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The radiative correction to elastic hadron scattering is derived and evaluated for a number
of processes including scattering from nuclei. The size of the correction is in some in-
stances substantial, and some experimental results, as well as conclusions drawn from

them, should probably be reevaluated.

I. INTRODUCTION

The analysis of electron scattering experiments
is complicated by radiative effects associated with
both the emission and the reabsorption of virtual
photons and the emission of real photons. Accord-
ingly radiative corrections programs have been
developed to correct for these effects and thus
clarify our studies of the structure of the particles
bombarded by the electrons.

All charged particles radiate to some extent in a
collision, of course, with electrons representing
the most extreme case. It does not appear to be
well known, however, that radiative effects of a
significant magnitude can be present in purely had-
ronic interactions, where the lightest particle in-
volved is the pion. This point will be illustrated
in this paper. We have derived an expression for
the radiative correction to any elastic scattering
process in which the scattered particle is detected
and its momentum measured. We have evaluated
- this expression numerically over a considerable
kinematic range for the elastic reactions 7*p,

K*p, and p*p. We shall see that these effects have
been sizable in kinematic regions covered by past
experiments and will become still more important
as experiments are pushed to higher energy or
precision or both. The corrections do not simply
represent a change in cross-section normalization.
They depend on the four-momentum transfer ¢ and
will therefore modify the observed ¢ (and u) depen-
dence of the cross section. For example, correc-
tions to the 7"p cross section at 20 GeV/c incident
momentum can exceed 30% when the pion scatters
in the backward direction. Furthermore, owing to
terms arising from interference between radiation
from the pion and radiation from the proton, the
size of the correction for 77 p scattering can be
quite different from that for 7*p scattering, thus
complicating the interpretation of isotopic spin re-
lations. In addition to the above reactions we will
also briefly discuss the size of these corrections
in hadron-nucleus scattering. We will then con-

|©

sider how these corrections are to be applied in
experimental situations. While our results apply
to elastic scattering processes, expressions for
analogous corrections to two-body processes such
as 7"p- 7% or K~p- m"Z* or photoproduction
processes can be easily obtained from our treat-
ment.

Our approach is that developed by Yennie,
Frautschi, and Suura' and applied to elastic reac-
tions by Tsai’? and by Meister and Yennie.® Figure
1(a) represents the scattering process 1 +2— 3 +4.
Particle 1 is incident on particle 2, which is at
rest in the laboratory. For the moment all four
particles are arbitrary. The other diagrams in
Fig. 1 represent radiative processes involving the
emission and reabsorption of a virtual photon.
These cannot be distinguished from the nonradia-
tive elastic process, and their effects must there-
fore be considered. Diagrams 1(b)-1(e) are known
to produce infrared divergences.* These are can-
celed exactly by analogous divergences associated
with the diagrams in Fig. 2 which represent the
emission of real, soft photons. These diagrams
must be included in order to obtain a finite result.
Physically, their presence is easy. to understand.
No experiment has perfect energy resolution;
every measured elastic peak includes events in
which radiation was emitted during the scattering
process. Let us be more precise. Figure 3 rep-
resents the momentum spectrum of particle 3 at
fixed scattering angle 6,. For elastic scattering
particle 3 is the scattered particle and particle 4
the recoiling target. The momentum resolution is
assumed to be of sufficient quality that the width
of the peak is a small fraction of the distance be-
tween the elastic peak and the threshold for in-
elastic pion production. We will consider less
favorable experimental situations later. The tail
on the low-momentum side of the elastic peak
arises from real bremsstrahlung. Operationally
the measured elastic cross section at fixed angle
is defined as follows. At a distance Ap, below the
elastic peak but above the inelastic threshold a
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9 RADIATIVE CORRECTIONS IN ELASTIC HADRON... 1487

cut is made, and, after appropriate background
subtractions are made, the yield above this mo-
mentum cut is integrated. Dividing this integrated
yield by the spectrometer solid angle and correct-
ing for detection and identification inefficiencies
leads to the measured cross section at scattering
angle 6,, do,/d,. Events associated with the
emission of real photons which are sufficiently
soft that p, exceeds the momentum cut are in-
cluded in the measured cross section. Events in
which real bremsstrahlung has reduced p, below
the cutoff are excluded. Since the shape of the
bremsstrahlung spectrum can be calculated with-
out recourse to strong-interaction theory for soft
photons, the amount lost from the elastic peak by
this mechanism can be determined and a correc-
tion factor applied. The radiatively corrected
elastic cross section can then be written as

Ao _doy sy
g,  dQ, :

We will calculate 6(Ap,) in this paper. The infra-
red divergences will be handled by assigning a
mass A to the real ard virtual photons and letting
it go to zero at the end of the calculations. The
contribution to the cross section from a radiative
diagram can be factored into a part dependent on X
and a second, finite part independent of A. The
former terms will cancel out when all contributions
involving both real and virtual photons are consid-
ered.*? Therefore only the finite residues need be
explicitly calculated. We will only calculate the
contributions from real bremsstrahlung in this pa-
per; these represent the dominant part of the ra-
diative correction. The magnitude of the virtual-
photon contributions to the radiative correction
will be discussed briefly in Sec. V.
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FIG. 1. Feynman diagrams which are associated
with elastic scattering. Diagrams (f) and (g) represent
Coulomb effects and are important only at very small
angles.
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FIG. 2. Feynman diagrams associated with the
emission of a real photon. Diagram (e) is associated
with radiation from a charged boson and would only be
important at very small angles.

II. CALCULATION OF THE RADIATIVE CORRECTION

We must calculate the cross section associated
with the diagrams of Fig. 2. Our formalism is
similar to that of Tsai.? For low-energy photons
we can ignore magnetic-moment effects and regard
the radiation as coming solely from the convection
currents. (For spinless particles such as the 7 or
K, of course, no approximation is involved.) De-
pending on the experimental situation we may not
always be able to restrict ourselves to sufficiently
low-energy, or sufficiently soft, photons. We will
consider such situations in Sec. V. We also regard
the hadronic reaction as being undisturbed by the
radiation,® i.e., we take T(p,, p,), defined below,
to be evaluated on the mass shell at the values of
p, and p; which would obtain in the absence of ra-
diation. We can then write the matrix element for
scattering with bremsstrahlung as

o
dQldey

Inelastic
Spectrum

Cut P3

FIG. 3. The elastic peak at fixed scattering angle
together with the tail arising from real bremsstrahlung
and the onset of the inelastic threshold. Effects of
experimental resolution are also shown.



1488

- bye _, b€
A'e<z‘~‘ps-k Fpy ok

(2.1)

re B B (e, ),

where ez,, ez,, ez;, and ez, are the charges of the
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four particles and T is the matrix element for the
hadronic reaction in the absence of radiation; € is
the polarization of the emitted photon. Taking the
modulus squared of A and averaging and summing
over initial and final states leads to the differential
cross section,

€% N,N,N;N, b P bs b2 )2
do =——-——‘——3——3—1<z i -z +z -2z
! 14 E,ym, sps'k lp1'k 4?4'k zpsz

ds

1 d%, 1 d%

1
XZ | T|2(27)*6%( p, + Dby = Pg = g — k) @nF _Ee: @F E, @r° e "

The photon has been given a finite mass a, i.e.,

w = (k2 +2%)2, The N; are normalization constants;
N; =3 if particle i is a boson, and N;=m, if i is a
fermion. The incident flux is given by V=p,/E,.
The measured cross section involves an integra-
tion over a region of phase space determined by
the experimental situation. The integration is of
the form

X< fdssd”kdpq
3

20 E 64([)1‘*[)2-?3-[74-’?)

22 ITI?, (2.3)
where
- Ds b, bs _ b\
xz_—(z3p3.k—lel.k+z4p4.k Zzpz.k>
(p;-p;)
”Z:I Si5 2424 (Br 2D, F) (2.4)

and s;; is £1. Our remarks so far have been gen-
eral. From this point on, however, the details of
our procedure are determined by the particular
experimental conditions specified in the Introduc-
tion, namely detecting the momentum of the scat-
tered particle within a limited angular range. Fig-
ure 4 illustrates the kinematic region of interest.
The line AD describes the position of the elastic
peak as a function of the scattering angle. The
line BC represents the momentum cutoff.

We begin by integrating over p,. This leads to

X= f ETE;& dia((r-k)z—mf)e(E.,)xzz ITI?,

(2.5)
where we have introduced
Y=py+R=py+p, ~ by
and

9(y)={(1)’ »>0

y<0.

(2.2)

The energy of a photon which leads to B; =Pg min
is a strong function of its direction of emission.
By transforming to a coordinate system in which
p,+k=0, i.e., »=(7,0), we can simplify the pho-
ton integration, because the § function is then in-
dependent of the direction of the photon. Letting a
tilde represent the variables in this special frame
we have

.2
k dk =kdd = (@2 = X3V
and (2.6)
(r=kP-ml=r?=-2r@d+22=mp.
Therefore
. (@ =n)
f (wz - K2)1/25((1’ _k)z - mf)dw = (__2_.)_
7o
_ [(k ) - )Lz,rz]x/z
- 272 ’
so that
P3
Pamax |- \A
el
P3 (Bave)
| 0
Ary \ 8
l Elastic Kinematics
Pamin B C. «— Cutoff
¢
GMIN BNE BW 63

FIG. 4. A spectrometer angle bin extends from 6,
to 6. Elastic scattering occurs along the line AD.
The cutoff occurs along BC. The average angle 6,,
depends on the angular dependence of the elastic cross
section.
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 E3max By )? = A2y 2|12 -
x= [da, 2171 [ ™ paE, (=21 o2 ) [ 02, @.7)
E3 min
where Py

Ymin2 =M +2m A+ ~mE+2m .
We now do the p, integration. We define x as
x=r?-mj?
=mli+mli+mi-mz2+2m,(E,-E,)
—2E,E; +2p,p;c086,.

Our integral then becomes®

¥ dx
(a4 2 by (*mex __xdx _
X f Qsz ITI 4m2"7' * i 2(x+m42)

x fxzd@,
(2.8)

where

'=1+—| E,-p,—cosb, }.
n s 1= b b 3

In the limit of high-energy scattering where m,
<E, andm,;<E, 7’ reduces to the familiar com-
paction factor encountered frequently in electron
scattering,

N=E,/Es=1+(E;/m,)1-cosé,).

The lower integration limit is x ;, =2m A, which
corresponds to the value of x along the elastic con-
tour AD in Fig. 4. The curve BC determines the
value of x ., Which is a function of ;. Owing to
the 1/w form of the bremsstrahlung spectrum,
most scattered particles lie near AD, while rela-
tively few are near BC. We therefore replace BC
by the angle-independent line B’C’, with little er-
ror, which leads to a value for x g of

- 2 2 2 2
Xmax =My +my+m® —m P2 +2my(Ey —E5 i)

= 2(E\E3 in = P1D3 min €OSH,) .

We will also approximate the momenta p; in x? by
their elastic peak values. The most appropriate
value for the average angle 6,, will depend on the
angular dependence of 27| T |2. Defining Ap,
=p&(6av) = D3 min, Where pg(0,) is the momentum at
the elastic peak at 6, =0,, we finally get

X max =2MyNAE’, (2.9)
where
’ = ._T’, = ___77' £3.
AE’'=—AE,= A (2.10)
n 8 n E, Ps

.Our final expression for X is now

X=dQ, Y | T(0u)|?

’

4m,n

2mgnAE’ xdx f .
X — 24 .
fzm‘\ 2(x+m ?2) X
(2.11)

The elastic cross section at angle 6,,, in the ab-
sence of bremsstrahlung, is given by

N,N,N,N, p aQ
do=—1-2_-3"4F3 T(Oav 2 273
o (2‘”)2"12 P1 Zl ( )I mzn’

Our inelastic cross section do;/dQ, is therefore
related to the elastic cross section by

do do « xdx 2.4
2(x+m2) jx s,

(2.13)

(2.12)

2myNAE’
aQ, N daQy, 8m? 2mg\

where o =e?/4m.

In performing the photon angular integration in
the special frame it is useful to express the kine-
matic variables in covariant forms: w=Fk -7/
(722, E; =p; -v/(r?)V% also k¥ =1(x+2%). Ex-
pressed in terms of laboratory quantities the quan-
tities p; -~ have the following forms:

_1(, 2 2 2 2
byr=s(mP+ml-m;® - my®) +myE,,
Dy r=myE,
1 2 2 2 2 (2.14)
psrr=3(m*+mi-m, 'm3)+szl;
por=mg.

We then have

[a (p:°)

(pi k) p; k)
1 d'
=(P.~‘i7;)fo dyjﬁ
a4y

1 .
=41T(Pi -PJ)‘{O |‘ﬁ|2py2+th- 2
y

- . ! dy
=47(p; P;)J; [k 7P =22r2]p,2+22(p, -7 )

_ . 1 (x + m 2)dy
=167( p; P;)fo (xz—4)\2m42)p,q;+4)\2(ﬁ,'7‘)2 ’

(2.15)

where py=p; v +p; (1 - y), and we have neglected
all but leading terms involving A*>. The integration
over x leads to
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2manAE’ xdx J( 5=
— dQ
J;,,,‘x 2(x+m 2) X

1
=4ms;; 2, 2,(p; p,)f {lnp =2In

1 d 2
=41l’ngZiZj(p£'p]){J. p-yz ln-‘?fz——Zln
0 y

. 1 d p 2
=4ms;; 2, 2,(p; 'Pj)f 1‘,_yz‘1n_;z—
0 y

where

__L.____
i =(by P:)lnm YN

The quantity /,; represents the finite residue as-
sociated with the bremsstrahlung. The integral
involving A? contains the infrared divergence and
will cancel an analogous divergent expression ob-
tained from a diagram in Fig. 1 associated with
the emission and reabsorption of a virtual photon
between lines ¢ and j.

Our measured cross section is then the sum of
the elastic and inelastic cross sections:

do, do. do;

a0 "do tan 'dn(l 5), (2.18)

where

a
6=;Zs”z,-z,1”.
7]

It is worth commenting that 6 is inherently positive
and differs by a sign from the definition of Tsai.?
Note that if either particle i or particle j is neu-
tral there will be no contribution to 6.

(2.19)
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-8ms;;2,25 14,

—’-’-+(p,p)f 1+ 22obn), ] A

o

D7 (P; r=p;7) :'
monAE’ Zln[ IR y

(py -7 - by 7)

b7 y] 5, }

(2.16)

_bir ld_y_z 1[
rrtm/-\l'3’-£1),2 J;n

(2.17)

pj r py

We have calculated the correction to the elastic
cross section associated with the emission of a
single photon (and, implicitly, with the emission
and reabsorption of a single virtual photon). In
fact many photons can be emitted in the scattering
process (indeed an infinite number of infrared pho-
tons can be emitted), and these higher-order ef-
fects cannot be neglected. Because we are dealing
with soft photons which do not affect the scattering
process, the emission and/or the reabsorption are
independent events, and the over-all behavior is
described by a Poisson distribution. It can then
be shown that for the general case of multiple pho-
ton emission Eq. (2.18) should be replaced by*

do, do _s
dQ Tan €
This is our final result.

We now evaluate 7;; in the general case. We get
that

(2.20)

(2.21)

_P;‘Pl{ [Q; Py (ps = by) Qu‘*PJ‘(P:‘P;)]( bir Py >
I I, = In 1 1
CRREE 2Qy | Qi +0i (D= 1;) Quy=b;-(Di=0y) nmz"AE'+nm277AE'
+21n<21;1>1n|1+c'-,y1|—21n<23_—1>lnll+c”yzl
I Y2
+1n(7.p’)[ln<y1_l>—ln<yz_l>]
7 Dy Y1 Y2
~an( ) e (e ) e () - ()
24’(3’1*1/611 v2e y1+1/cu vae ya+1/cy; 2e y2+1/cy; ’
where

my®=pi Py +Qy

m;®—p-p;—Qy

Qy; =[(p4 by - m‘amja]l/z, Y =
and

c _re(p=p))
i = ,r.pi .

2 2 ’
my“+m;*=2p;p;

yz_m(2+m,2-2p‘ b, s
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®(x) is the Spence function’
x
d
‘I>(x)=f —In|l1-y| 2
o y
The following integral was of great utility:
In(1 +dy)dy

fl In(1 +dy)dy _ Jl
o ay?+by+c  Jy aly—y,) -v,)
1 1

-1

0]

—-In|1 +dy2|1n(22—> +&

Y2

The quantities y, and y, are the roots of the de-
nominator of the integrand.

This expression can be applied to any two-body
process in which the particles are relatively sta-
ble. By that we mean that the particle widths I'
are much smaller than the maximum energy which
can be carried off by a photon in the rest frame of
the decaying particle. Then for photon energies
ranging from k£ ~T to k ~AE, evaluated in the rest
frame, the initial and final states are two-particle
states, and we can use Eq. (2.20). For < T we
have to worry about the details of the decay of the
unstable particle. If ' <AE we can use Eq. (2.20)
over the entire photon energy range with negligible
error. Therefore this formalism will work for re-

1491

d 21_>_ (i@) (_y,_>
ayl_yz[ln[1+ yllln< 5 ) V+1/d +& yi1/d
1

)-+(5=tm)]

actions involving particles which decay weakly or
electromagnetically, such as K™p—7"Z*. It will
not work for reactions like 77p - p~p.

(55
v, +1/d

III. THE CORRECTION FOR ELASTIC SCATTERING

We will now obtain an explicit expression for the
radiative correction to elastic scattering. We let
my=my=pandm,=m =M. Also z,=z,=1 and z,
=z,=Z. Furthermore, Z contains the relative sign
of the charges of the beam and target particles,
i.e., Z=~|Z|if the particles have like charges,
and Z = | Z| if they have charges of opposite sign.
After a great deal of simplification we arrive at
the following expression for &:

B T R,
6—"{[ 2 1n<Q+ ) 1+z Blanl Baana ZInZE’,—-:Slnn

(E,—E)Q-1)

(E,-E;)(Q—1) )

- Zuz_t[d)(_ (E,+E,)t - (E, —ES)Q> +¢<(E1 +E)t+(E, —E,)Q

(E, —E;)(Q+1)

"I’<'(E1+E3)t—(El—E3)Q)“I’(

1 @t (E-E)2u2>]
1“<Q+t>1“<“ EiEl

E M 1 1
- In=4 - = —1)- —
ZZ[ n e/ 21nnAE’<B4 InB, 1> B4<1nB41n
z Mb; c.4 - (E —M> <
+ —| In| —= InR; +&| =——)-9o
Bs[ Esa; E,a,4 s b3

(B —E;)Q+t) )

(E,+E )t +(E, - E;)Q

E,+M
2M

- ®(-R B,)+®(R,/B,) - ®(R,) +<I>(—R.,)>]

E3—M> ( E3—M> <E3—M>
=T )+ef - -3
ps ) \" h.R; bSR3

+<I,<M(M—E;)(E,—Ist,) )_(D(M(M—E;)(E,—E,,) )+¢<(ME;- uz)(El—E4)>

Cn

Cia

Ciq

(SO NEED) | M | 1]
Cn Esa; E,aq

- Bé[ same expression with 1— 3] }
1

(3.1)
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TABLE I, The fractional change in the cross section arising from radiative effects, ed -1,
for x*p and xp scattering for the three projectiles x=7,K,p. The quantities ¢ and » are in
units of (GeV/c)?. The value of ¢ occurring at a c.m. angle of 90° is marked by an asterisk,

|©

The cut has been placed midway between the elastic peak and the threshold for pion production,

~t —u e -1 e -1 —t —u et -1 e’ -1
TP —~TP)
p1=2 GeV/c p1=20 GeV/c
0.100 0.016 0.017 0.100 0.028 0.028
1.000 0.041 0.059 0.500 0.065 0.066
1.511% 0.041 0.073 1.000 0.085 0.087
2.000 0.862 0.039 0.084 5.000 0.138 0.153
3.021 ~0.159 0.021 0.110 18.33* 0.169 0.247
35.13 1.500 0.077 0.382
py=5GeV/e 35.63 1.000 0.067 0.393
0.100 0.021 0.021 36.65 —0.019 0.035 0.423
0.500 0.047 0.051
1.000 0.061 0.069 p1=100 GeV/c
2.000 0.073 0.091 0.100 0.036 0.036
4,277 0.078 0.127 0.500 0.084 0.084
5.000 0.076 0.137 1.000 0.110 0.111
7.486 1.000 0.053 0.177 2.000 0.140 0.141
7.986 0.500 0.043 0.187 10.00 0.225 0.232
8.558 -0.072 0.027 0.202 93.38% 0.340 0.461
185.2 1.500 0.094 0.79
p1=10 GeV/e 186.3 0.500 0.085 0.829
0.100 0.024 0.025 186.8 ~0.004 0.043 0.856
0.500 0.056 0.058
1.000 0.073 0.078 =200 GeV/c
5.000 0.113 0.142 0.100 0.039 0.039
8.952* 0.118 0.180 0.500 0.092 0.092
10.00 0.116 0.190 1.000 0.121 0.121
16.87 1.000 0.060 0.272 2.000 0.154 0.154
17.37 0.500 0.048 0.283 10.00 0.248 0.252
17.91 ~0.037 0.031 0.298 373.4 1.000 0.086 1.071
374.4 ~0.002 0.047 1.128
Kp - Kp
p1=2GeV/c p1=100 GeV/c
1.000 0.010 0.026 1.000 0.027 0.029
1.411% 0.010 0.035 5.000 0.069 0.083
2.000 0.010 0.047 18.21* 0.099 0.171
2.823 0.008 0.061 35.42 1.000 0.024 0.315
p,=5 GoV/e 36.43 ~0.010 0.007 0.336
1.000 0.018 0.026 p1=100 GeV/c
2.000 0.027 0.044 1.000 0.034 0.035
4.171% 0.032 0.075 2.000 0.055 0.056
5.000 0.031 0.087 5.000 0.092 0.095
7.304 1.000 0.017 0.123 185.5 1.000 0.029 0.690
7.804 0.500 0.012 0.132 186.5 ~0.002 0.008 0.721
8.342 —0.038 0.007 0.140 15,2200 GeV/e
p1=10GeV/c 1.000 0.038 0.038
1.000 0.023 0.027 2.000 0.060 0.061
5.000 0.054 0.081 5.000 0.100 0.102
8.842% 0.060 0.118 373.1 1.000 0.032 0.925
16.66 1.000 0.021 0.207 374.2 ~0.001 0.008 0.963
17.16 0.500 0.014 0.216
17.68 ~0.020 0.007 0.225
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TABLE I (Continued)

—t e -1 ed -1 —t 8t —1 e —1
b —pp
p,=10 GeV/c ,=200 GeV/c
1.000 0.010 0.014 1.000 0.015 0.016
5.000 0.031 0.056 5.000 0.055 0.058
8.540% 0.035 0.087 10.00 0.084 0.091
_ 20.00 0.120 0.134
=20 GeV/e 92.95% 0.186 0.292
1.000 0.012 0.014 _
5.000 0.041 0.054 =100 GeV/c
10.00 0.058 0.089 1.000 0.016 0.017
17.91% 0.067 0.134 10.00 0.092 0.095
20.00 0.132 0.139
186.8* 0.260 0.385

The quantity ¢ is the four-momentum transfer
squared, t=(p, - p,)%; also,

77=E1/Ea,
Q=(t2 - 42”2,

(148, >”2
B4‘<1_B4 ’

_ E4 -M 1z
R“<m+M> ’

ﬁ4=P4/E4,
and
Bi=p;/Ey,

=Pi+E1_U~2/M p;+E; =M
pi—E;+u*/M p;—E;+ M’

a;=M*?+u%*-2ME;,
bi =pi(E} - M),

Q;

Ri =M(M_E*i)
i ME:-IJ.z ’

Ei =E;tp;,

where i=1,3. Also
Cii =M2Ei —ME‘ E;+‘J.2E4—E4ME;,
Cis=M?E, - ME E}+u*E,~E;ME; ,

where j=3,1 wheni=1, 3.

The terms proportional to Z are interference
terms arising from the product of matrix elements
for radiation from the two particles. The Z2
terms represent radiation purely from the target
particle. For relatively forward scattering angles
the interference terms essentially cancel out, and
the Z? terms are small, because the momentum
transfer and therefore the recoil energy are rela-

tively small. The Spence functions are negligible.
At backward angles the interference term multi-
plied by Z/B, becomes quite small, leaving the
other Z term (which is intrinsically negative) to
contribute significantly to the size of 6. Further-
more, the momentum transfer is now relatively
large, and the recoil-associated Z2 terms become
important. The Spence functions cannot be ne-
glected here. In situations where both particles 1
and 3 are relativistic the terms following the
Spence functions can be neglected. Indeed, in the
limit that B, =B, =1 and —¢ > p? our expression for
5 reduces exactly to the one derived by Tsai? for
elastic electron-proton scattering, save for the
first two terms in the latter expression. These
represent corrections arising from vacuum polar-
ization and a vertex correction to the electron.
Such virtual-photon effects will be discussed in
Sec. V.

The quantity e® — 1 represents the fractional
change in the measured cross section arising from
radiative effects. We have calculated this quantity
for mp, K*p, and p*p elastic scattering in Table I,
for a range of laboratory scattering angles cover-
ing nearly 180° (except for the proton) and incident
momenta of 2, 5, 10, 20, 100, and 200 GeV/c.
Our cut has been placed midway between the elas-
tic peak and the inelastic pion threshold. The ki-
nematic variables ¢ and u=(p, - p,)* are also
shown. We see that the radiative effects grow
with energy and are quite large for backward-an-
gle scattering. Moreover, for relatively small-
angle scattering the effects are essentially inde-
pendent of the sign of the charge of the incident
particle, while in the backward hemisphere the
effects decrease rapidly with increasing angle for
positively charged incident particles, but continue
to increase for incident particles of negative
charge. We can qualitatively understand this be-



1494 MICHAEL R. SOGARD 9

havior from classical considerations. The field
of a relativistic charged particle is essentially
compressed into a plane transverse to the direc-
tion of motion. When the particle scatters, it
changes direction in a time short compared to that
required to transmit the information of scattering
to its field. Consequently a fraction of the field
continues in the original direction, resulting in
radiation. Backward scattering represents the
most extreme change of direction, of course. If,
however, the beam and target particles are of the
same charge, that fraction of the field of the beam
particle which continues forward can attach itself
to the recoiling target particle, which is traveling
in nearly the same direction; then little radiation
ensues.

The effects of radiation are most serious for mp
scattering, both because of the absolute size of
the effects and because of the rich structure in the
backward scattering peaks, where the effects are
largest. Because of the considerably larger cor-
rections to 77p scattering than to 7*p scattering
the presence of the radiation can significantly in-
fluence isotopic spin relations. The effects are
naturally smaller for Kp and pp scattering.

The radiative correction is zero at £=0 and in-
creases with —¢. This causes the slope of the for-
ward diffraction peak to appear steeper than it
actually is. While this error is not large, amount-
ing to only a few percent for mp scattering at 100
GeV/c, it represents an effect which does not dis-
appear asymptotically. Indeed, for small scatter-
ing angles and M?> ~¢> 2%, & can be approximated
by

2 =t E E
~ — —_—) - =1 = =L
b - [1n( " ) 1] In—> =T¢)In—.

Our measured cross section is then

do, _do

e~Tn(E/AE)
aQ -~ dQ )

At high energies s~2ME,, so that

&m= d_O" =T In(s/2MAE")
aQ dQ

_do s -T

Tde ( 2MAE’ >

Thus the radiative effects introduce a weak s de-
pendence into the cross section at high energy,
which causes the diffraction peak to shrink.

At large scattering angles, but away from the
backward peak region, the radiative corrections
are large for beam particles of either charge.
Predictions have been made of the s dependence of
do /dt at fixed center-of-mass angle based on a
composite model of hadrons.® At fixed center-of-
mass angle the ¢-dependent radiative effects will

appear as an additional s dependence, amounting
to changes in the cross section of about 17% for
m*p scattering and 25% for 7”p scattering at 20
GeV/c and an angle of 90° in the c.m. system.
Values of ¢ corresponding to scattering at 90° in
the c.m. system are denoted by an asterisk in Ta-
ble I.

So far we have only considered reactions in
which the target particle was a proton. Radiative
corrections will of course also play a role in re-
actions involving nuclei. Elastic 77d scattering,
for example, has been measured at 9 GeV/c inci-
dent momentum out to momentum transfers of 2
(GeV/c):.® Radiative corrections in the neighbor-
hood of 5-10% might be expected in this region.
While corrections of this size cannot reconcile the
present discrepancies between theory and experi-
ment in the double-scattering region, they do act
to reduce the difference, and they certainly must
be included in future work involving more precise
experiments and theories.

Similar comments can be made about heavier
nuclei. The range of momentum transfers over
which the elastic scattering cross section is ap-
preciable is not large. Momentum transfers of
this size would not in themselves lead to signifi-
cant radiative corrections. While Z is greater
than unity, the recoiling mass is much heavier
now, so it is not clear whether the Z and Z2 terms
are any more important than before. However, in
order to ensure the exclusion of inelastic events
we must now choose AE to be proportionately much
smaller than before. For example, the first ex-
cited state of C'2 is at an excitation of 4.43 MeV.
If a 7°C*? scattering experiment were performed
with sufficient resolution to permit separation of
the elastic peak from the inelastic contributions,
the radiative correction would amount to about 7%
for an incident momentum of 1 GeV/c and t=-0.5
GeV/c. The same correction for 7*C*? scattering
would be about 5.5%. In a similar experiment for
THe* scattering for incident momentum 1 GeV/c
and t=~1 (GeV/cf (AE now corresponds to an ex-
citation energy. of 20 MeV) the radiative correc-
tions are 6.9% for 7"He* scattering and 4.6% for
m*He* scattering.

IV. EXPERIMENTAL CONSIDERATIONS

It is perhaps worth emphasizing once more that
the radiative correction calculation in Sec. I ap-
plies to a particular experimental situation, name-
ly detecting the elastically scattered particle at
fixed angle and measuring its momentum. It does

not apply when the recoil particle is detected in-

stead, although an appropriate expression can be
derived from our formalism by defining particle
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3 rather than particle 4 as the recoil particle. Al-
though Eq. (3.1) is no longer applicable, every-
thing derived up to that point is. This situation is
discussed further in Sec. V. Coincidence experi-
ments represent another situation again. Owing to
kinematic correlations the phase-space integra-
tions become quite complicated, and a general ex-
pression representing the correction for a coinci-
dence experiment cannot be obtained.

Another point worth emphasizing is that the cor-
rections calculated here are only illustrative of
those applied in a real experiment. This is be-
cause of the ambiguity associated with the location
of the momentum cut and the effects of finite reso-
lution, which vary from one experiment to another
and which we have so far ignored. In Sec. II we
assumed the beam and spectrometer momentum
resolution to be of sufficiently high quality that the
observed width of the elastic peak could be attrib-
uted mainly to the presence of a radiative tail.
This is rarely a realistic assumption. With such
an assumption it was meaningful to speak of a
unique separation Ap, between the elastic peak and
the momentum cut. This is no.longer possible, if
the peak width becomes a substantial fraction of
the nominal separation. We can still calculate a
radiative correction in such a situation if the data
are distributed in momentum bins whose width is
small compared with the nominal separation. Each
bin can then be treated as an elastic peak with a
radiative correction, calculated from (2.20),
whose size is determined by the width of the bin.
The yield in each bin is depleted by the loss of
events to lower-energy bins through radiation and
augmented by events lost by the same process
from higher-energy bins. One can then radiatively
correct the spectrum iteratively by beginning at
the highest-momentum bin and working down.

This procedure is commonly used in electron
scattering, and the reader is referred to the liter-
ature for details.!® Notice that we are still assum-
ing that the resolution of the beam-spectrometer
system is good enough that there is no significant
overlap of the elastic peak and inelastic continuum.
An overlap situation would be difficult to analyze.

It is probably unnecessary to add that the expres-
sions derived here cannot be applied to colliding-
beam experiments. While a considerable amount
of work has been done for leptonic reactions,
nothing, to the author’s knowledge, exists for ISR-
type hadronic reactions.

V. VIRTUAL-PHOTON EFFECTS
AND OTHER CORRECTIONS

We have already included the effects of radiative
diagrams of the form illustrated in Fig. 1 so far
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as the cancellation of the infrared divergences is
concerned, but we have not included any contribu-
tions to 6 from these diagrams. We will discuss
here the errors associated with such omissions.

To begin with, we cannot really calculate these
contributions, because the particles have struc-
ture, and we do not know their form factors every-
where. We must therefore fall back on rough es-
timates based on neglecting this internal structure
and treating the hadrons like point particles. For
—t> 12 the vertex correction for a spinless parti-
cle of mass u leads to an additional term in & of
the form?!!+12

0 vertex =—2_a|:1n<_L2) - 1] .
m n

For a pion the vertex correction is only about
3.5%, even at —=¢=100 (GeV/c)®. It is of course
even smaller for heavier particles.. The exchange
of virtual photons between the incoming or outgo-
ing hadrons and vacuum polarization effects rep-
resent Coulomb corrections to the scattering
process. These may be significant at very small
angles, where Coulomb-nuclear interference ef-
fects become important.!®

We have made a number of assumptions in de-
riving (2.21), and we must now consider their va-
lidity and limitations. These approximations are
discussed by Meister and Yennie.® In performing
the integration in (2.8) we assigned the elastic
peak values to p, and p, appearing in x?. This ap-
proximation is good, so long as the energy of par-
ticle 4, the recoil particle, is nonrelativistic in
the special reference frame in which the photon
angular distribution is isotropic. Using the nota-
tion of Meister and Yennie in which p; and p, rep-
resent the four-momenta at the elastic peak,
while p; and p; are the four-momenta when a pho-
ton is emitted, we can write

x=(p,+k)? - M?
=2(ps =p3) (b, +b,). (5.1)

In our type of experiment Py and p; are parallel.

Therefore, to good enough accuracy,
x=2Mn'0E;=2Mndp,. (5.2)

It can then be shown that the energy of the photon
in the special reference frame is given by®

- X
@= G +x)7 (5.3)
The energy of particle 4 is E,=(&* + M?)Y2, Let

x, be the maximum value of x. If x;, < M2 particle
4 is nonrelativistic and our approximation is valid.
If x,> M? our approximation is poor, and we can-
not neglect the dependence of p, and p, on k in x2.
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This leads to a correction term to 6 arising from
the energy dependence of the recoil particle®:!*:

2
54=%22[1n<1+%>] ) (5.4)

This term is never significant in our calculations.
For the case where the recoil particle is detected,
and the scattered particle is light, this term
should be considered. It then takes the form?®

=2 2 \7?
b= 2 [m(n u"‘)] , (5.5)
where x, is the maximum value of
x=(ps+k)f - p?
=—= —=——=Mbp,. (5.6)

This term is still quite small, amounting to ~1%
in mp scattering. However, it is important for the
case of elastic electron-proton scattering when the
proton is detected. In that case p in (5.5) is re-
placed by the electron mass, while x, remains es-
sentially unchanged.

We next consider our neglect of spin effects.
The spin terms introduce extra powers of % in the
numerator of the amplitude and so may lead to sig-
nificant effects in the case of a relativistic unde-
tected final-state fermion. In this situation a pho-
ton emitted parallel to the undetected particle
could carry off most of the unobserved energy.
(Another effect is the dependence of the final-state
fermion projection operator on k. This is included
in the correction term below.) This effect is again
important in electron-proton scattering where the
proton is detected. In our situation, since the 7
and K are spinless, we need only worry about this
effect in connection with the recoil proton. The
correction term is given by®

2
s,piH:-%ln(nﬁ). (5.7)

This term is even smaller than the previous cor-
rection.

Another effect we have not considered is the
variation of the basic hadronic reaction with k. If
the elastic cross section depends strongly on ¢ or
s, for example, the k dependence should be kept
inside the integral, and ¢ and s should be evaluated
at (p, — p;—k)? and (p, +p, - k)%, respectively.
This effect appears to be quite small everywhere
except in the backward direction. The backward
peak is a strong function of u =(p, - p;)?, and the
range of # in going from the elastic peak down to
the cutoff in p; used in Table I causes a variation
in the mp cross section of the order of 40%. Be-
cause of the 1/w form of the intégrand, this vari-

ation probably does not affect the correction much.
Furthermore, if the elastic peak momentum spec-
trum is differentially corrected as discussed in
Sec. IV and the elastic cross section in each mo-
mentum bin is evaluated at a value of « appropriate
to that bin, the error will be negligible. Again de-
tails are to be found in electron-scattering pa-
pers.'®

More violent variations in the cross section will
at some point begin to have an effect on the form
of the radiative corrections, of course. This is
not an academic point. Rapid variations (Ericson
fluctuations!®) in the backward 7p elastic cross
sections at 5 GeV/c have been reported recently.!®
These variations presumably arise from statistical
fluctuations in the direct-channel resonance level
spacings in situations where a considerable over-
lapping of neighboring resonances occurs. Consid-
erable interaction between radiative effects and
these fluctuations is possible. On the one hand, a
rapidly varying cross section invalidates the ap-
proximations made in evaluating the integral in
Eq. (2.7). This problem can be avoided by bringing
E; min Sufficiently close to E, ,, that the cross sec-
tion is essentially constant. A more subtle prob-
lem is that radiation in the initial state will de-
grade the energy resolution of the incident beam,
which will tend to reduce the size of the fluctua-
tions (since more resonances will then be averaged
over). The fact that these fluctuations are ob-
served indicates that this problem is not acute.
However, it may partially account for the consid-
erably smaller fluctuations seen in the 77p channel
(where radiative effects are relatively large) as
opposed to the 7*p channel.

The complications mentioned here are probably
not too serious for the mp case, because the direct-
channel resonances which produce the fluctuations
represent only a small contribution to the differ-
ential cross section. Furthermore, fluctuations
should be absent in exotic reactions such as K*p
- K*p or pp—~ pp. They would presumably be larg-
est in reactions which are nonexotic in the s chan-
nel but exotic in the u channel, suchas K"p-K™p .
and pp— pp.""

V1. DISCUSSION

We have seen that radiative corrections, usually
considered to be signrificant only in electron scat-
tering, are by no means negligible in hadronic
processes. Indeed, for the case of backward 7~p
scattering the corrections can exceed 30% for in-
cident momenta in the range of 10-20 GeV/c, a
kinematic region which has already been explored
experimentally. While the slope of the backward
peak will not be much affected by radiative ef-
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fects,'® the absolute cross section is strongly af-
fected, and the size of the effect is reaction-de-
pendent. Thus radiative effects will strongly in-
fluence isotopic spin relations between 77 p— p7~,

T p—pn*, and 7" p- nw°. Another example of a
situation where radiative effects may play a signif-
icant role is the SU(3) relation at backward angles,

do , . oy _do . _ -
E(K p=-Zz 7 )_dQ(Tr p—pm );

where both reactions are expected to proceed
through A exchange. At lower energies, where
direct-channel resonances are dominant, the radi-
ative correction is smaller but still not negligible,
and, because of its angular dependence, it may
significantly affect partial-wave analyses above
1-2 GeV. At forward angles the radiative correc-
tions are smaller but are still not negligible. Fur-
thermore, they grow logarithmically with energy.
Radiative corrections may be important in hadron-
nucleus scattering and are probably already needed
in the analysis of nd scattering at large momentum
transfers.

As has been mentioned before, the formalism
developed here can be easily extended to cover
many two-body processes. One application worth
mentioning, since it figures in the isotopic spin
relations mentioned above, is 7”p- 7%. Besides
the effects discussed in this paper, the measured
cross section may be influenced in another way. If
the y rays from the decaying 7° are detected, anal-
ysis of the event may be complicated by the pres-

ence of other photons radiated by the incident 7~
or p.'°

Radiative corrections in inelastic reactions are
much more difficult to deal with, yet we know that
they are quite important in deep-inelastic ep scat-
tering.?° If radiative corrections are not made in
inelastic electron-nucleon scattering experiments,
the measured inelastic structure functions can
never approach the Bjorken scaling limit. In prin-
ciple the same line of reasoning applies to hadron-
ic inclusive reactions. Whether radiative process-
es will have an observable effect on the approach
to scaling of inclusive reactions at NAL energies
is at the moment an open question.

We have seen that sizable radiative effects exist
in elastic hadronic interactions. They are of suf-
ficient magnitude in some cases to probably re-
quire reanalysis and reinterpretation of the exper-
imental results. At higher accelerator energies
radiative effects will become still larger.
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We compute the decay rate I‘(E°-— v,7Y) in the Georgi-Glashow model where EY is a neutral
heavy electron. The calculation is done in the renormalizable gauge where £ =1 and the dia-

grams have only logarithmic singularities. Analogous results hold for the decay I'(M°
—v,Y). We find that T(E'~v,y)/IT(E'—~e~e*v,) +T'(E"— #*ev,)] ranges from roughly
5a /7 to 150 /7 depending upon the mass of the neutral lepton and charged boson.

I. INTRODUCTION

Recent experimental results from CERN! and
NALZ?have indicated that there is a new phenomenon
in weak-interaction theory which does not produce
events with charged muons. Although there has
always been motivation to search for new effects
in weak-interaction theory, especially strange-
ness-changing neutral currents, the recent in-
tensified searches are a direct consequence of new
theoretical advances. Due to the work of Wein-
berg® and Salam,* we now have the possibility of
unifying the theories of weak and electromagnetic in-
teractions. In general two main approaches have
been studied. One predicts the existence of new
neutral currents, with AS=0, which interact with
hadrons and leptons, leading to muonless events.
The other approach follows from work by Georgi
and Glashow,® who suggest that there exist heavy
(charged and neutral) leptons which probably decay
rapidly into hadrons. If their decay branching
ratios into muons are very small their experi-
mental signature is also the absence of muons
among the final particles. Some general comments
on their possible decay modes have been given by
Bjorken and Llewellyn Smith.®

In this paper we present a calculation of one
possible decay mode of the neutral heavy electron,
which we call E°. The decay mode under consider-
ation is E°~v,y. There are several reasons for
having an accurate evaluation of this decay rate.
First, there is the obvious reason that it could be
important experimentally. The branching ratio
for T'(E°~v,y)/T(E® ~e"e*v,) can be calculated
exactly and gives us a model-dependent lower
bound on the experimental rate for events without
leptons to that for events with leptons. Second, it
is of importance when looking at the inverse prob-
lem, namely production by neutrinos of heavy
neutral leptons in the Coulomb field of a nucleus.
This problem is considerably more involved be-
cause of complications with hadrons and will be
discussed in a later publication. Third, the prob-
lem involves the usual complications of higher-
order calculations in unified field theories. We
have investigated some of the proposed regulariza-
tion schemes to become more familiar with their
pitfalls and will give some general remarks later.

Although we have chosen to discuss the decay
E°~v_y in one specific model, namely the Georgi-
Glashow O(3) model, it should be pointed out that
there exist alternative models, for instance in the



