ../s go to zero, where

where m„'=(P, +P,)'. In the rest frame of particle
(w, &u, ), V" reduces to a 3-vector V' =v'. Using
this here we get

[p~, ~"]=[p~,w "]+,((p, +p, ) p, [(p, +p,),w"]
m12'

+ (p, +p, ) ~ [P,", (p, +p,")]).
p

i & p' +m and m+1
PI I

q' ~~ 'L —1,
ql I

(3.2)

In the rest frame of (12) the term in 1/m„' be-
comes

then B, -s '~ . In the meantime, the covariant
goes at most like s ~ (the exact power depends on
the helicity states of the external particles) and
the product B,x(covariant) will exhibit the right
Regge behavior.

We specialize now to the system mn(dNN and
analyze some simple tensors which will be useful
later.

l. g& gz channel

(i) Structures of the form P,",P," or (P, —Pa)"
will be associated with a 1 particle, namely, the
p. They are all equivalent up to 0' satellites since
they differ by (p, +p, )", which transforms as a
scalar under the rotation group in the (v, s,) rest
frame.

(ii) p,"p,",p,"p,", p,"p," are easily seen to corre-
spond to a 2' particle —the f meson in this case.
Similarly terms like P,"p,"p, would represent the

g meson plus satellites.

(Pl p2) V(pl P2)
m2'

(3.1)

2. w& ~z channel

Each structure has to contain the polarization
vector of the ~ once.

(i) &u", the polarization vector of the &u, is a 1
tensor, but it is associated with a 1' particle, the
B meson in this case, since the pion has unnatural
parity. The B(dn vertex thus defined is mostly
S-wave.

(ii) P, &uP,
" is also a B coupled to s&u in a mixture

of S and D waves. These bvo structures exhaust
all the Brut couplings.

(iii) e„„~,p", p, &u' (to simplify the writing we use
the notation e„.. .p', p, &u') is an axial vector with
which we associate the p (remember that v has
odd parity). It is a P wave coupli-ng and the only
possible cupw vertex.

(iv) p,"~'-p", u" =[p,", &u'] is an antisymmetric
tensor of rank 2; it has six independent compo-
nents. To find its spin-parity content it is con-
venient to go to the rest frame of the (w, ~) system.
Introduce the notation

m12

(3.3)

and all its other components are 0; it is a vector
and therefore is associated with a 1' particle.
The only nonvanishing components of [P,",W "] in
the rest frame of (s, ur, ) are [P2t, W~], where i,j
= 1, 2, 3. Define

A'=e P W~
Jig (3.4)

equivalently

[P2, W~] = e„~A', (3.5)

AN& channel

The following tensors, being well known, will be
listed without explanations.

(i) Vy„u and V(P, P~)~u c—orrespond to the two
possible couplings of a vector particle. The first
one is an S-wave coupling to the S =1 state of the
N4N5 system; the second one is a P-wave coupling
to the S = 0 state.

(ii) Vb„, (P, P,).)u = V[r-„(p, P,).+r. (P,-P.)„]u-
and v(P4 -P,)&(P~ -P,)„u correspond to a 2' par-
ticle and describe its most general coupling to an
NÃ system.

(iii) vy, u is of course associated with the s tra-
jectory.

(iv) vy„y,u and V(P, —P,)„y,u are characteristic
of a 1' trajectory, but these two terms have op-
posite G parity, the first one having that of the
A, and the second one having that of the B meson.

which shows that [P,",W "] represents a 1 particle.
In conclusion [P,",e "] is a parity doublet of spin

1. Note that [P,", cu "] is similar to the tensor P""
in electromagnetism which contains a vector (the
electric field E) and an axial vector (the magnetic
field B).

(v) p,"[p,", &u~]; using the same technique it can
be shown that this structure contains states of
spin 0, 1, 2 of both parities.

(vi) co "[P,",P2~] is a 2 particle with its spin-1
daughters of both parities.
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x +m„} (3.6)

and P =P, +P4. Ignoring the presence of spin--,'
daughters we can replace A"" by g~" (p+mz).
Therefore, if in the amplitude there is a term of
type P,"(P', +P~+ms}u~, it will indicate the presence
of a spin-~" particle. Likewise spin a is rep-
resented by —P,"y, (P', +P'4 —m„}u4.

In general a mN resonance of spin J+-,' and parity
(-1)~+' is described by A" i'""&(P +P~+ m~)u,
where m~ is the mass of the resonance and A»"'~~
is a totally symmetric tensor of rank J; a reso-
nance of opposite parity is

A" &'""~(P„+P~+m~) y,u
u|" sly (P' +P -m )u.

In the amplitude such a term would be multiplied
by B,(. . . , J+ 2

—ct„„,.. . ) if it is to be leading in
this mN channel. Taking now the residue at +,N
=J+-,' we will find an expression of the form

A" i "&+1(P„+P&+mz}s

= A" i "&+&[(P~+Pp +mg ig}s+ (mg —
mal+ i)Q],

but

(m -m „)u = —'[(P„+P +m „}+(m „-P,-P )]

x (m~ —m~ i)M,

which contributes to both parities of spin J+ q.

5. +zN& channel

(i) Terms like (P, +P, +m~ )u(s, or (p, +P, +m~ )
x p4. ~, correspond to the two possible couplings
of & to a nucleon trajectory in the (&u,N, ) channel.

(ii) (P, +P, +mg)(o"u„(P, +P, +m„')P, ~ (oPg„

~qN~ channel

s,N4 resonate in a —,
'+ state through Q, +P' + m„}

xy~u4, where a sum over the polarization states
of the resonance m& has been performed. If this
resonance is a nucleon then the vertex reduces to
—y, P', u4. Such a term will appear in the amplitude
multiplied by an invariant like B,(. . ., 2

—e,4, . . .).
A mN resonance of spin-parity &' is described by

p3 Q4 where A"", the spin-pro jection operator
of a spin-a particle, is

Apv piI I p u 2 P P P y P y
Sy -3m 2

—
3m

and (P, +p, +mg)rdpgu, are the only couplings for
the vNN* vertex.

E. Modification of the invariant functions3

In order to get the right spin-parity assignment
at the lowest poles on the baryon trajectories, we
have to slightly modify the definition of the p,
functions. In this work we consider only graphs
which have adjacent nucleon legs, therefore there
are only two baryon trajectories in the B,'s. As-
sume there exists in the amplitude a covariant
term 1' which carries spin ~ in both (34}and (51}
channels. If we want to associate this term with
h resonances, the residue at F3~4=~„=-,' should
look like

or

vs(Px+g, ™~)I'(P,+P, +m~)N,

v, (P, -m, -m~)1'(P', +m, +m~)u, .
(3.V)

When we go away from the double pole each term
in (3.7) will pick up a B, function, the arguments
of which are chosen according to the rules de-
scribed in Sec. IIID. For instance, the invariant
attached to the term -(m~ +m ~}'v,i'u, will be
completely determined from the structure of v,ru4,
assuming it has the form

b, tLl 3 b, lB (l —a, m —n» g 034 P &45 2 (xsg),

the covariant (m~ +m ~)v,g, l'u4 will have the follow-
ing properties:

(i) In channels (23) and (34) there is no change.
(ii) In channel (12) the momentum p|~ will bring

one more unit of orbital angular momentum and
the corresponding argument in the B, function
will be l+1 —~~.

(iii) In the (45) channel the matrix y„will carry
one unit of spin if the structure I' is a tensor made
up only of the momenta and the co polarization vec-
tor (or y, x tensor); if I' already contains y„, then
we will have a parity doublet (recall that v,y„y„u~
is a parity doublet of spin 1); in any case the (45)
trajectory should be depressed by one unit.

(iv) In the (51) channel it will combine with the
above structure to give the correct spin-parity at
the pole +5~ =-,'.

Applying the same technique to the remaining
terms in (3.7} the complete expression looks like

3 Q 3 b, a I 3v, I'B,(l —a~, m —a», 2
—a,4, P —a~, —,—a»)+ B,(l —o.'», m+1 —a», 2

—n, ~, P+1 —c.,» —,—n»)
mQ +mp

3 g 3B,(l+1 —c'm, m o'»i 2 o'$4 P+I —a„,~ —os|)
mg+mp

PF'Ps 3 a 3 a)~B~(I+I —a», m+I —a»i Q Q3gy p+1 —~4» ~
—n») s4.

{m~+m, )
(3.8)
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To simplify the writing we will denote such a term
by

3 g 3
V r~(l Ql2 m Q 3 Q +34 P +45 Q + ll+4o

Similar modifications can be made, as needed, for
terms which contain an N and an iP' trajectory (we
were not able to find a term with a nucleon pole in
both baryon channels).

F. Application: meson - meson scattering

In the following, & will be treated as a stable
particle (a reasonable approximation in view of its
small width). As a guide to the construction of the
five-point function we start with the amplitudes
for mg- p& and ~(d- ger scattering, which should
appear as residues of the pÃ- p&N amplitude ac-
cording to the requirement of bootstrap consisten-
cy.

7T]

CUp5

7T
]

f

7T 3

7T[

QJp5

7T
)

f

7T3

mw- me scattering

This is just the case discussed by Veneziano. It
provides a trivial illustration of our method.
There is one isospin amplitude 3, and p is the
only possible trajectory since we decided to throw
away the Bgp coupling. The Feynman term for p
in the (w„~) channel reads

7T3

f

7T
]

(0)
7T3

f

7T]

(b)

8p gp ~ ~" plp2 + i( g„)(p p )

= -2ggp~~gp~~ ....plp2p3 (3 9)

where it appears that this structure contains p in
all channels. The full amplitude is then

/ ~ ~ ~ ~ ~

fr fd fp fdrg p v v ""~l~2 ~3

x [B(1—af„1 —nP, ) + B(1—a~P, 1 —n P,)

+B(1—ass 1 —ala)] (3.10)

where a' is the slope of the p trajectory.

7t'(d 7T40 scatterin g
Here both p and B trajectories are allowed in

(w~) channels and f in (ww) channel. Consider first
the structure given by B in the (12) channel [see
Fig. 1(a)]:

FIG. 1. (a) The three diagrams in 7tcu- 7tco scattering
which do not contain the p trajectory. (b) The two dia-
grams which contain the p trajectory in the (7j'f402)

channel and the third one obtained by permutation of the
external legs.

m„" .=-i g,~.i ~ ~45+g,gDP, ~P, ~45

2

g$8DI 3 ~3 +45 + Pl ~3 ~l P3 45
go
mg

(3.11)

if we neglect daughterlike terms coming from the

(p, +p, )„(p,+p, }„part of the B propagator. Ac-
cording to the rules detailed in Sec. IIIE it appears
that the terms of Eq. (3.11) contain a B in the
(w, &u, ) channel with both S- and D wave coupl-ings
and an f in (w, w, ) with S wave only at the f ~co vertex.

The amplitude follows easily provided we sym-
metrize Its~ under w, and w, interchange [see Fig.
1(a)]:

Aw =w~'a'(o„&o~, „((G~ g""+GpG~ppp", +GwG~pspp~}[B(1 —as~, 1 —a,~) +B(1—as~, 2 —a~p) +B(1—amwp, 2 —n~„)]

+G,'p, p,( ppp,"[B(1—aw„, 3 —amwp) +B(l —aw„, 2 —n~») +B(3—a2w„2 —n ~„}]

+P",P([B(3—ns~, 1 —ap~) +B(3 —a~, 2 —n~gp) +B(1—n~~, 2 —a~~s}]}j. (3.12)

The presence of all three permutations of external
momenta gives signature in all channels. Here,
G~ and GD are not the Brow coupling constants but

just parameters since there is still the possibility
that p exchange in one (w&u) channel contributes to
B trajectory in the crossed one.
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Consider now the Born term with p exchange in
the (s, &u5) channel [Fig. 1(b)]:

P~ 2 ~ ~ ~ ~ ~ ~

mfd ~gP(dm +" PP1Pa + & " PSP45+4S ~

(3.13)

The spin-parity content in the (v,v5) channel is
given by

PIPs &p "p P5 55 4'"a" P45Id45 ~

which is a 2'particle, i.e., an f. The f~Id cou-
pling here is rather complicated and contains both

9 and D waves; since nothing is known experimen-
tally about it we will not pursue it further.

To find out what the quantum number content is
in the (s5z5) channel, expand the covariant and get

&" ppiP5 Id & ..Psp45&45=-(P5'PsIdp-P5'Idpav)

X ( Pl P45 Il 45 Pl +4IP45)

P+(5p5p aoId' 'IP5o5Pp)pl P455P45 ~

(3.14)

The first term is obviously a B particle with a
well-defined D/S ratio at the BIdlI vertex The.
Second one contains a piece, namely —,'(p, .P5&pp

+p, ~ a&p, )(p, ~ P45&u45 +p, ~ &u45P, ), of spin-parity 1'
in the (v5ar, ) channel. The rel]laining terms in Eq.
(3.14) are of spin 2 and should be made nonleading

I

in the amplitude since there is no known meson of
quantum numbers 1~ =1' and J =2 which couples to
(Id W).

There are several possible ways to attach the
covariants to the structure (3.14), the simplest
one being

E ...ppl p5 &o t"...p5 p45+45B(1 —n„, 3 —a55)

2 (PS P2 ~ P5 ~ps}(Pl P45 +45 Pl +45pl

x B(3 —a 55, 1 —a55) . (3.16)

It has all the required properties as far as the pole
structure and the Regge behavior are concerned.

To simplify the writing we denote the term (3.15}
by

e ...p pl P5 Id e" .p5'p4.5.IJ~B'(1 —a»p, 1 —ad} .
(3.16)

We emphasize that no B, function appears with

both the p and the B poles. However, since the
covariant e...„p,'p, (d'~ ...p,'p, ,&4, was seen to con-
tain both p in the (w, +5) channel and B in the (w5&p5)

channel, we feel justified in using this condensed
notation.

In conclusion, putting everything together, we

find that the contribution of p exchange to g& scat-
tering is, after taking into account Bose symmetry,

A„4~I„~= '5a'gpQJ5 (f Ilplp541 E P5P45id45[B (1 —nl5~1 —a55)+B(1—nl5, 2 —al5)+B'(1 —n55, 2 —al5)]

+terms with v, and v5 interchanged). (3.17)

Although the term B'(1-a ~„2—a~») does not con-
tain the p pole, it is necessary here to ensure that
all the trajectories have the right signature; note
that it multiplies only that part of the c
covariant which has the B» pole.

We can calculate now the residue of the full n+
scattering amplitude at the B pole in the (12) chan-
nel, for example, and comparing with Eq. (3.11)
we find 2m 2

2 =3.42,
gg mg —m "—m

(3.20)

B pole (square of the coupling constants being neg-
ative). However, the over-all amplitude is ghost-
free. Also it is the presence of the p in the dual
channel which forces a well-defined value for gD/

g5 which corresponds to a fixed ratio A~/As of D
wave/S-wave. We can then determine the decay
parameters of the B meson:

~g

g's Pj.'Pa

Gp = [(gp ~s)'+ 5 (P .P5)'g p .'] '"
(3.18) A = 0.032, i F5 i' = 0.18 .

s
(3.21}

~G 1
Gs P, Pa

(3.19)

where

P, P5=-, (55ls ln 5-m ') . -
Note that the part of the amplitude where the B

is dual to the p has a ghostlike contribution to the

As and A~ are the S-wave and D-wave amplitudes
of the decay B-um, whereas F, and F, are the
helicity amplitudes normalized to 1, i.e. , ~F, )'
+2/F, /5=1.

These results compare rather well with those of
a recent bootstrap calculation" as well as with the
experimental data. ' However, they are in dis-
agreement with the predictions of the quark mod-
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G. Application: wN ~ nuN scattering

v5 (Gv —Gr)y" + ' (p -P )" u .
2m

The selection between 6 and N* trajectories will
be determined by isospin and coupling constant re-

77( N5

I Ng-N~/

8
7r(

N4

71 (-P 7r3-+- ,Ap

7r(

The amplitude will be constructed as a sum over
resonances in the (w, &u, ) and (N, N, ) channels. Fol-
lowing the discussion of Sec. IIIA, we consider
only the six graphs where the N4 and N, momenta
are adjacent (Fig. 2). Some of the other permuta-
tions which can become important in certain kine-
matical regions [e.g. , backward scattering or (vN)
subenergy in the resonance region] will be con-
sidered later. To get the contribution of m or u
exchange in the annihilation channel we just replace
m45 or cu4, in the expressions derived previously by
the corresponding Feynman propagators multiplied
by the wave functions of N4 and N, and the beta
functions by B,'s, taking into account all six per-
mutations we kept. Thus Eq. (3.10) will be mul-
tiplied by V, iy, u4, whereas &u4, in Eq. (3.12) and

Eq. (3.17) will be replaced by

quirements.
The relative coefficients of the B,'s associated

with the same covariant will be a1, the sign being
determined by Bose symmetry and the signature
of the meson trajectories (the baryon trajectories
are exchange-degenerate at present because of the
graphs we left out). As an example,

[B,(l —o», m —n», n —u34 P o.'45 g o.')
s B,(1 —2 interchanged)] (3.22)

gives in the (12) channel a trajectory starting at
u»=1 (or o.» =l+1) with signature (-1)' (or
(-1)'+'}. See Table 1 for the signature of meson
trajectories in terms having &u exchange in (N,N, )
channel. Recall finally that ~ exchange terms will
contribute to the I = 0 amplitude A'. A typical
term in A' will be

(Gv Gr}v ~e. . .&p, p2 sp e . . .p3 (p4+p, }

x y' u, (A+B+ C+D+E+E),

where A, B, . . . refer to the graphs of Fig. 2.
It is easy now to introduce the contribution of

the A, trajectory in the amplitude A . This ampli-
tude is antisymmetric in the interchange of m, and

v„ therefore the combinations (A-B), (C-D}, and
(E-F) should appear as the coefficients of the same
kinematical structure. Care should also be taken
to include the signature of the A, trajectory; this
can be achieved in the following way: Start from
the + exchange amplitude in A' and change the
relative signs of the invariants to get the pairs
(A B), (C-F), and (D-E). Accordin-g to Eq. (3.22)
this will be a trajectory of positive signature
starting at spin 2, which is exactly what we want.
Next we fix the sign of (A B) with respect to t-he

other permutations; this is done by making sure
that the (12) trajectories, i.e. , p and B, have neg-
ative signature and this requires the pair (A+ C).
It follows that all other meson trajectories have the
right signature properties as shown in Table II.

7r(

p, f,g
7r3-+-

N~ N~ N 5

N3

p, f,g
7r(--&--

Ns TABLE I. The symbols A, B, ... refer to the graphs of
Fig. 2 and to the corresponding invariants in Eq. (3.23).
This table shows what combinations of invariants, con-
taining the argument (1-0,'~45), are necessary to give the
proper signature factors to the various meson trajec-
tories.

p, B
Channel (7( (u2) (7(3cu2) (7t&7t3) (N4N5)

FIG. 2. The six diagrams, with adjacent nucleon legs,
used in the construction of Eqs. (3.23) and (3.24). The
various trajectories used in the model are also shown.

Invariants
Invariants
Invariants
Trajectories

A+C
B+E

A+E C+D A+B
B +D E+E C+E

D +E
p, B f
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TABLE II. This is the same as Table I for the terms
of Eq. (3.24) which contain invariants with the argument
(1-n"2).

Channel (N4N5)

Invariants
Invariants
Invariants
Trajectories

A+C A+E C —D
—B-F —B-D E —F

p,B p, B

A-B
C-F

-D +E
A2

This construction yields, of course, an A, trajec-
tory strongly exchange-degenerate with that of the
& (i.e., identical trajectories and related coupling
constants}. This is characteristic of dual models
where u and A, appear together in channels with
an odd number of pions.

This method, however, will only partially give
the coupling A,N¹ To get the full A, contribution
we have to add other terms so that when we go to
the A, pole the propagator has the right symmetry
property.

The explicit form of the amplitudes A' and A
is shown in Appendix A. Each amplitude can be
decomposed as a sum of terms. Thus we write pic Ns

follows: No b, trajectory should appear in A' '
and no N-N* should be present in A' '. We also
want to calculate the residues at the N and 6 poles;
however, in this kinematical region the graphs
which have been neglected up to now can become
important. Indeed, the arguments which were used
to disregard the "baryon-exchange" graphs were
valid as long as the subenergies in (34) and (51)
channels were large (Regge region), which is not
the case at the baryon poles of interest.

Since our main interest is in the determination
of the coupling constants, the effect of the baryon-
exchange graphs can be analyzed in the simpler
case when one of the (wry) channels is on the mass
shell. Consider, first, the case when e„=1 and
construct the amplitude for mN -pN. It will be ob-
tained by taking the residue in the amplitudes A'
and A and adding the covariant functions corre-
sponding to graphs where the nucleon lines are
separated by the pion line (see Fig. 3) which also
defines the notations. The most general form
using only terms leading in all channels is

A+ =A'+A
p B y

(3.23)

where Ap and A~ reduce, respectively, to A„
[see Eq. (3.17)] and A, , [see Eq. (3.12)], when

the residue is taken at the ~ pole in the channel

(N, N, ). Likewise A is written as

A =Ap +A~+A~, (3.24)

where Ap and A~ are obtained from A
p

and A as
explained above (and therefore contain the A, tra-
jectory in the nucleon-antinucleon channel); A,
contains the v trajectory in the channel (N, N, ) and

reduces to Eq. (3.10}by taking the residue at the
m pole.

The choice of the baryon trajectories is ex-
plained in the following subsection. p/

H. Isospin constraints and baryon trajectories

The relative phase of the amplitudes A' and A
is chosen so that

N5

A'" =A+ —A-

A~' A +2A
(3.25)

represent the isospin--,' and --,' amplitudes, re-
spectively, for the (34) [equivalently (51)] channel.
The isospin constraints in those channels are as

FIG. 3. The three diagrhms in ~N- pN scattering
and the definition of the s, t, and u channels.
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A' =--,'a' s) s gz, (G„—Gr)e. . . .P,'PssP&y [a~(&(1—a, , —,
' —a, )+&(1—a", , —,

' —a„))
+as)(e(1 —n, , —,

' —n,")+e(1—a", , —,
' —n„))+f)~6(-,' —na, —,

' —n „)
6(s nN s nN)+ce(s ~E s n6)+de(s alh s aN)]

+kp e . pspzspp(p4 ps) [ad(&(1 at s n.')+6(1- at 2 n. ))+ ]
mp

A2

'Ep, . ' '" )''O'. )'P(P. -).)'))[~K(8(& —~,", l —a.')-8(&-O';, l —~.'))+" )I~.

(3.26)

(and a similar equation for A ), where p,",=
11 ~ ~ ~

PlP2 M

The m-exchange term does not have leading con-
tribution in N and/or z in baryon channels be-
cause, otherwise, the isospin constraints in Eq.
(3.26) cannot be satisfied. Hence, it does not ap-
pear in Eq. (3.26), where only terms leading in
all channels are kept. The parameters a. . . are
determined by requiring that no 6 appear in the s
channel inA' ' and no N-N* in A' ', that the h
trajectory be signatured; and that the correct res-
idues be obtained at the lowest poles in all chan-
nels.

Among the latter type of constraints, an impor-
tant one is that imposed by the special form of the
p~N vertex. The most general vector meson-nu-
cleon-h coupling is given by

XPP5 ~5/1 ~5 p
p VSS+5 Glgp + G2 + G3 g2 ym&+ HZp ~m&+ mp )

(3.27)

but since the pled coupling is mainly magnetic
(Ml) the choice G,/G, =-1 and G, =O is necessary.
To calculate now the contribution of the amplitude
to the pl2634N5 vertex, we just replace, as sug-
gested in Sec. III D, the term p3" u4 by the 6 wave
function in all three covariants of Eq. (3.26).
Then, making use of Eq. (2.6) we find that only the
first kinematical structure has the desired form
for a pAN coupling. Since the three covariants are
independent, terms leading in a in the last two of
them can appear neither in A' ' nor in A' '. lt
follows, then, that only V, c. .. .p, pl2p~y u4 con-
tains the b, trajectory. If we assume, for simplic-
ity, that it does not contain the N-N* trajectory,
we get the following set of relations:

GA2 G2 I T
gP(d& 2

A2

(3.26)
2 T

Gv —GT
&PPa,"= 2gp~

G~pg++

Since the B-meson couplings are related to those
of p by the mechanism described in Sec. III F, -its

coupling constants to the 6 pole are completely
determined. We find

GA2
GBAss 1 1 a IG (G& G~)

mp

G~BA2"
~G

G+A2& GL D

GL gPA2~
BA2 fr

y

gp

3 gD G~- GT m~- mp
Gap g++ PSg2 PSB G pQ++ mQ+ mp

(3.29)

Gpss++ 1 gp & (ms -m -m, ) m)s+ ms2 2 2 2 2

Hl~ spa++ 4 g SgD SRQ PPjp

GBp~++ =0 .3

syrus us (3.31)

plus other terms of spin 2. Putting everything
together we obtain the pNN coupling in this model:

Until now we have always avoided talking about
pNN and BNN coupling. This is because most of
the terms which contribute to the N-N* trajectory
start at J=-,'. However, the model can be refined
to include the nucleon pole. Look at the p-exchange
graph. The expansion of the e. . .. covariants,
using Eq. (2.6), contains terms with spin-parity
—,
"in the baryon channels. Indeed, we find

~ ~ ~ ~

V5 . ~ ~ ~ P P3PSP4 Q4

= p"Vs[(ms' —ps ~ (ps+ p.))y„-m, (p. —p.)„]
&& sy, P,u (3.3O)

plus other terms of spin —,'. The terms explicitly
written out correspond to a —,

"particle in the (34)
channel coupled to a p meson in the (12) channel
and the arguments of the B, functions attached to
them will be —,

' —a~~, the other covariant we have
~ ~ ~ ~

V5 6. . . .P P3 Ps P4 P3u4

= p" s[-ps (ps+ps)yp —st(ps- ps)p]
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G2r=-'2 ""m,[n m '(G -G,) —2G,],

G2» 2m, ' o. 'm2'[(G„—Gr)/Gr] —2g

(3.32)

7P

»II
I

N

(b)

N

at the p pole.
It should be emphasized that the values "pre-

dicted" above are not the unique solution in this
model but they seem to give reasonable agreement
with the data.

Doing the same for the BNN coupling, we find

Gv~- G~=O as required by Gparity,

(c)

N
N

Gs Gv —GrG~= a'm~
gS mB 2G7( ~~

(3.33)

I. Summary of the results
N N

How well are the properties defined in Sec. III B
satisfied' The amplitude can certainly be con-
tinued to any kinematical region. Also, Bose sym-
metry has been explicitly put in. We are able to
obtain the double-pole residues pictured in Figs.
4(a)-4(h); only the p-A2 exchange graph shown in
Fig. 4(i) did not fit in our model. One feature,
however, is that the w-exchange term is not lead-
ing in the baryon channels; this is so because
otherwise we could not enforce the isospin con-
straints. While this is unfortunate in light of re-
quirement (6) it is not too bad experimentally
since a measure of the strength of this graph com-
pared with the other ones is given by the ratio
g2 „/g», - 0.3. Whether the requirements of
"maximal duality" and "minimum number of B,'s"
are verified is largely a matter of taste. Using
various constraints we can obtain relations between
the coupling constants introduced in the model.
The independent parameters are chosen to be

I d /fd / A2
gpw1iy 8p~g~ g$~ GgNNy GmNzL~ Gvy GT~ Gl

but all of them except G~, G~, G", 2 are fairly well
determined from other theories or experiments
and G", 2 will always enter in the model in known
combinations with other coupling constants [see

—N I
4

»
I

I
II

N

FIG. 4. (a)-(h) The double-pole graphs included in the
model. (i) The double-pole graph not included in the
model.

Eq. (3.28)] . We are left with G» and Gr only.
In an accompanying paper, this model is com-

pared with the data for the quasi-two-body reac-
tions which can be extracted from the reaction mN

-ncoN. Fits to the differential cross sections and
the density matrix elements are presented.
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APPENDIX A: THE AMPLITUDE FOR THE REACTION xN~m'uN

In the following,

2 P4P2 ~ e P2(P4+P4)'r 6~(1 —&,'„1—&22 2 +24 1 +44 2 +gy)

is a shorthand notation for

~" &PiP2~ &" "P2(P4+P2) r &~(1 — » 3 22 2 4
-2 (P2'P2~" +P2 ' ~P2)[P& ' (P4+P2)r2+Pi& fj&]eg(3 —&f2 1 —~» 2 —u2 1 —~4, 2 —&~~)

which follows from Eq. (3.15). When instead of 1 —oi»2 in 8' there is 3 —a]2 we just drop the first term.
We have the following equations:
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g+ ~f2 +p4& g p p' ~ g

x g, (Gt —Gs)e"...ps(p4+ps)'y'

x[8'„(1—af„ 1 —asss, —', —as~4, 1 —a4„—,' —as~i)+8~(l —ass„ 1 —af„—,' —a»~, 1 —a „—,'
a~»)

+ 8c (1 —at('„2 —a„,—,—a„,1 —n„, —,—a"„)+ 811(1 —n„, 2 —a„, —,—a„,1 —a„,—,—a,",)3 N f 3 5

+ 8~(1 —a„,2 —a„, —,—a„,1 —a„,—,—a») + 8z (1 —af„2 —af„—,—a„,1 —a„,—,—a4, )]
3 N p f 3 5

G~
gpQPg P3P5P4

mp

N N B p 5 N QJ 3x [8'„(1 —ap„ 1 —a», —,—a,"4, 1 —a4» —,—a"„)+
8 It (1 —a», 1 —af„—,—a», 1 —a 4„—,—a»)

f 3 N ~ 5 N B f 5 N 5+ 8c(1 —af„2—n~„—,—a,"„1—a„,—,—a») + 8c(1 —a„,2 —a„,—,—a,"„1—n„, —,—n,",)
B f 5 N N p f 3 N 5+ 811(1—ass ) 2 ats) 3 —nst, 1 —n4» —, —a4, )+ 81) (1 —afs, 2 —ats, 3 nss, 1 —n4» 3 —n43)]

A2

+ 2g p+m ~ ~ P3P5 P4
mp

x($3[8„(1—af, , 3 —n», —,
' —a,"„2—a„,—,

' —a»))-81)(3 —a», 1 —af„s —a», 2 —a„, —,
' —a»)

+ 8c (1 —a(„3—a„,—,
' —a,"4, 2 —a4„-,' —ass) —81)(3 —a,s, 3 —a„,—,

' —a41, 2 —a4„—,' —a„)

S( SS) 13) 3 st) 45) 3 41) ta( fS) 13) 3 53) 45) 3 43)]

fS) Ca 3 n34) 2 n45) 3 a41) 81)( nSS) afS) 3 n41) n45a 3 n53)

+ C(3 'VS) 3 aiS) 3 aS4) 2 n45a 3 a53) 8C(1 aSS) 3 ni~Sa 3 a41) 2 n45a 3 a53)

~ a () —aa„ 5 —a~„-,' —a„, a —a,"„-,' —a")- a (5 —a(„t —a~„-,' —a„, 2 —a„,—,
' —a„)]}I

+terms with m, and n3 interchanged,

A' = e"~V
B

x Gv Gz. Gs u+G~G~p, ' pu +GDGsp3' p3u yu

3 3 B f 3 b, Qj 3x[8&(1 —ais, 1 —ass, 3 —a34, 1 —n45t 3 asi)+8c(1 —ais, 2 —ais, 3 —a34, 1 —a45, 3 —ass)

+ 8~(1 —g„2—a„, —,
' —a», 1 —a,» —,

' —a,",) + itt —tts]

+ (Gt —Gs)Gtt pi 'psy()

3 Q ~ 5 B B 5 b, 3~pt +pS[8A( alS) 3 SS) 3 34) 45) 3 51) tt( Ssa PS) 41) 45i 3 53)

+ 8c(1 —a„,2 —n„, —, —n,4, 1 —a „3—a„)+ 81)(3 —a„,2 —n„, 3 —a, 1 —a „—,—a„)B f 3 b, ~ 3 N f 5 b,

+ tt(3 nSSa 2 13) 3 ast) 1 n45) 3 43) +83'( tS) 13) 3 53 a 45) 3 43)]+ 1 3]

+ (Gs (t)" +G3Gcpt (dpt" +GttGsps'(t)p. )(p4-ps)„
mp

N f 5 N QJ 5x[8„(1—a», 1 —a», 3 —a,"4, 1 —n4» 3 —n»)+8c(1 —a», 2 —a», 3 —a4» 1 —n4» 3 —ass)

+ 8tt(1 —a„,2 —a„, 3 —a"„,1 —n45) 3 —a 43) +~1 m, ]



1528 P. AURENCHE

Gz,
+

2 GD Pl Ps (P4 P5)2
mp

x(p, ~ (dp, [(3A (1 —a„,3 —n„, —,
' —a,",1 - n4„, —a»),+ (:D(3 —n», 1 —a„,, —a41, 1 —a „—,' —n,",)

+ ec(1 —u~», 2 —a11'„-2' —a,"„1—a„,—,
' —n» ) + 8D(2 —asD„2 —as~„22- —n~, 1 —n„, —,

' —a,",)

+ ('D(3 —a„,2 —nfs) ~ —n"„, 1 —a„,—,
' —a42)+ 62 (1 —u„, 2 —a„,—,

' —a,"„1—a„,—,
' —a,",)]

+%1~ 1T2

-2 ' (G, (D2+G p, ~ (dps)(G, A 'p, !(p,„[(:„(1—aD„3 —n„, —,
' —a,"„2 a,"„-,' u,",)

mp

+ ~c(1 ass) 3 ais) 2 54) 45~ 2 52)
8 f & N & 5 N

nss 3-nis 2-a41 2 —n4s 2-ass}]

+P42[6D( —
25 ~

—C) 2 —
41 ~

— 45) ~ — 55)

L 1 sps[sPsP5[ A( 12) 25) 2 24) 4us2)nsi)
+~c(1 —nis, 3 —ais) 34) 2 —a45) 2 ass)

+ps P4[8D(5-nss, 1 —a», , —n„, 2-n4» 2 ass)

f B 5 N & 5 N~E (3 12 12 2 55 45 2 42}

s(5 ~22) 3 ni~s~ 2 asi) 2 n45) 2 u42}]~)

+terms with w, and m, interchanged u4,

A2

A~ =a' vs 4
& - qplP2 gpA p 1

&~" ps p4+Ps y' A —8+C-D+g -+
'a'm~

2GA2
+g2A 2, 26"...Pspsp4(A B+C D+E F)P"2'n'm~' "' ' ' 4

2GA2
+gp„,, E"...O')';)';()I (A+B+C D+5+F) —P+, (A B+C+D+2+F)I)+

mp

+~1 ~$ +4 ~

GA2
Aii = n' 4, (GsG& 5) (d" +GDG& "2"pi ~ (dp12+GsGL 2 ps ~ i()pss}y„(A - B+C D+E F)

A2+, GDGL"'"p, p, y" [p, (dps (A —B+C -D+E F)+ii,—2(s]—

A2+, 2 (GsG2 + (()" +GDG2 2"p, ()p +G(1G +s"pL(()psss)(P4 -ps)2 (A —B+C —D +E —F)
P

A2+, 2GDGL 2"pi ps(p4 —ps)" [pi (dps (A —B+C -D+E —F)+2(,—2(s]

+ ' ((Gs(()"+GDpi (()P12)[G2.~"ps[ps (A+C+D) —p4 (B+E+F)]}

+GL
"2 Ps Ps[ps'Ps(A+C+D} —Ps P4(B+E+F)]—wi 212) 244,
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2g p gp NNv51~ " pl p2 p3 & 3y5l A( &12 nk3 2 n34 n45 2 ~251)

C( +129 +1St 2 +348 +458 2 +52)

p s r s N+6+(1 —%3, 1 —&13/ 2
—tw», —124» 2

—1242) + w, w, ]

+7r~ m3 Q~.

A, B, . . . in A (or Aw} stand for the corresponding 8„, 62, . . . in At (or A2).

APPENDIX B: DICTIONARY OF THREE-POINT
FUNCTIONS

All momenta are incoming. The quantities on
the right of the (3 symbol refer to the isospin.

pm' vertex

gp =g2 p„*(p, —p, )"8 p2 ~ (w, x w,).
f ww vertex

alt= g'"f„*,PNP,"8 w, w, .
mf

pwca

vertex

gp(uf}&a8yrPeP&& p p*' & ~

pA, m verte~

K =gp222e~wy5pwptp*"A2 pp4 8 p* ' (2 xA2) .
B~m ver tex

&NN vertex

SR = v, (G» —G r) y „+2
'

(p, —p, )„(v"u,
mp

8 y (N5)iy2X(N4).

BNN vertex

K = v,iy, 2
' (p, —p,)„ X'(N, }iy,y g(N ) ' B.

mp

A,NN vertex

'
ly„(p4 p5). +y.-(p4-p, )„]

mp

GA2
~ (p -p ),( p p).&1")"-

mp

8 )( (N5)iywyyf(N4) X2.

gsm&B+ ' (d+ p ~ ~p ~ B+, 8
B

BA&m vertex

ONE" vertex

vg" b,„.m

gpA2 p~ ~B + ~ p~ ~p„BB*~ p„
mg

8 5*~ (wxX, ).
gNN vertex

R =G,N„v,i y,u48 y (N5)iy2~(N ) w.

pNN vertex

P

K=v5 (G2-G2r)y„+
2 (p4-p5)„p&u,

mp

y, (N5)iywyg(N4) ~ p.

pNb, "vertex

r pPSV
4m G ppg++ VsZ ps g pflgv ~

m~+mp

BNb, "vertex

1 GBN~++K —Vs G&N~++gp v+ Y ppsvmQ+ mp

3
BN dLG ++

(m +m)' ' BPg v

my+ mp
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