
WEAK NEUTRAL CURRENTS 1467

necessitate that m(6'() —m(6')) be small on a quark-
mass scale, however. ]
S. L. Adler, Phys. Rev. 135, B963 (1964). The sugges-
tion to apply the Adler PCAC conditions to neutral

currents was also made by C. Llewellyn Smith, Pro-
ceedings of the International Symposium on Electron
and Photon Interactions at High Energies, Bonn, 1973
(unpublished).
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Three-body amplitudes have two-body threshold singularities over and above those coming
from the usual treatments of final-state interactions. These are analyzed both formally and
numerically. In the numerical model studies, they account for an important variation of the
amplitude. The singularity comes from the "next-to-last" rescattering, and hence, may be
represented correctly by any approximate amplitude that has that rescattering, even if the
approximation scheme diverges. This may account for the correct shape (not magnitude) of
multibody spectra determined with a divergent multiple-scattering series.

I. INTRODUCTION

M=gfir;(c;), (a)

How to extract two-body information from a
multibody final state is an old problem. Empir-
ically, we have learned much from such situations
in nearly every branch of physics, but when there
are more than two strongly interacting particles
in the final state, there exists little in the way of
a firm theoretical basis for the analysis. In this
paper we investigate the nature and consequences
of an important singularity in the final-state am-
plitude that has been ignored in most previous
analyses. This is a threshold singularity in the
pair subenergy of each final-state pair. It is
therefore on the boundary of the physical region,
and produces considerable variation of the am-
plitudes over that region. Its neglect can lead to
incorrect final-state parameters. We carry out
our analysis in the context of the three-body prob-
lem, but the existence and nature of the singularity
is by no means restricted to that case.

The existence of this singularity was already

implicit in 1967" in a different guise, but we
were not then aware of its importance for phenom-
enology. Much more recently we have demon-
strated its presence in a general way through
unitarity. ' In this paper we explore further its
origin, nature, and numerical importance.

It is customary to decompose a three-body final-
state amplitude into a sum of terms, depending
on which pair interacts last,

where v; is the j-kth pair's two-body t matrix
(i 4j wk) and o, is that pair's center-of-mass en-
ergy. f, is the coefficient of r; in the decomposi-
tion. This form is closely related to the Faddeev
or multiple-scattering expansion of nuclear phys-
ics and to the isobar expansion of particle phys-
ics.' Most empirical analyses proceed by assum-
ing that f, is slowly varying and that f, and f&

(f wj) are totally independent. But what we have
already shown is that for small o, (Ref. 1-3)

f =A. +i(o )'~'B

and

By
——Q jara .

k vej
(b)

This result on the coherence of the amplitude
shows that in some sense it is the entire ampli-
tude that carries the phase 5 and not just a part.
This is a kind of Watson theorem which has been
known for some time in some circles, "'' but its

This means that f; has a square root singu-larity
in the pair subenergy of the j-kth pair and the co-
efficient of the singularity is the "non-i" term in
the decomposition. Near o; =0 we can write

M = (A + zBq) e' +B,; q sin5
q

where q =(&r;)' ', T, = (e ~ sins)/q and we have drop-
ped the i label to keep the expression simple.
Elementary algebra then gives

) g SlQ5M=A e' +Be cos5 .
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significance for empirical analyses has not been
exploited.

In this paper we shall show how the (o,)' ' emer-
ges from a standard singularity analysis of the
multiple-scattering series. This will generalize
the result from the previous Faddeev-equation
analysis' and flesh out the unitarity proof. ' We
shall see that the singularity comes from the very
last rescattering in f We. will then investigate
the singularity in a simple numerical three-body
model and see that it is numerically quite impor-
tant. In fact, for a wide range of dynamical pa-
rameters, the variation of f is largely controlled
by the singularity.

Since the singularity of f comes from the last
rescattering, the structure of the singularity is
well represented in any theory that has that last
rescattering, for example, the first term in the
multiple-scattering series. We show numerically
that even if that series diverges badly, the sin-
gularity structure is well determined by the first
few terms. Since the major shape of f is deter-
mined by that singularity, the first few multiple-
scattering terms can give a good shape for f, and
hence the spectrum, even when the series di-
verges. This may account for the success of trun-
cated multiple-scattering approximations for spec-
tral shapes in a wide class of three-body problems
for which the series is known to diverge or con-
verge slowly.

In Sec. II we discuss the singularity analysis
necessary to obtain the o'~' term in f. In Sec. III
we present a numerical model that shows the im-
portance of the singular term and the numerical
validity of a simple parametrization of f. Section
IV shows that the first few multiple-scattering
terms can faithfully reproduce the singularity
shape even though the series diverges. Section V
presents a discussion of the results and some
problems for the future.

II. SINGULARITY ANALYSIS

and (1a)

where p, is the Yukawa range. They also enter

qo

{a)
Q) q )

()

'I —+ k'
2

qo

Qo—+k
2

(b)

q—-k'
2

Q—-k
2

subenergies that are in (or on the boundaries of}
the physical regions, since these will be most
likely to produce rapid dependence of amplitudes.

In order to have an explicit case to study, we
follow AFR and consider the weak decay of a par-
ticle into three equal-mass particles that are then
allowed to interact strongly. We will follow the
notation of AFR except that we take 5=m=i, where
m is the mass of any of the three particles. We
take nonrelativistic kinematics for the present.
How all these restrictions may be relaxed will be
discussed later.

Consider an nth-order graph for the decay pro-
cess as shown in Fig. 1(a). Only q, and q, are
external momenta. They enter the amplitude
through potential terms; for example, for Yukawa
potentials we have terms like

In this section we shall discuss the dependence
of a three-body amplitude on the pair subenergies
from the point of view of the singularity structure
of the perturbation series. This will yield com-
plementary information to that already obtained
in a Schrodinger equation type of analysis' and
from unitarity. ' The singularity structure of
three-body amplitudes has been previously ana-
lyzed, but largely from the point of view of the
total energy. ' In our analysis here we shall fix
the total energy and look at the dependence on the
invariant pair subenergies, that is, on the energy
of a pair in its own center-of-mass system. In
particular we shall look for singularities in the

qo

(c)
q q

FIG. 1. Some typical nth-order diagrams for the three-
body decay process. (a) A simple skeletongraph. (b) The
same as (a) with a variable change. The dashed line
gives the location of the singular propagator. (c) A more
complex graph with the same subenergy singularity as
(a) or (b).
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through a propagator

(E —1I1 —1' —q1 ' qo) (1b)

Since (la) cannot vanish for physical momenta,
there are no singularities associated with the po-
tential terms in or on the boundaries of the phys-
ical region. For that reason the precise form of
the potential terms does not matter. If, for ex-
ample, we used Yamaguchi separable potentials
of range P rather than the Yukawa potentials, we
would replace (1a) by

[(q-, +-'q.)'+t}'] '[( q+-' q)' +tt'] '

and

[(q.+-'q, )'+t}'] '[(q. +l q, )'+P'] ',
(la')

but again these cannot vanish for physical momen-
ta. The only remaining dependence of the ampli-
tude associated with Fig. 1(a) on external momen-
ta is from (1b), the propagator, and in AFR it is
shown that this gives a singularity of the type'

(E 3
~ 2)1/2 (2)

To see this more clearly we relabel the momenta
as in Fig. 1(b). This relabeling does not affect
the singularity. The location of the propagator
[Eq. (1b)] is indicated by a dashed line. It becomes

(E--,'q, '-k"]-'. (1b')

Clearly the vanishing of this denominator in the
d'k' integral will give the singularity of Eq. (2}.
Furthermore, energy conservation is

(3)E=~qo +k

where k' is the c.m. energy of the lower pair.
Hence Eq. (2} represents a two-body threshold
singularity in that pair's subenergy. This singu-
larity is then on the boundary of the physical
region. Since the momenta labels q, and q, do
not penetrate into the diagram of Fig. 1(a), there
are no further subenergy singularities associated
with it. This is shown explicitly in AFR, where
it is further shown that most of the problem is in-
volved in getting the nature of the total energy
singularity structure.

Since the potential between q, and q, in Fig. 1(a)
cuts q, and q, off from the rest of the graph, our
discussion is independent of what happens to the
left of that point. Hence, it applies equally well
to graphs of the type shown in Fig. 1(c) and to
more complex graphs. However, Fig. 2(a) is a
new type that we must study. It is clear that it
can acquire a (E ——,

'
q,')' ' type singularity from

each of the propagators indicated by the dotted
lines. In fact the sum of all rescatterings between
the lower pair can be summed into the two-body
t matrix. The graph then can be represented as

I

I~ I

-qo—+k'
2.

I

I

I

q——k'
2

q—+k
2

——k
2

FIG. 2. (a) A typical graph for the three-body decay
with more than one rescattering subenergy singularity
(located at dashed lines). (b) The sum of all such graphs.
The large circle represents the two-body t matrix.

in Fig. 2(b). The amplitude associated with this
graph can be written

h(q„k')(&'~ t(k') ~%) d'k'
E ——,'q ' —k" (2n)2 ' (4)

where (%'I t (k')
~
k) is the half-on-shell two-body

t matrix of the lower pair, and we have used en-
ergy conservation, Eq. (3), to express the energy
argument of the t matrix as k'. h(q„%'} is every-
thing to the left of the propagator indicated by the
dotted line in Fig. 2(b). The arguments given
above show that it has no physical region qo sin-
gularity. Since the k' dependence of (fc'~ t(k') ~%)

involves potential terms like (la) or (1a'), the k'
integral in (4) can only give physical subenergy
singularities by virtue of the propagator. This
will, of course, give the same pair-energy thresh-
old singularity as before in Eq. (2).

The sum of all graphs which end with a scattering
between the lower pair can be written in the form
(4). In that case h(q„R') is the sum of all graphs
that do not end in such a scattering. Hence, at the
singular point (E = —,

'
q,') in the full amplitude, the

coefficient of the singularity is h(q„0) (0~ t(0) I0),
where h is the sum of all graphs not ending in a
scattering of the bottom pair and (0

~
t (0)

~
0) is the

on-shell lower-pair t matrix at zero energy. This
important connection between the singular part of
these graphs and the sum of all graphs that do not
end with a scattering of the lower pair was devel-
oped in the context of the Faddeev equation several
years ago. '

If we specialize to a case where the two-body
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t matrix is dominated by a single partial wave (we
take s waves to simplify the kinematics), we can
write

qo

(R'~ t(k ) ~%) =A(k, k') T(k'} (5)

where r(k') is the on-shell t matrix and A(k, k') is
the half-shell function. Clearly A(k, k) = 1. Further
A has only potential or unphysical singularities
in k and k'. Using (5) we can write (4) as

k(q„, %')A(k, k') d'k'
ki2 (2v)3 (6}

which is the isobar form (a). The analytic prop-
erties of A guarantee that the coefficient of gk')
in (6) has only the (E —~ q,')'~' singularity as a
function of the subenergy. This form (6} connects
our treatment here with the unitarity discussion

, of Aaron and Amado. '
We have seen that the amplitude for the decay of

one particle to three has a threshold square-root
singularity in the subenergies of the pairs over
and above those of the two-body t matrix. This
singularity comes from the propagator just be-
fore the last pair scatterings. There are no
further physical pair subenergy singularities from
farther "into" the multiple scattering diagram
essentially because the external labels do not
penetrate in. It is clear that very similar argu-
ments would apply to n-body amplitudes (n ) 3),
since again the external labels do not get into the
graphs. Superficially it might appear that the
same is true for two bodies. Figure 3 shows a
typical two-body amplitude, and we see that q„
the external-momenta label, does not penetrate
in. But of course energy conservation is E =q,',
and E appears everywhere. The extra freedom
to define the subenergy independently of the total
energy that occurs for n) 3 is essential to our
discussion.

We now turn to the question of the rather restric-
tive case we have discussed. Clearly, the equality
of the masses, which has kept the algebra simple,
is of no essential importance; There will always
be a pair subenergy threshold square-root sin-
gularity associated with the propagator of an equa-
tion like (4). Furthermore, since it is a threshold
singularity, it will be the same in relativistic as
in nonrelativistic theory as long as the relativistic
theory has a proper nonrelativistic limit. Further-
more, nowhere have we used the structure of the
decay vertex, and hence, precisely the same argu-

I

FIG. 3. A typical two-body decay amplitude graph.

ments would apply in a production or breakup am-
plitude (2-3). In general, then, in an amplitude
for producing more than two particles, the coef-
ficient of a particular final-pair t matrix can be
expected to have a square-root singularity in that
pair subenergy, and that singularity comes from
the very last propagator before the t matrix. Fur-
thermore, unitarity relates the coefficient of the
singularity to the other parts of the amplitude.

III. A NUMERICAL MODEL

M =r+Qf(p, )II(Z- ,'p, ') v(q, '), - (8)

where v is the Yamaguchi vertex v(q') = (q'+ p') '
and II is the Yamaguchi propagator

1 1 1 dsq v(q').
(2v)' 2 o —q'

with X the coupling strength. f is defined by Eq.
(8). This equation is represented diagrammat-
ically in Fig. 4(a). The quasi-two-body amplitude
f satisfies' the well-known integral equation

In this section we examine a simple numerical
model of a three-body system to demonstrate ex-
plicitly the importance of the threshold singularity
and to study its features. The model we take is
that of the weak decay of a particle to three iden-
tical bosons (II=m =1). The final particles interact
strongly via Yamaguchi separable potentials like
those in (la'). Hence, our model, although sim-
ilar to that of Amado and Noble, ' is simpler, since
it does not have pairwise final-state resonances.
For the primary decay vertex we take the simple
symmetric form

I'(p, -kp+q, -kp-q)=r. (n'+-'p'+q') ', (I)
where n is the weak decay range parameter and
yo its strength. The full decay amplitude M to
first order in yo, but to all orders in the final-
state interaction, can be written

v(q'} d'q 1 d'p' v((p+-.' p')') v((5'+-.' p)') 11(Z --,' p")

(10)
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+~ ()
P

I

waves, we shouldexpect f(P} to go like P' for small
p as well as having the k =0 singularity. This is
clearly seen in Fig. 5 of Aaron and Amado, "
where an l =1 wave is plotted against P. Both the

P behavior for small P and the (E ——,'p')'~' sin-

+ 4) a= IO

FIG. 4. (a) Diagrammatic representation of Eq. (8).
(b) Diagrammatic representation of Eq. (10).

which is represented diagrammatically in Fig.
4(b}.' f(p) is essentially the coefficient of 7(km)

in Eq. (6), since for Yamaguchi potentials,

Hence, we expect f to have a square-root sin-
gularity at E = ~P'. To examine this singularity
we solve Eq. (10) numerically. We first project
the s-wave part of the kernel of (10) and then invert
the equation numerically by matrix inversion. The
physical range of P is 0 (P ((—,'E)'~'. It is well-
known that the numerical solution of an equation
of this form encounters singularities of the kernel
particularly in this range of P. We use the con-
tour-deformation technique originally proposed by
Hetherington and Schick, "adapted to this problem
by Aaron and Amado" and refined by Cahill and
Sloan." The cautions introduced by Cahill and

Sloan are particularly important, since we do the
partial wave integration numerically. If this is
not done, there can be problems with the standard
computer definition of the branches of the complex
logarithmic function. Considerable care is re-
quired to make sure all these points are correctly
treated.

In our numerical solution we have put the
Yamaguchi range P = 1 and redef ined the coupling
parameter A. =16nv so that v=1 corresponds to a
zero-energy bound state of the two-body system.
We have then studied the numerical solution of
(10)for E = 1, 0.1, 0.01, for @= 0.98 and 0.5 and for
a =0.1, 1, 10. This choice is meant to give some
indication of the range of possible variation not

to cover fully the parameter space.
The real and imaginary parts of the amplitudes

f are plotted in Fig. 5 for some of these choices.
f(P) is not plotted against P but against k = (E
——,'P')'~'. The physical range of k is (E)'~' to 0.
The strong linear dependence for small k in Fig.
5 shows the importance of the threshold singularity.
One also sees that in no sense is f slowly varying.
If we had been studying l waves rather than s

(a)
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FIG. 5. The real and imaginary parts of the particle
amplitude f for various energies E and coupling strengths
v as a function of the two-body submomentumk. u is
the weak decay range. In some cases the amplitude has
been multiplied by 10 to keep it on scale. (a) E =0.01,
v=0.98; (b) E =0.1, v=0.5; (c) E =1, v=0.98.
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This is represented schematically in Fig. V. The
dashed lines represent the propagators that give
the singularity. This series diverges badly for
most of the numerical cases we have considered.
The question is whether, in spite of that diver-
gence, the singularity is well given by the series;
that is, whether the shape of f(P) for small k =(E
——,'p')' ' is correctly given even if the magnitude
is not.

We have examined this question numerically in
two ways. First we define the logarithmic slope
of

1 df$=——
f dk

(15)

This quantity gives the "shape" of f at small k with
the magnitude divided out. We have calculated S
numerically by differencing (our mesh is coarse
and the answers are not very accurate) both for
the exact S (Ss) and for the S from the first term
of Eq. (12) (S,), the first plus second (S,), and the
first plus second plus third (S,). These are given
in Table I for a range of parameters defined in
Sec. III. As we expect Sg is a poor approximation,
since the first term contains little of the dynam-
ics, but S, and 8, are remarkably good approxi-
mations to S~. It should be borne in mind that the
multiple-scattering series is diverging badly for
many of these cases, and hence agreement as to
magnitude and sign of the S's is really quite good.

An alternative way to investigate the "correct"
shape of the approximate ter~ is to study their
predictions for

~f~'=A. This is a quantity closely
related to the rate. We define an exact, R, R~,
and R»R»R» in terms of the first, first plus
second, and first plus second plus third terms
in (14). In Fig. 8 we plot various A's on a loga-
rithmic scale vs k. If the R's are proportional,
they should all be parallel on the logarithmic
scale. We see that except for R„which has no

FIG. 7. Diagrammatic representation of the multiple-
scattering series [Eq. (14)]. The dashed lines represent
the singular propagator.

dynamics, they are parallel to a remarkable
degree. We also see that the normalizations that
would be required to make R, or R, agree with R~
are quite large, indicating the bad absolute value
(in fact often divergence) of the multiple-scattering
series. Still the very close tracking of the R's
over the whole range of k indicates substantially
correct. variation with. k, which translates into
correct shape of the final-state spectrum.

Three-body experiments involving threshold
enhancements are often analyzed using the first
few terms of the multiple-scattering series even
when that series is known to diverge or converge
at best very slowly. Shapes are often correct
even if over-all magnitudes are not and large fac-
tors are needed to normalize data and theory. We
believe the dominance of the singularity discussed
here and its relatively faithful reproduction by
the multiple-scattering series may go a long way
to explain these successes. There are, of course,
many questions left to investigate, since we have
not dealt with the coherence of the various final-
state terms, or with more than one partial wave,
but we still believe that we have the germ of an
explanation of the remarkable durability of the
shape of the final-state spectrum under seemingly
invalid approximations.

TABLE I. The real and imaginary parts of the slope parameter S defined in Eq. (15) for the
first (S &), the first plus second (S2), and first plus second plus third (S3) multiple scattering
terms of Eq. (14) and the exact S (Sz) for various energies E, coupling strength v, and weak
ranges 0, . The first entry in each case is the real part. Units are such that + =~ =1.

v/E Sg S2

0 ~ 98
0.01

0.98
1

0.5
0.1

10
1
0.1

10
1
0.1

10
1
0.1

-0.030
-0.045
—0.14

—0.28
—0.36
-0.42

-0.094
-0.14
—0.29

1.3
2.0
4.0

1.2
1.6
1.9
1.3
1.9
3.2

—95
-9.6
—93
—0.79
—0.64
—0.50

-1 4
—1.4
—1.4

1.2
1.1
1.1
0.70
0.74
0.71

1.8
2.0
2.5

—9.4
-94
—9.2
—0.59
—0.26
—0.028

—1.4
—1.4
—1.2

0.94
0.91
0.89

0.58
0.56
0.51

1.6
1.8
2.3

-8.9
-90
—9.4
—0.48
—0.25
-0.089

-1 3
—1.2
—10

0.58
0.52
0.11

0.75
0.91
1.1
1.5
1.7
2.2
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FIG. 8. The absolute squares of f for the first (R&), first plus second (R2), and first plus second plus third (R3)
multiple-scattering terms and for the exact f (Rz) as a function of the submomentum k for various energies E, and
weak decay ranges u, all for v= 0.98. (a) E= 0.1, u= 0.1; (b) E= 0.01, u= 10; (c) E= 0.1, u= 10; (d) E= 1, u= 1.

V. DISCUSSION

We have shown both analytically and numerically
that the "isobar" amplitude f of (a) has an impor-
tant pair subenergy threshold singularity. We have
also seen that it may be possible to parametrize f

so as approximately to include the rapid depen-
dence implied by the singularity. In executing this
parametrization it is important to maintain the
coherence implied by (b}. Further parametriza-
tions have been discussed elsewhere. "None of
these forms completely encompass the full content
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of the discontinuity relations implied by the sin-
gularity analysis of Sec. II, by Schrodinger's equa-
tion or by unitarity. It would certainly be useful
to develop a formalism that did include it, and we
are presently working to that end.

The numerical importance of the singularity we
found in Sec. III is related to the identical-particle
model, since for identical particles, the "non-i"
part of the total amplitude at q&

= 0 is given in
terms of f& at some other momentum, and for
small energies, f& has not changed significantly
at these other momenta. Empirically, the pres-
ence of the singular term in fwill clearly be most
important in the analysis of threshold enchance-
ments like the n-n scattering length or in cases of
final-state two-body resonances with width com-
parable with the phase space, that is, of broad
overlapping resonance bands. For narrow
resonances or high energies the effects of the
singular part of f should be less. It should also
be noted that in many isobar analyses withr 40
two-body states, q' factors are usually removed,

and it is then necessary to redo some of the kine-
matics of the paper. This is discussed in Aaron
and Amado. '

Clearly much more work is needed in order to
assess the full analytic and numerical impact of
the singular variation of f& both for empirical
analysis and for a deeper understanding of the
theoretical structure of multibody amplitudes, but
we hope that the work presented here and related
work has shown that that singular part and its
coherent relation to the other parts of the am-
plitude cannot be ignored.
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