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studied by Zee from a somewhat different approach
[A. Zee, Phys. Bev. D 6, 3011 (1972)].

6H. Fritzsch and M. Gell-Mann, in 1972 Coral Cables
Conference on Fundamenta/ Interactions at High Energy,
edited by M. Dal Cin, G. J. Iverson, and A. Perlmutter
(Gordon and Breach, New York, 1971).

~H. Ebenhoh et al. , Z. Physik 241, 473 (1971).
SIn the quark model

f d( ([A.($) + X($)j = 9 d)E~2+($)
0 0

--;(I dc&2"(8

where A, (() and X($) are the distributions of X and A,

quarks in the nucleon, and E& ($) and E& ($) are struc-
ture functions averaged over neutrons and protons,
D. Perkins [Proceedings of the XVI International
Conference on High Energy Physics, Chicago-Batavia,
Ill. , 1972, edited by J. D. Jackson and A. Roberts

(NAL, Batavia, Ill. , 1973), Vol. 4, p. 189j has esti-
mated

~ ~ ~dg E2+Q') = 0.14 + 0.02, d( E2"+Q) = 0.49 + 0.07
0 0 iso
implying that

d~ g[X(g)+i@)J =0.02~0.25.

SSee for example, Kuti and %'eisskopf (Ref. 3) and
references therejn.
M. Kugler informs us that this relation. can also be
obtained using the Melosh transformation from current
to constituent quarks.

~~These sum rules are expected to converge in conven-
tional Regge theory. Only singularities at a ~ 1 would
cause a divergence, and as noted earlier, the Pomer-
anchukon at u = 1 decouples from g&(().

l2J. D. Bjorken, Phys. Bev. D 1, 1376 (1970).
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%8 hRve investigated constrRints imposed by duRlity on the slopes of nonlineax' tl Rjectori8s.
In Argand-loop analysis for square-root-type trajectories we show analytically that the lead-
ing and daughter trajectories in the s channel have the same form, except for an additive
constant, as the input trajectory in the t channel. This result is also true for all leading
nonlinear trajectories in a model proposal by Cohen-Tannoudji, Henyey, Kane, and
Zakrzewski.

I. INTRODUCTION

In a model world of zero-width resonances,
duality xequires a universal slope for all /ines'
trajectories. Thus, in Argand-loop analysis the
slope of the output trajectory has been shown equal
to the slope of the input trajectory. ' The dual res-
onance amplitudes (Veneziano or Virosoro repre-
sentation) also require a universal slope for all
linear trajectories. 2 3 One important consequence
of a universality of slope is that a unique scale
parameter emerges for high-energy processes.
However, in the real world, resonances have
finite widths and consequently trajectories are
nonlinear. This pxompts the question: Does du-
ality Rlso x'equire R unique scRle parameter for
nonlinear trajectories 'P

The purpose of the present papex is to examine
the constraints imposed by duality on the slopes
of nonlinear trajectories. Firstly, we investigate
this problem without using a definite dual reso-

nance representation. %e show analytically that
-the partial-wave projection of a crossed-channel
nonlinear Regge-pole contribution can result in
partial-wave amplitudes which produce spiral
traces in the Argand diagram. The resulting
Regge trajectory in the direct channel is identical
to the input trajectory apart from a constant, i.e.,
the input and output trajectories a,xe parallel.
Evaluation of the partial-wave projections of Regge
amplitudes requires R definite form for the Hegge
txajectory. %e have taken square-root type of
trajectories and our proof can be extended to nth-
root type of trajectories.

%e then study a model recently proposed by
CHEZ. ~ Crossing symmetry is exactly satisfied
by this model and Regge asymptotic behavior is
ensured by the requirement'

lo(f&l& l&lfl"»(t&I as lfl-"
%e derive a condition on the asymptotic behavior
of nonlinear Regge trajectories, employing a mod-
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el proposed by Mandelstam. ' We show that this
asymptotic condition, when applied to the CHKZ
amplitude, leads to the equation

Rea, (x) =Iten, (x)+ C, (e=iV. , z, iV„), (2)

where the Ce's are constants.
In Sec. II we investigate the structure of maxima

in different Argand diagrams for square-root tra-
jectories. In Sec. DI we derive the asymptotic be-
havior of trajectories. We then use this condition
in the CHEZ representation. Finally, these re-
sults are discussed in Sec. Dt.

II. PARTIAL-WAVE AMPLITUDES

We study the s-channel partial-wave projection
of the Regge amplitude

A(s, t) = . (+1 —e ~)—P(t)
I'(a}sinwn so

where k, are constants, ' in Eq. (V), we obtain

-S Ilo- I)

A, (s) = 2p — (-1)'
So

2l+1
x Q II, 2(i) j (i }&'pin(- sis, )) .

Now, using

j (z) - —cos[z —(m+1)-,w],
1 1

larg(z)l(w, lzl-~, (12a)

the s-asymptotic behavior of A, (s}for s» I is
given by

-2W -s "(&

A, (s)- S')s(-s/s, ) (s, )
2l+1 s

x 4, -1'+~ '

where n = a(t) and the other symbols carry their
usual meanings. We choose a simple form for the
trajectory

8& ~( q t W2-l)

(12b)

++1 a(t)
A, (s)= ll dz, P&(Z,) +-

So

a, (s) =+A&'(s) —A, (s),
(Va)

~;(*)=&)(—')" "'
~+1 S 'g wPx

x dx — (-1)'P,(a —(px+ q)')(px+ q)
So

(Vb)

n(t) =)V, +i&)(t-Z)"'.

The partial-wave projection is defined by
i+1

a&(s}=-,' P, (Z,)A(s, t)dZ, .
+-1

In order to calculate this integral analytically, we
approximate the smooth factor (for negative t)

tt(t)
~( (t)), (t) constant .

Following the method of Ref. V we obtain the par-
tial-wave amplitude a, (s) for large s (s» I)

In Eq. (12b) the first term inside the square brack-
et gives a large background, while the second
term gives resonance maxima. The imaginary
part of A, (s) associated with these resonance
maXima 18 given by

ImA& (s)l„„„=sinw[)v, +)V(s —Z)~' —I]
v)(s-z) + vjo~ 1/

y

So

which exhibits maxima at

)V, +)V(s —Z)'t' —1=2m+-,', n=0, 1, 2, . . . .

(13a)

III. THE DUAL AMPLITUDE

(13b)
We thus find that the output trajectory has the same
form as the input trajectory except for a constant.
Using similar arguments we can also show that if
the input trajectory has the form a(t) =)Vo

+)7(Z —t)'t", then the output trajectory is given by
a(s) =const+I)(Z —s)'i". Notice also that in the
direct channel, there appears an infinite set of
daughter trajectories parallel to the leading tra-

' jectory.

q+p= (a+ I)'i', q -p= (a —I)'t',

@=1+
y

'g =g

Using the expansion

2l+1
(» +s)»( -(»sss)'&= g s,.».(s), (10)

It was shown by Mandelstam' that linear trajec-
tories in a dual amplitude have a universal slope.
We shall show that when Mandelstam's model is
extended to rising nonlinear trajectories, asymp-
totically, all trajectories become parallel. Using
the CHEZ model we shall then prove that if tra-
jectories are asymptotically paraBel, they are
parallel everywhere.



1448 D. CREWTHER AND G. C. JOSHI

Reu, (m, ) =o,
Reu, (M„„}= o+ n .

(14)

(15)

Suppose now that Reu, (Z)-K,Z & and Reu, (Z)
-K,Z 2 as Z -~; then the following expression is
obtained for the binding energy (M„„—m- p) in
the limit 0

Consider the situation in which an external par-
ticle of mass p. is combined with a series of ex-
ternal particles with spins 0 and masses m . The
intermediate states comprise a Regge sequence of
spine cr+ n (n = 0, 1, 2, . . . }and masses M„„, where

factor P&(y) in Eq. (22) is a ghost-eliminating
factor associated with either the s- or the u-chan-
nel trajectories. We take the most general form
for P(y), i.e.,

P~() ) fp='(~~.()')I
n =0

(23)

where the p~'s are constants.
Demanding that the N trajectory have even sig-

nature and the N& and 6 trajectories have odd sig-
nature leads to the following restrictions for small
negative values of u:

(16)

Now, following Mandelstam, we assume that B(a)
remains finite as cr- ~. Then we have

J0
du I

"'"' "f(-I }[up( p) -C.P-.( }H-=0,

&x=N, n, Nz (24)

m~ = m2 and K~ =K2, (17)
yN p yN Ny yN (25a)

x(l -x) "()'(~& 't' —s —u (19)

i.e., the two nonlinear trajectories Reu, (x) and
Reu, (x) are parallel at infinity.

We consider the CHKZ amplitude for nN kine-
matics involving different trajectories in the t and
the s and u channels. For our purpose here the
A (s, t, u) amplitude suffices. It is given by'

A (s, t, u)4' ' = Z ypKp(s t)
g=+, 6, N

+ g y, ,(1 —6„)M;,(s, u),
x, y=N~, &, Ny

(18)

where

1

K.-p(s, t) = dxf, (sx)f.(tx')x ~p '*'
0

C~= -y~Z+y~N +y
0f

CN yN P yN ~ y N
T f T 0'.

(25b}

(25c)

where the y's are defined in Eq. (18).
As Eq. (24} is satisfied for continuous values of

u, using an inverse Mellin transform we obtain

up(-p) = P a„[ue(-p, )]", for all y, &0, (26)
0

where ae =peCe. From Eq. (17) we know that

Reup(p, ) =Reue(p) =K, t(,

as p -~, hence, in Eq. (26)

a„=0 for n & 1, ae = 1 for n = 1 .
Thus,

and

1

Mee(s, u) = dx y&(sx}fe(ux')x "e""
0

Reup(p) = Reue(p)+a, )

where e=N, g N .

(27)

x (1 —x) "e 'l" ' —s —u. (20)

In the above equations x'= 1 —x.
To ensure correct pole structure for A (s, t, u),

the residue functions occurring in (19) and (20)
satisfy the following conditions:

fp(y) = up(y)f(y),

fe(y}= [' —ue(y)lf(y)

y e(y ) = Pe(y }f(y),

(21a)

(21b)

(22)

where f(y) is the usual f function which vanishes
faster than any inverse power of y as ~y ~((-~. The

IV. DISCUSSION

We have shown that duality requires a unique
scale parameter for nonlinear trajectories. Our
investigations in Sec. II depend on a definite form
of nonlinear trajectory. However, our analysis of
Sec. II is independent of any dual representation.
In Argand-loop analysis we find that not only the
input and output trajectories have the same slope,
but all the daughter trajectories generated in the
direct channel are also parallel.

In Sec. III our investigations were dependent on
a given dual representation (CHKZ). In this case,
our results are true only for the leading trajec-
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tories. This is due to the multipole structure of
the daughter trajectories in the CHKZ representa-
tion. In this case, the condition Eq. (2')} is not
satisfied.

However, inclusion of cuts in the CHEZ repre-
sentation does not change our results. This is
true for the rather general case where cuts are
constructed from moving poles.
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X ~2r -2li+i-X~
2r -2p-X+1, my
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P, (y) = g C, „y" and

@=0

y' = Qd& ~P~(y).
m=0
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We construct a simple statistical model in order to estimate, for very energetic collisions,
the ratios of particles with various quantum numbers produced with center-of-mass momenta
less than a few GeV. Two conclusions are that (1) isobar decay can account for a large
fraction of the SU(3) violation observed experimentally, and (2) at high transverse momentum

the dominance of pions diminishes.

In this paper we construct an extremely simple
statistical picture of hadron production in the cen-
tral region of rapidity. It illustrates how several
features of the produced-particle spectrum in had-
ron collisions can be understood without resorting
to sophisticated dynamical models. While we are
not sure whether this is a model which can be used
for serious quantitative study, we do believe it
contains qualitative features of some generality.

Subsequent to carrying out this work, we realized
that Anisovich and Shekhter' have developed a very
similar picture. We recommend that the interested

reader compare that work with this. Not surpris-
ingly our versions differ in various ways: The ini-
tial assumptions differ somewhat, and comparison
of our results with theirs provides an indication of
the sensitivity of the basic idea to details. Also,
Anisovich and Shekhter considered not only the
central rapidity region (for low-P~ secondaries}
but the target and projectile fragmentation regions
as well. On the other hand, we have applied the
idea to the production of particles of high and low

P in the central rapidity region.
The model is very simple. Imagine that, as a re-


