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Multiperipher@f multifireball model and the inclusive cross section

C»& K~an Chen~
51-1997Street, Corona, ¹eYork 11MS
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A multiperipheral multifireball model with a rising total cross section in a certain energy region is
described, and the single-fireball contribution to the single-particle inclusive cross section in the
pim&~tion region is studied. The total cross section in this model rises like lns near the single-fireball
threshold, changes to a in/as) behavior until it reaches a maximum at an extremely high energy, and
eventually falls to zero. The magnitude of the ~ible rise is proportional to the triple-Pomeron
coupling. For the single-particle inclusive cross section in the pionization region„ the contribution from
the term proportional to a Pomeron-Reggeon-Reggeon coupling is shown to be as important as the
term proportional to the triple-Pomeron coupling. The contribution from the Pomeron-Reggeon-Regimen
term is estimated by extrapolating the required couplings from the scattering data in the intermediate
energy region, and it contributes to a rise of about 16 mb. The rise of the inclusive cross section due
to the triple-Pomeron term is about 7 mb when the rise of the total cross section is assumed to be 4
mb at CERN Intealecting Storage Rings energy. The over-all rise of the inclusive cross section in this
model is thus about 23 mb.

I. INTRODUCTION

The results of the recent ISR (CERN Intersecting
Storage Rings) high-energy production experi-
ments, e.g., the rising proton-proton total cross
section, the rising single-particle inclusive cross
section in the pionization region, and so on, make
the predictions of pure multiperipheral models
with only short-range correlations look rather un-
realistic. One way to modify the pure multiperiph-
eral picture is to introduce a two-component pic-
ture, ' and various works have been published along
this direction. ' There is a kind of detailed model
within the spirit of the two-component picture
which uses the multi-Regge exchange model' as
its basis. This kind of model assumes that the
multiple exchange of the Pomeranchuk singulari-
ties mill generate long-range correlations, and
that the production mechanism besides the Pom-
eranchuk singularity exchange is purely multi-
peripheral, so we call it a "multiperipheral multi-
fireball model. " The origin of this kind of model
can be dated back to the Chew-Pignotti model' and
to a series of papers" utilizing the ABFST model'
as the responsible purely multiperipheral mecha-
nism.

The aim of this article is to eonstruet a multi-
peripheral multifireball model with a rising total
cross section in a certain energy region, and in-
vestigate in detail the single-fireball effect of this
model to the rising behavior of the single-particle
inclusive cross section at the pionization region.
We assume that the Pomeranchuk singularity con-
sists of a set of complicated Regge singularities,
in which there is a Regge-pole component with the
intercept slightly less than unity (hereafter we eall

it "the Pomeranchuk pole" ). We further assume
that the Pomeranchuk pole is generated by the
purely multiperipheral component, and that only
the multiple exchange of this Pomeranchuk pole is
as important as the purely multiperipheral process
for the high-energy production amplitude. The ap-
proach which tries to impose consistency between
the input and the output Pomeranchuk singularity,
e.g., the perturbative approach toward the re-
normalization of the Pomeron, ' is not pursued in
this article. The rising behavior of the total cross
section is generated in our model by the introduc-
tion of a switch-on factor for a Pomeranehuk-pole
propagator. This switch-on factor becomes one
in the Regge asymptotic region, but damps down
the contribution of the Pomeranchuk-pole exchange
when it is extrapolated to the non-Regge region ac-
cording to the duality argument. This switch-on
factor makes our model resemble to some extent
the Chew and Snider complex-pole model. 9 Since
we are interested only in the effect of this model
on the rising behavior of cross sections over a
certain energy region, no effort is made to relate
such rising behavior to some specific kinds of
Regge singularities, e.g., complex poles. "

Our model indicates that the rising of the total
cross section, as expected, is due to the term
linearly proportional to the triple-Pomeron cou-
pling (PPP). The total cross section in this model
will rise to a maximum and then fall to zero. The
energy to reach the maximum is very high (an
order-of-magnitude estimate gives Ws = IO' GeV).
The total cross section starts to rise from the
single-fireball threshold with a Ins behavior,
which then changes to a ln(lns) behavior before it
reaches the maximum. For the single-particle
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inclusive cross section the term proportional to
the Pomeron-Reggeon-Reggeon coupling (PRR) is
as important as that proportional to the triple-
Pomeron coupling. The threshold of the triple-
Pomeron term in the inclusive cross section is
much higher than that in the total cross section in
our model, so the rise of the inclusive cross sec-
tion in the pionization region will be more marked
over a wider energy region than the rise of the
total cross section. The rising behavior of the in-
clusive cross section in the pionization region is
due to the existence of the switch-on factors and

the exponential damping of the Regge-pole ex-
change amplitude when the absolute value of the
momentum transfer increases.

The contribution of the PRR term to the rise of
the inclusive cross section in the pionization re-
gion is estimated by extrapolating the required
couplings from the scattering data at the inter-
mediate energy region, where the single-fireball
effect can be neglected. The over-all rise due to
the PRR term is of the order of 16 mb. The rise
due to the PPP term may overlap with that from
the neglected multifireball events, but the estimate
of the over-all rise due to the term PPP gives a
lower limit to the possible rise of the inclusive
cross section at higher energy. The order of the
rise from the PPP term is about 7 mb when the
rise of the total cross section at ISR energy is
taken to be about 4 mb.

P.

(a)

II. TOTAI. CROSS SECTION AND ITS
RISING BEHAVIOR

We consider the scattering of only one kind of
scalar meson with mass LU, throughout this article,
and all the effects of the total angular momentum

of a fireball are neglected. As discussed in Sec. I,
we consider only the multiple exchange of a Pom-
eranchuk pole with the intercept slightly less than

unity as well as the purely multiperipheral com-
ponent in a production process. From this sim-
plified assumption, the forward absorptive part of
an elastic scattering amplitude can be decomposed
into multifireball terms. " We write it as

ImA(s) = B,(s) + B,(s) + B„(s),

where Bo(s), B,(s), and B„(s)are expressed graph-
ically in Figs. 1(a), 1(b), and l(c), respectively.
The bubble denoted by M in the figures implies a
purely multiperipheral amplitude with only short-
range correlations, and the wavy line denoted by
P implies the Pomeranchuk pole. We note that the

purely multiperipheral production amplitude does
not contain any Pomeranchuk-pole exchange, ac-
cording to our baric assumption mentioned in
Sec. I. The term B,(s) is the combination of the

(c)

FIG. 1. (a) The pure-multiperipheral component
and the simplest two-Pomeranchuk-pole branch-point
contribution to the forward absorptive part of an elastic
amplitude. The bubble M denotes the pure-multiperiph-
eral amplitude and the wavy line P denotes the Pomeran-
chuk-pole propagator. (b) One-fireball contribution to
the forward absorptive part of the elastic amplitude.

(c) The multifireball contributions to the forward ab-
sorptive part of the elastic amplitude.

purely multiperipheral component and the simplest
two- Pomeron branch-point component. The term
B,(s) is the single-fireball contribution, and the
term B„(s) includes all the remaining multifireball
contributions. All the possible interference dia-
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grams are neglected. We first consider the con-
tribution of B,(s) in this section.

The energy region of interest to us in this article
is so high that the elastic scattering amplitude is
completely in its Regge asymptotic region, and an

exchanged Reggeon propagator of the elastic am-
plitude takes its ordinary form s ' . But for the
single-fireball term B,(s) such a high energy still
may not assure the Regge asymptotic region
for the exchanged Pomeranchuk pole, since
the Pomeranchuk-pole propagator depends on s/s, ,
where s is the square of the incoming energy in

the center-of-mass frame and s, is the mass
squared of the fireball. This implies that in the
process of calculating B,(s), we must extrapolate
the Pomeranchuk-pole exchange amplitude, as in

Fig. 1(b), out of its Regge asymptotic region.
Therefore we insert in the Pomeranchuk-pole prop-

agator a switch-on factor, which becomes one in
the Regge asymptotic region and becomes zero at
the lowest kinematical threshold. Some modifica-
tions of a pure Regge-pole propagator are neces-
sary when we try to express the low-energy ampli-
tude also in a Reggeon-exchange form, " and the
introduction of such a switch-on factor is a phe-
nomenologically simple representation of the
modification used in some analyses of finite-en-
ergy sum rules. " Unfortunately the determination
of such a switch-on factor from the low-energy
data, e.g., through the finite-energy sum rules,
is somewhat ambiguous, so we consider the in-
troduction of such a switch-on factor in our model
as a purely theoretical device to generate a kind

of threshold effect for the fireball events.
The term B,(s) can be written, using the fac-

torizability of the Pomeranchuk pole, as

n

B (s)=1 Jd'q 5'(q' —5)f ff ,
'd 5, 5'(k, ''-s, ')5' 5+,(-tsar. ks

N -2 f= 1 j-1

&
i d4~(P, ;k„kB, . . ., k„;Q)i'i fP(s, s„t)['PP (t), (2.1)

where

s =(p. +p, )',

s, = (k, +k, + ~ ~ ~ +k„)',

Q=P~-q, t=Q

The amplitude A„stands for the purely multiperipheral production amplitude of the process a+P- 1+2
+ +n, the function f~ is the Pomeranchuk-pole propagator, and P~(t) is the Pomeron-particle-particle
coupling. We define

n n

(P, ', K, q )=g gd k 5'(k — )6 K-Pk
~ A„(P„k„.. . , k„;q)~

n =2 j-1
where the four-momentum K is defined as

K=+ k~ = p, +pk —q.
f= 1

The arguments of g are chosen from the observation that g is the forward absorptive part of the elastic
scattering amplitude of the process a+P- a+P. Using this g, Eq. (2.1) can be written as

B ( ) fdsfd ql=t'(q' —, ) 5((55,-sk)' —5s,) l d, (s, 5„))( 5(S)d((s s„l ') .,'', (2.2)

We parameterize the four-momenta P„P„and q
as

P, =(BV S5 0505k)q

PB=(—,')(S 50, 0, -k),

q =((p'+q~')'", q~ sinecosq),

q~ sin6)sing q~ cos6)),

where

K =-,'(s- 4p, ')'" .

Since the integrand of Eq. (2.2) is independent of

p, we carry that integration out, and then carry
out the q~ integration with the help of the 6 func-
tions to obtain
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B,(s) = d s ipp(s, s, )
4kWs

~min S 2a~«)
x dt g(ti', s„t) e"'—

1
~max

g (V, ', s„((=@1c H' '(—', C (s„V,'),

(2.6)

s
gs pp(P ~ s 1 t) = &r„&sppe 2 P„(s„ti') ~

(2.3}

where the cose integration is transformed into a
t integration by the relations

t=(q- p, }'

= 2 ti —2 (s + )1 —s 1) —2k q1 c os 8,

[(s- (Ws, +)1)')(s-(Ws, —p, )') j"'

The constants c»~ and e»~ are the triple-Pom-
eron coupling and the Reggeon-Pomeron-Pomeron
coupling, respectively. The function p„ is the
switch-on factor for the ordinary-meson trajecto-

The switch-on factor p(x, y) approaches unity
when x/y is large, and approaches zero when

x/y is small. The half-value point of p(x, y) is de-
noted by x/y =D. We assume that in our model a
Pomeranchuk pole and an ordinary Regge pole
differ such that

DJ»D~ . (2 7)

t = 2p,
' - -,'(s+ p.'- s,)+2kq~,

t .„=2)1'——,'(s+ti'-si)-2kq~.
(2.4)

The function Pp(t) in Eq. (2.2) is assumed to be

p '(t) = ' Co',

and the Pomeranchuk-pole propagator fp is

s az«)
fp(s, s„t) =pp(s, s,)—

S~
(2 6)

where p p is the switch-on factor, and op(t) is the
Pomeranchuk-pole trajectory with the linear form
op(t) = ap+ b p(t).

We assume &at the purely multiperipher31 com-
ponent generates the Pomeranchuk pole and an
ordinary-meson pole with the inte'rcept -„which
we subsequently denote as R. Since g is the for-
ward absorptive part of the purely multiperipheral
amplitude of the process a+P- a+P, it can be
written as

g(u 1 sii t) =gPPP()1 I sit }+Ispp(& 1 il

where

The value D~ for an ordinary meson Regge pole
should be of the order of the kinematical thresh-
old, i.e., DR=4, from the implication of the semi-
local duality of the finite-energy sum rule. " From
the Harari and Freund two-component duality, "
the Pomeranchuk pole is dual to the background,
and the ordinary Regge poles are dual to the reso-
nance component. Equation (2.7) implies that we
are assuming the smallness of the background in
the 16w- and intermediate-energy rep, ons. In
order to simplify our model further, we assume
that

0 for x/y(D
1 for /)D (2 6)

We only consider this step-function-type switch-
on factor throughout the remaining part of this ar-
ticle. Though this kind of step-function-type
switch-on factor is not realistic, it is enough to
give an intuitive picture to our qualitative investi-
gation, and the introduction of a more realistic
switch-on factor will make the final solution
quantitatively more complicated, but will not alter
the general character.

The term B,(s) of Eq. (2.3) can then be separated
into two parts, BPPP(s) and B, Pp(s), by substituting

'g of Eq. (2.6) into Eq. (2.3). We obtain

m 26 3 slDp 1BPPP( } PPP P ds s c(p(0) e(cp+ci)tmm
c,+ c, +2bpln(s/s, )Dgp

(2.9}

7T
2 s/Dp S 2am«mm) 1r r

4kWs 4q2 Sj c,+c, +2bpln(s/s, ) ' (2.10)



1480 CHIH KWAN CHEN

where we have used Etl. (2.8) and put D„=4. Also we have used the property
~
t „~ &

~
t

~
and the terms

depending on t are neglected due to the exponential damping of the integrand as
~
t

~
increases. The

above expressions already show that B, vanishes if s &D 'p, ', and B,
The variable t is defined in Eg. (2.4) as a function of s,. The main contributions of B»& and B",»

come from the region of the sy integration where t . is near zero. An explicit evaluation shows that t . is
almost zero for the whole integration region of s, of Eqs. (2.9) and (2.10) if D~» 1. By taking as(0) =-, and

c.~(0)=1, we obtain from Egs. (2.9) and (2.10)

0 for s&D~'g
B»P(s) (2.11)

s~& 0 '[In(lns —InD~+ (co+ c,)/2bp) —ln(lnDpp'+ (co+ c,)/2b~) J for s ~ DJ, p4b

0 for s &4D~p.

BR PP(s)
77 6 S2a~(0) -1

for s ~ 4D~p. '
4b~ ln s 2 s/D~

(2.12)

The above results indicate that the term B~ (s)
starts to contribute at a threshold s =D~'p, ', and

B,»(s) starts to contribute at a threshold s =4D~p'.
The purely multiperipheral component in B,(s)
gives a Pomeranchuk pole which starts to contri-
bute at S=D~p, ' in our idealized model. Therefore
we may combine B, ~ (s) with B,(s) as a constant
background of the total cross section in the inter-
mediate-energy region, and Bf~~(s) gives a rise
in the energy region s &D~'p, '. In order to main-
tain the constancy of the total cross section in the
intermediate-energy region, the rising behavior
of B, »(s) must be offset by the decrease of the
contribution from the ordinary meson Regge poles
in the purely multiperipheral component. This can
be achieved if ~s» is small. Then the term B„(s)
of Fig. 1(c) is an order of magnitude smaller than

B,(s), since the lowest-order term of B„(s)depends
on the squares of the couplings e~~~ and e„~~. We
thus neglect the term B„(s).

We note the choice of p, . In the high-energy pro-
duction experiments performed at NAL and ISR,
the incoming particles are protons. The outgoing
pions frequently form multipion resonances.
Therefore as a rough approximation, we can
choose p. =1 GeV. With this choice of p. , we only
need D~ = 20 in order to relate the rise of B~~»(s)
to the rise of the total cross section at ISR energy.
Our D~ is related to the minimum rapidity gap due
to the Pomeranchuk-pole exchange by the relatione
D~= e, so 4 is about 3 for D~ about 20. Finally
we consider the rising behavior of the total cross
section. The term B, (s)/s will eventually go

to zero after it reaches a maximum. But the en-
ergy to reach this maximum is

s =D~'p'exp[ —,'(lnDP)[1 —o~(0)J} .

If we take D~ = 20, 1 —o.~(0) = 0.02, and p = 1 GeV,
we have

(s )'"= 10' GeV.

Before the incoming energy reaches such an ex-
tremely high energy, the total cross section in our
model rises like lns near s =D~' and then turns to
a ln(lns) behavior.

III. ONE-FIREBALL CONTRIBUTION TO THE

SINGLE-PARTICLE INCLUSIVE

CROSS SECTION'

The contribution of the single-fireball events to
the single-particle inclusive cross section in the
pionization region of the process a+&- c+X is
considered in this section. The multifireball
events have a higher threshold than the single-
fireball events in our model, and their contribu-
tions are neglected in this article. We must con-
sider two terms, I,(s) and I, (s), as expressed in
Figs. 2(a) and 2(b), respectively. They are dis-
cussed in Secs. IIIA and III B. A summary and
some order-of-magnitude estimates of the effect
of the single-fireball terms are presented in Sec.
III C.
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A. The term I&(s)

The term I,(s) of Fig. 2(a) can be written ae

n

((s)=P Jd q()''(q' —g )ll'd kl'l'(a' —u.')(A„(p, ;k„, , k„;())I'Iy (s, s„s„()l'())()),() q (,)(',
n =2 j=l

where

=P -P-q
Q2

s, =(k, +k, + ~ ~ ~ +k„)'

=(P. +P, -q-P, )',
s, =(q+P,)'.

(3.i)

u= (P, —q}'.

We also use the relations

t = 3ii,' - (Ws - 2g)(p'+ q~')'"

—2kqi coeg- pv s,
t =3p'- (v s -2i()(p'+q~')'"- p, v s +2kq~,

The function p is the amplitude for the process
b+P- q+ c. We denote

g(p, ', K', Q')=Q f lid'k, ()'())' —p')
n =2 j=l

(3,4}

t =3p' —(v s -2p)(p. '+q~')'" —pWs —2kq~,

x
i A„(p, ;k„.. . , k„; Q)im

x (()'(K -P k),

[(s-s,)(s- s, +4p' -4l(s) j '"
2(&s —p }

where the choice of the arguments of g is based
on the observation that g is the forward absorptive
part of the amplitude for the process a+P- a+P.
The four-momentaP, and q are parameterized in
the center-of-mass frame of a and b as

p, = ( (p' +pi')'", 0, 0, pi ),
(3.2)

q=((p'+q~')'", q~ sinecoeq), q~ sine sin(p, q~ coep },
/

where we only consider the case of mero trans-
verse momentum for P, . We further restrict our
attention to the case P~ =0, which corresponds to
the center of the rapidity plot, or at the point
x=0 in terms of Feynman's variable x. The func-
tion I,(s) can then be simplified to

k, "k

(a)

C

I,(s) =
4k(v s —p)

tmin

x dsI dt g |2t sly t pP2 4P.2S7sls2
"tmm

4 2 2a&(t )
x " e'3' p(s„u), (3.3)

1 2

where we have put

'(s) = )

I'a

(b)
PI,

4 2 aJs(t)
fs(s, s» sm, t) = p~(4p s, s, s2)

S~S2

P(p„q, q, P, ) =e"'P (s„u},

FIG. 2. (a) The first kind of single-firebatl event in
a single-particle inclusive cross section. (h) The second
kind of single-fireball event in a single-par@ale inclu-
sive cross section.
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The important contribution of the t integration
of I,(s) comes from the region t = t . T.he main
contribution of the s, integration of I,(s) in Eq.
(3.3) comes from the region where t is ne. ar ze-
ro. The variable s, can be calculated from Eqs.
(3.1), (3.2), and (3.4) as a function of s, . The
function

Y(s,) =s, sn

is an increasing function of s, in the region sl~ z s.
The region s, ~

2 s can be neglected due to the
large value of

~
t

~

in this region. The existence
of the switch-on factor pP implies that the s, inte-
gration of Eq. (3.3) is further restricted by the in-
equality

s& 2 Y(s,)-, Y(s, =4@,') for s, &2s .

Since Y(s, = 4p') = 4p, 'v s for k) s» p, , we obtain

s)p, D2 2

otherwise I,(s) will vanish. This property of I,(s)
is derived before assuming the detailed properties
of g. This should be contrasted to the case of the
total cross section, where only a piece of B,(s),
i.e., BPPP, vanishes if s&DP'p, ', and this property
is derived from an assumption about the detailed
properties of g in Eq. (2.6).

The more detailed behavior of I,(s) can be
studied by assuming a form of g as in Eq. (2.6);
then we obtain

I,(s) =I (s) +I (s),

with

IPPP (S)
PPPyP dS S (kp(0) &(ck+cn)t~ I" P ( 2k min)7T

s -4 2 "2aP(t . ) pgS Q

4k(~s p) n „2 i Y(s,) c, +c, +2bPln(4p, 's/Y(s, ))

2 SC -4 2 - 2aP(t
RPP~R aR(0) (c + ) tdS, S, e S2~ Q m~

4k(v s —ti) Y(s,) c, +c, +2bPln(4p's/Y(s, )),
'

where the t integration has been performed by keeping only the region of t near t, and the parameter s,
is the upper bound of the s, integration obtained from the inequality s & DPY(s, )/4p, , and is

s, =4pv's /Dp.

The variable u „is the value of u= (P, —q)' at cos8=-1. From the above expressions we see that IPPP(s)

vanishes unless s & p, 2D~'/16, and IskPP(s) vanishes unless s & pnDP2Ds2/16. Furthermore we have Y(s,)
= p, s,Ws for s» p. ', and may put

P2(s u . ) =y 2(I))nscnnmin (s /p, 2)2 s~nmin~

where (t) is the Reggeon-particle-Pomeron coupling. By approximating t =u =0, and az(0) =-,', irP(0)
=1, we have

() kk yy, kk„k S 0 k)
2 2 2 2 2

bPDP lns 4v s

(3.S}

IiiPP( )
16m t(, y„ p eiiPP s'

1 DPDs
' '

b )I DP lns 4s

8. The term I2(S)

The term I, (s) of Fig. 2(b) can be expressed as

I.()= fk kk'(k' —v')f'k'Kk'(k, +k+c k. l, llf, (,k..cl'I k, (OI'G(k', -„., t-tl, ,

where
n n

G(, *,.", , t,)=E lie k '(k — )(I'2- k)lk (p. 'k k. '0)I
n =2 j=l =l
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and it depends on tl', s„ s„ t, and t, =(P, -P,}'
since it is the single-particle inclusive cross sec-
tion of the process a+/- c+X. The invariant
variables are defined as

we have

2

I, (s) =
4k(v s —p, )

s 2~&")
X ds P~ s s2 dt e'o'

where

XG(p', s„s„t, t,),

t =2p, ' —v s (tl'+q~')'" —2kq~ cosa,

=2/, —v s (p, +qi ) +2k' q

t g~g = 2tl —WS (4 +ql ) —2kql )

J(s-s,)(s-s, +4tl'-4tlv's )]'"
2(&s —p. )

(3.6)

t, =(P.-P, )'=2p, ' —p. Ws

The subenergy s, is, from its definition,

s, = (K+P,)' = (P, +P, —q)' = p. MS + ~S ~MS

vs —p

(3.7)

As a function of sy s, increases monotonically as
s, increases. The switch-on factor p~(s, s, ) re-
quires s & S,D~, and this means that I,(s}will van-
ish unless

Q=Py —q~ t=Q
p

4 = (P. -P,)',
s, =(k, + ~ ~ +k„} =K

s = (k + ~ ~ ~ + k +P )' = (K+P )'

The four-momentaP, and q are parameterized as
in Eq. (3.2) with the choice P~=0. Choosing the
Pomeranchuk-pole propagator f~ and the Pomeron-
particle coupling P~ as in Sec. II, i.e.,

s ~&(')
f,(s, s„t) =p~(s, s,)—

S2

P,'(t) =r 'e"',

pa 2~2

This property is derived again without assuming
the detailed structure of G, as in the case of
I,(s).

The detailed structure of C is more complicated
than that of g of Eq. (2.6). To see its structure
we fi,rst consider the upper limit of the s, integra-
tion of Eq. (3.5) from the inequality s & D~s, indi-
cated by p~(s, s,). From Eq. (3.V) we obtain s„
the upper limit of the s, integration,

s, =——p.ds for s» p, , D»1.s 2 (3.8)

From Eq. (3.6) we see that t is near zero in the
region s, ~ s, . The function X(s,) is defined as

=(P, -P, +q)'

=tl'- p, v's 2+tNp, '+q~')'"+t

as well as t, = (P, -P,)'. The invariant variable t,
is of the order -pv s and is independent of s,. We
denote

umm =tl' —

tlat

S +2p(q '+ p, ')'"+t

which is a monotonically decreasing function of s,.
At s~=4tl q

B~~ —p. /Vs q alld at s~=s q lcd+

pv s/D~. Thi-s implies that A„(P, + Q P, +K)
should be represented as a u, -channel Reggeon ex-
change amplitude. Thus I,(s) can be expressed as
in Fig. 3.

The term I, (s} in Fig. 3 can then be written as

X(s,)=~ .s
Sg

From Eq. (3.7) we see that it decreases as s, in-
creases. At s, =4p', X=V s/4p, »1, and at s, =s„
X=1+pD~/Ws . , This implies that the purely mul-
tiperipheral amplitude of the process a+I'- c+K,
A„(P, + Q- P, +K), is in its Regge asymptotic re-
gion for small s,. %'e extrapolate this Regge rep-
resentation for A„ to the region s, =s, by duality.
The exchange Reggeon of A„, of course, can only
be an ordinary meson Regge pole. We consider
an invariant variable u„

~i=(P, —Q)'

' * s '~&(') 2~&("~)
I2(s) =

J 2ds, dt e' ' —
Q (t, u, )g(p, s„x), ,

4k (Ws —tl ) 4 p "
4

(3.9)

where g is the forward absorptive part of the purely multiperipheral amplitude of the process a+A- a+A,
and Q(t, u, ) is the Reggeon-particle-Pomeron coupling. We assume that g has the form
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S a&(0) s a()
g(p' &, ~,)=vrjepRAe 2 pp( 1& p )+&YRERRR 2 pR( lt pIP

P

Then I,(s} can be written as

I, (s) =I~ (s}+I2a(e),

where

2 2q s ~min S 2~() S 2g(I) SI ()= "
. d, dt

4k(&s —p) ~ pm a~ em ~y p

These expressions impose a stronger constraint
on the nonvanishing regions of I2~(s) and Ig(s). The
term I2~(s) vanishes unless s& ,'p, 'D~'(3—+v 5 }
from the condition s, &D~p, ', and the term I",(s)
will vanish unless s & (D~' +2D~„)p.

' = Dp' p. '.
The expressions of I2~(s} and Ime(s) can further

be simplified by assuming

Q(t, u~) =ecP

le( )
v Y Y ea n4'

2 2 2a&(0)- 1 ./ It'2

2 2Q ~2 lns D~

(3.10)

for s not very far from p, 'D~'. For s large, we
have

+3 2~ ~2 S2ap(0)-1- I/4
IR(s) rRYP RRR

8b lns (3.11}

For the term Im~(e) we obtain

since t~ is near zero and t must be close to t-
in order to make considerable contribution to I,(s).
We have

portant for s not far from D~'p. ', where the thresh-
olds of I2~(s) and 1(~~(s) have not yet been reached.
At higher energy both Ig(e) and P~~(e) damp out
like s '" compared to IIP(e) and IP~~(e}. The thresh-
old of I~~~ (s) is at p'D~'/16, and is much higher
than the threshold of I2~(e) and that of Bf~~(s) of the
total cross section. Therefore we can expect that
the rise of the single-particle inclusive cross
section in the pionization region will be more
marked over a larger energy region than the rise
of the total cross section.

The over-all rise of the inclusive cross section
in the pionization region is determined eventually
by I, (s) and I, (s). Due to the higher threshold of
I, (s), the rise of the inclusive cross section at
ISR energy may be expected to come from the
term I~~(e). The contribution of I2P(s) depends on the
Pomeron-Reggeon-Reggeon coupling &pgg the
Reggeon-particle-Pomeron coupling Q, and the
Pomeron-particle-particle coupling y~. Since the
momentum transfer of the Regge poles involved
is negligible, and a Regge pole with a negligible
momentum transfer can be roughly approximated
by a small-mass particle in an order-of-magni-
tude estimate, we may put

for

~ 2 3~ 2 S2a~(0) I
Ip( )

v rp epRB4
4p. 5~ lns

(3.12)

s»-,'p' 'D(3 4+5} .

C. Conclusion

,( s)

The results of Secs. IIIA and III B imply that
the contribution to the inclusive cross section in
the pionization region from the term 12~(s) is as
important as that from the term IP~~(e) at very
high energy. The terms Ig(e) and P, ~~(s) are im-

FIG. 3. Further decomposition of the diagram Fig.
2(b). The wavy line R denotes the ordinary Regge pole.

I
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The order of magnitude of y~ can be estimated
from the pion-pion-Pomeron coupling in the in-
termediate-energy region, where the single-fire-
ball effect can be neglected. We use the factor=
izability of the total cross sections in that energy
region. We use the relations

Im A „(s,I =0) = wy~ s

16wlmA„(s, / =0)
(T s

1r Tr S

and obtain yp' =0.3. The over-all contribution of
I2~(s) to the rise of the inclusive cross section is
thus

, (l~) 216w yJ ~Issue'ln'
4b~

8g'y~' ln2

b~

where the factor 2 comes from the existence of a
diagram with a and b interchanged in Fig. 2(b).
Taking b~ = 3 we have

ha'"(1~) = 16 mb.

The contribution of I, (s) comes in at much higher
energy and may overlap with the contribution from

the neglected multifireball events. But the esti-
mate of its contribution will give a possible lower
limit of the rise in the inclusive cross section at
higher energy. The over-all rise from the term
IP~~(s) depends on Q, y~, y» and e»~, the triple-
Pomeron coupling. If we assume that the over-all
rise of the total cross section at ISR energy is
about 4 mb, the triple-Pomeron coupling E~~~ can
be estimated. The coupling yR is estimated from a
mm Veneziano model. " The over-all rise due to
I, (s) is, by taking ys'=0. 5, y~'e~»=0. 025, and

D~=20,

b, a'"(I ) = f mb.

Our model thus indicates that the single-particle
inclusive cross section in the pionization region
can exhibit a rise of the order of 16 mb at ISR
energy, and it further rises at least about 7 mb at
higher energy.
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