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We define a kinematical variable P~ w'hich is correlated to the peripherality of a multibody
final state. P„=O implies that all the final-state particles lie in a plane pexpendicular to the
incident direction. P„=1 implies that all the paxticles in the final state axe collinear vrith

the incident direction. P„distributions for resonance production are quite different from
those for Lorentz-invariant phase space. This property may be used to detect phase-space-
like phenomena at high enex'gies in multibody final states {n ~ 10). We compare P„distri-
butions for the four-body annihilation and nonannihilation channels of pp interactions and the
foux-body final states of ~+p interactions in which the proton goes into the backvrard and for-
ward hemispheres. We find remarkable kinematic similarities between annihilation and
~+p baclavard-hemisphere channels. We suggest that this is due to the dominance of baryon
exchange. There is also a xemarkable, but different, similarity between nonannihilation and
the m+p forward-hemisphere channels. We suggest that this is due to the dominance of meson
exchange.

I. INTRODUCTION II. DEFINITION OF P~

In this paper me define a kinematical peripher-
ality variable P„which is related to the peripher-
ality of a multibodied final state. It takes on val-
ues 0 ~P„~1. When P„=I, then all the particles
in the final state are collinear with the incident
direction. P„=o implies that all final-state pax-
ticles lie in a plane perpendicular to the incident
direction. In See. II me define P„and indicate its
xelationship to the Feynman Xvariable. In Sec. III
we describe the properties of P„. We compare the
distribution of P„corresponding to the assumption
that the final-state particle correlations conform
to Lox entz-invariant phase space with that for the
assumption of resonant production and decay in
the final state. We demonstrate that the distribu-
tion of the variable P„has markedly different
charaeteristies for these two assumptions. In Sec.
IV we apply this variable to the study of four-body

Pp and m'P induced final states. We find that four-
pion pp annihilation events and m'p induced back-
ward tmo-pion production have very similar P„
distributions. We also find that the four-body PP
nonannihilation final-state events and the m'p for-
ward-hemisphexe tmo-pion production events have
similar P„distributions. However, the distx ibu-
tions for annihilation and nonannihilation events
are very different. We draw some conclusions
about the production mechanisms involved. Sec-
tion V summarizes our conclusions.

In a previous publication' a kinematical variable
ft/R was briefly described. In this paper we re-
place this notation with P„=8/8 -. P„ is a pe-
ripherality variable which has the property that if
P„=1, then all particles in the final state are
collinear with the incoming beam, and if P„=O,
then all final-state particles lie in a plane perpen-
dicular to the incident beam. In the center-of-
mass reference frame, P„has a geometric in-
terpretation in terms of the longitudinal momen-
tum of all the final-state particles and the Van
Hove longitudinal-phase-space analysis. '- For a
given final-state configuration, the longitudinal
momenta of the particles have we11-defined ratios
with respect to each other, which can be expressed
in terms of the Van Hove angle variables. 'These
ratios are not unique to a given configuration;
rather, there is an infinity of different configura-
tions that have the same well-defined ratios. How-
ever, there is one configuration that is unique, that
configuration in which all the particles in the final
state are collinear with the incident beam direc-
tion. %'e mill demonstrate later that this config-
uration can actually occur. In terms of the Van
Hove analysis, this occurs when the event lies on
the kinematical boundaxy and P„=1. If all the
final-state particles lie in a plane perpendicular
to the incident beam, then the longitudinal momen-
tum of each particle is identicaHy zero. In this
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case, the event lies at the origin of the Van Hove

plot and P„=O. Hence, P„measures, in some
sense, how collinear the event is with respect to
the incident beam. We will give a quantitative
statement of this in the following discussion.

As background, we will review some of the as-
pects of the Van Hove longitudinal-momentum
analysis which are relevant here. Figure 1 con-
tains the three-body Van Hove plot. In this plot,
two quantities are defined:

6)=tan ' ' +90',
&3q,

ft =[ (q, '+q, '+q, '}]'",
where q, =longitudinal momentum of the ith parti-
cle. The kinematical boundary is shown and R
is the intersection of the extension of the vector
ft (at fixed 6) with this boundary. We now define
our per ipherality variable:

R
V

One can calculate R from energy conservation
for the general n-body final state. ' Let p, , i =1
to n, be the three-momenta of the n particles of
an n-body final state. If the P's are measured in
the center-of-mass frame of reference of the n

particles, then

The n longitudinal momenta q, , , q„are defined
by

q,. =b ~ p, ,

where b is the unit vector in the direction of the
incident beam particle in the center-of-mass
frame of reference. Thus,

(6)

Therefore, only n —1 of the q's are independent,
and hence all n q's can be represented by n —1
coordinates. Let 6,. be a set of n unit vectors in
(n —1)-dimensional space. Our aim is to arrange
the angles between the n unit vectors so that for
any n-body final state we can define a vector X
such that

X cv,. =q,.

and, conversely, any vector X can represent the
longitudinal momentum of the n particles in an n-
body final state. From Eqs. (6) and ('f) and for
arbitrary X the following equation holds:

X 6,. = X ~ 6,.

f=l

=0

This proves that

Y

I

I

6] =0.

From this it follows that

I
m'4

I

I Kl NE
SOU

(10)
j Wf

From symmetry, we will require that all the
unit vectors make the same angle with each other.
This implies that

n, B,=co.sO„=C (iej).

8= ton (~ " )+ 90'

We will show that

1C=-n-1'
From Eq. (10) and the fact that

~ n,.~' = 1, we have

FIG. 1. The three-body Van Hove longitudinal phase-
space plot for m'p p~'no. The proton, w+, and n unit
vectors, defined as p, 8+ and fo, are at 120 with
respect to each other. The simple kinematical boundary
shown is calculated assuming that the rest masses are
negligible compared with the center-of-mass energy.
The polar coordinates, 8 and 8, are defined in terms of
the longitudinal momentum of the three final-state parti-
cles.

cp 'Q]=1

n

0 '0
j wj
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This implies that

(14)

A set of n unit vectors in (n —1)-dimensional
space satisfying Eqs. (9), (10), and (14) is

e,'=0, i&j ~n-1,
n(n- j)

(n-1)(n- j+1) i=j ~n-1,

with

- 1/2n y&s~n-1
(n —1)(n —j+1)(n —j )

Qq,.'=${x t{,.{'. (16)

Without loss of generality, for the pur~se of cal-
culating R =( X(, we can assume X=) X)a, =Ra, .
With this assumption Eq. (16) becomes

Q' = Qj 2

j =1

where n~j is the j th component of the ith unit vec-
tor. From Eq. (7) we see that

The inequality in Eq. (20) ensures the existence of
a positive xeal value for u, co ~ 1. In the extreme
case where aQ qj -=0, then se is defined to be in-
finity.

As can be seen in Eq. (1) for the three-body fi-
nal state, multiplying each q,. by fixed so does not
change the value of 8. Or, saying it in another
way, multiplying each longitudinal momentum by
a fixed u does not change the ratios of the longitu-
dinal momenta. This comment is also true for the
n-body final state. Since the Van Hove angular
variables merely Ieflect longitudinal momentum
orderings, multiplying each q,. by a constant
leaves all the Van Hove angular variables invari-
ant. ' Geometrically, if you multiply each q, by a
scale factox, all Van Hove angles remain constant,
but the radius changes. The events on the kinemat-
ical boundary satisfy Eq. (21) with n{ =1.

Hence, given the value ce which satisfied Eq.
(21) for a fixed final state, then the (n{q, ) define
an event which is on the kinematic boundary of the
Van Hove plot. Therefore, R~~ is given by

q '= Ra e

=R2+R (n-1) 1
(n-1

It therefore foQows that

I'„=1 av . (23)

which implies that
n

R2 n
Q 2 (18)

The total energy E is given by

E =Q[q, '+(P„.)'+m, ']'" ~ Q(q, '+m, ')'".

A scale factor ce may be defined by the equation

E =Q[q,'+(P, ()'+m, ']'",
j=l

where, as above, q, is the longitudinal momen-
tum, m, is the mass, and (p„.)' is the square of
the absolute value of the transverse momentum of
the ith particle in the final state. The following in-
equality is useful here:

One can calculate P„by solving Eq. (21) numer-
ically. If I'„=1, none of the particles in the final
state have any transverse momentum and the event
is completely collinear. If P„=O, then R =0 and
from Eq. (18) each q, must be identically zero.
Thus, all particles have only transverse momen-
ta, and the event lies in a plane perpendicular to
the incident beam. An important property of this
variable is that it characterizes the whole event
and is not representative of a class of particles in
the final state.

P„has an interesting high-energy limiting be-
havior, namely,

(24)

where Xj is the Feynman variable' for the ith par-
ticle (i.e., X, =q, /2Ws =q, /2E) This can be. seen
by solving Eq. (21) for the case of very large E.
From Eq. (21) we have

(w'q, .'+ m, ')'" =E .j
j =1

(21} (25)
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If E» m, , then even for q,. -0 we have

(
co'q, ' I '" u lq, l' + m, 0(m. ,/E.)

and Eq. (25) becomes

~~~" + Q m, O(m, /E) =1.
j=l

For fixed n

gm, o(m, /z) =-0
)=1

and Eq. (27) reduces to

lal „g lqLI

tern becomes large compared to the sum of the
masses in the final state, the distribu. ion of the X
variable becomes energy-independent and, hence,
so does the distribution of P„.

Figure 2 shows the P„distributions from Monte
Carlo calculations of Lorentz-invariant phase
space for various n-body final states of the reac-
tion LL'p-p+(n —1)w at 100 GeV incident w' mo-
mentum. The most notable feature of these curves
is that, as n increases, the peaking near P„=0.5
becomes more pronounced and the regions around
P„=O and P„=1become more depleted. These
curves are slightly asymmetric, tending to shift
towards P„=1. This tendency increases with in-
creasing n and decreasing incident momentum.
However, there is no significant change in shape
even for momentum as low as 5 GeV/c.

Hence, in the limit of large total energy, P„ is
twice the sum of all the absolute values of the
Feynman variables for that final state. Therefore,
any exclusive process that has a bmiting distribu-
tion in terms of the Feynman variable will also
have a limiting distribution in P„.

III. PROPERTIES OF Pv

) l500—

~ looo-

L

~ soo-

800-

c600

~400

As stated in Sec. II, any distribution that has a
limiting distribution in the Feynman X variables
as the final-state energy approaches infinity will
have a limiting distribution in P„. An obvious
example of this is Lorentz-invariant phase space.
When the total energy in the center-of-mass sys-
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FIG. 2. Monte Carlo P„distributions for Lorentz-
invariant phase space for n-body final-state configura-
tions. The reaction assumed was x+ +P —p + (n —1)~,
n =3, 4, 5, 8, 20, at an incident pion momentum of
100 GeV/c, The shapes shown do not change significantly
for incident momenta down to 5 GeV/c.

FfG. 3. Monte Carlo distributions for the reaction
m+p —4++pa for incident pion momentum of 10 GeV/c:
(a} the assumed 4++ invariant mass; (b) the 4++ Gott-
fried-Jackson angle; (c) the assumed p invariant mass;
(d} the po Gottfried-Jackson angle; (e) the production
t distribution. The Treiman-Yang distribution for both
the ~++ and p was assumed to be isotropic.
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FIG. 4. The P„distribution for the 7I+p —4++po

Monte Carlo data shown in Fig. 3. This distribution
peaks near P„=1,which is in sharp contrast with the
Lorentz-invariant phase-space distribution shown in

Fig. 2.

This behavior can be contrasted with that typical
of resonance production in the final state. For
example, the P„distribution may be calculated by
Monte Carlo methods for the four-body reaction

+ +p ~+++ pO (29)

at 10 GeV/c incident pion momentum. Figure 3

gives the invariant mass, Gottfried-Jackson angle,
and t distributions used for the b,"and p' in this
calculation. Figure 4 gives the resulting P„dis-
tribution for reaction (29). Note the peaking near
P„=1.0.

Although P„ is related to the peripherality of
the whole event, it is not the same as the four-
momentum transfer t. To demonstrate this, we
have taken a cut on our Monte Carlo sample con-
sidering only those events which have a P„&0.92.
This includes 70% of the original sample. In Fig.
5 we plot the t' (t'—= t —t ) distribution for both the
original sample and for our reduced sample with
P„~0.92e We also indicate on the figure the value
of t' which divides the data such that 70% of the
original sample has a t' less than this value. This
figure demonstrates that a cut on P„ is not the
same as a cut on t' (or t).

FIG. 5. The t' (t'=t -tm~) distribution for the 7r+P

—4"p Monte Carlo data for all values of P„compared
with the t' distribution for those events for which P„
~ 0.92. The latter sample contains 70% of the events.
A sample obtained by a out on t' would require ~t'~ ~ 0.15
if it were to contain the same number of events. This
comparison demonstrates that a cut on P„ is not identi-
cal to a cut on t'.

As an illustrative example to demonstrate the
utility of P„, we have combined 2(@ of four-body
Lorentz-invariant phase space with 8(@ of reac-
tion (29). We show in Fig. 6 the Pv' and s'w in-
variant-mass distributions for this mixture. As
expected, these histograms show clear 6" and
p' signals riding on top of a 2 background. The
phase-space events are plotted choosing that Pw'
combination which is closest to the 4" mass as
the 6". Figure 7 gives the P„distribution for
the mixture, and it is seen that a cut at about P„
=0.8 would eliminate almost all the phase-space
events and very few of the events of reaction (29).
Figure 8, which displays the distributions corre-
sponding to events for which P„~0.8, is essen-
tially indistinguishable from Fig. 3. In particular,
the t distributions displayed in Figs. 3(e) and 8(e)
are essentially identical. Hence, in this particular
situation, a cut on P„would be very useful in
eliminating Lorentz-invariant phase-space events
from the sample.

Of particular interest is the possibility of using
P„as a variable in order to detect phase-space-
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FIG. 6. The pm' and n+~ invariant mass distributions resulting from a mixture of 20% Lorentz-invariant phase space
and 80% n++po production. The n+'po Monte Carlo sample is characterized by the distributions sl)own in Fig. 3. The
phase-space events are plotted by choosing the Pm+ combination with invariant mass closest to the b++.

like processes in multibody (n ~ 10) final states at
high energies. The distribution of P„ for large n

shown in Fig. 2 indicates that this type of process
should be distinguishable from peripheral-type
mechanisms, such as quasiresonance production
or diffraction dissociation.

IV. APPLICATION

Since P„ is a variable that characterizes the
whole event, it is useful to try and consider what
processes would affect its distribution. In the
framework of particle-exchange models, there are
really just two classes of exchange mechanisms-
one is meson exchange and the other is baryon ex-
change. Hence, it would be useful to compare the
P„distribution in cases where only the exchange
mechanism is a common property. PP annihilation
processes are examples gf pure baryon exchange.
Backward production of mesons by mp interactions
(mesons produced in those events where the nu-
cleon changes direction in the center-of-mass
system) is also thought to be dominated by baryon
exchange. Hence, one could compare the P„dis-

tributions of pP annihilation events with backward
meson production by pions. One could also com-
pare meson production by PP nonannihilation inter-
actions with forward meson production by mP inter-
actions (mesons produced in those events where
the nucleon does not change direction in the center-
of-mass system), since both processes are domi-
nated by meson exchanges.

Previous authors have studied the transverse-
momentum distributions of particles in pp anni-
hilation and nonannihilation channels. ' Studies
have also been made comparing two-body annihila-
tion processes to backward elastic scattering. ""
These comparisons are based on baryon-exchange
concepts. A study of K p interactions which at-
tempts to isolate baryon-exchange mechanisms
has also been reported. "" Other authors have
studied the backward peaks in resonance produc-
tion in mp interactions. " In these resonant
studies, it was found that the angular distributions
were not as sharply peaked backward as they are
peaked forward. This difference was interpreted
as evidence for baryon exchange in the backward
direction for these resonant processes.
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Since we have data on both mp and pp interac-
tions, we report here a study of four-body final
states produced by incident 3.9-GeV/c and 5.V-

GeV/c II' on hydrogen and four-body annihilation
and nonannihilation final states produced by inci-
dent 4.4-GeV/c and 5.1-GeV/c P on hydrogen T.he
data were taken from exposures in the ANL 30-in.
hydrogen bubble chamber. The sample is a subset
of over 200000 events measured on PEPR (Preci-
sion Encoding and Pattern Recognition).

We have analyzed these data, both with respect
to the conventional transverse-momentum distri-
butions and with respect to I', . We consider the
conventional method of describing the data first. '

Consider the reaction m'p- p~'m'm . We define
a forward event as one in which the proton does
not change its direction and goes into its forward
hemisphere in the center-of-mass system. We de-
fine a backward event as one in which the proton
reverses its direction in the center-of-mass sys-
tem and goes into its backward hemisphere. In
Fig. 9 we plot the P~ and (P, )' distributions for
incident pion momentum of 3.9 GeV/c. As can be
seen, the distributions for pions and protons from
forward events are slightly different, with the
protons having a somewhat broader distribution.
The pions from backward events have a distribu-
tion not too different from the protons from for-

0.5 I.O

I«I L(Gev/c)*]

FIG. 8. Distributions for the Monte Carlo events shown
in Fig. 6 for which P„~0.8 (see Fig. 7): (a} the d +

invariant mass; (b} the 4'+ Gottfried- Jackson angle;
(c) the p invariant mass; (d) the p Gottfried-Jackson
angle; (e} the t distribution.

p+p p+p+7 +77
p

p+p» w +'rf +x +ST

(30)

(31)

Rt 4.4 Rnd 5.1 GeV/c incident p momentum, re-
spectively. For reaction (30) distributions for
both pions and baryons are given. The distribu-

ward events, while the protons from backward
events have the broadest distribution. Similar
comments can be made about the 5.7-GeV/c data
(Fig. 10).

In comparing backward and forward events, the
obvious question that arises is: Which are the im-
portant distributions? Does one consider only the
pions or does one concentrate on the protons, or
should one study some combination of distribu-
tions?

In Figs. 11 RIll 12 we dlsplRy ihe P Rlld (P )
distributions obtained from the data for the reac-
tions
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tions for the baryons are slightly broader than
those for the pions. The distributions for the pions
for reaction (31) are, however, even broader.

If we wish to compare the meson-induced final

states with the antiproton-induced final states, we
have to make some arbitrary choices as to which
distributions to-compare. If we have production
of a particular resonance, it makes sense, of
course, to look at the peaking of the angular dis-
tribution. However, if, as in this case, we are
examining all the final-state reactions at once,
the concept of an angular distribution is difficult
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FIG. 9. The P~ and (P~) distributions for the final-
state particles in the reaction 71+p -p ~+71+71 at 3.9 GeV/c:
(a) the transverse-momentum distribution of the pions
from the forward-hemisphere events (a forward-hemi-
sphere event is one in which the outgoing proton is emitted
in the forward hemisphere in the center-of-mass system
with respect to the direction of the incoming proton);
(b) the transverse-momentum-squared distribution of
pions from forward-hemisphere events; (c) the trans-
verse-momentum distribution of protons from forward-
hemisphere events; (d) the transverse-momentum-
squared distribution of protons from forward-hemisphere
events; (e) the transverse-momentum distribution of
pions from backward-hemisphere events (a backward-
hemisphere event is one in which the outgoing proton is
emitted in the backward hemisphere in the center-of-
mass system with respect to the direction of the incoming
proton); (f) the transverse-momentum-squared distri-
bution of pions from backward-hemisphere events;
(g) the transverse-momentum distribution of protons
from backward-hemisphere events; (h) the transverse-
momentum-squared distribution of protons from back-
ward-hemisphere events.

I I I

0.4 0.8 IZ
(P~ ( (GeV/c)
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FIG. 10. The Pj and (P~)2 distributions for the final-
state particles in the reaction m+p —pm+n+n at 5.7
GeV/c: (a) the transverse-momentum distribution of
the pions from forward-hemisphere events (see Fig. 9
or text for the definition of forward-hemisphere event);
(b) the transverse-momentum-squared distribution of
pions from forward-hemisphere events; (c) the trans-
verse-momentum distribution of protons from forward-
hemisphere events; (d) the transverse-momentum-
squared distribution of protons from forward-hemi-
sphere events; (e) the transverse-momentum distribu-
tion of pions from backward-hemisphere events (see
Fig. 9 or text for definition of backward-hemisphere
events); (f) the transverse-momentum-squared distribu-
tion of pions from backward-hemisphere events; (g) the
transverse-momentum distribution of protons from back-
ward-hemisphere events; (h) the transverse-momentum-
squared distribution of protons from backward-hemi-
sphere events.
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to define.
If we analyze the complete final state in terms

of the variable I'„, it is not necessary to make an

arbitrary choice. The virtue of the variable I'„ is
that it characterizes the final state of an event
rather than that of an individual final-state parti-
cle. Figure 13 demonstrates the utility of this
characteristic of P„. Figures 13{a)and 13(b) com-
pare the-forward-hemisphere events induced by
3.9-GeV/c w" mesons on protons with the non-
annihilation 4.4-GeV/c pp data. The center-of-
mass incident momentum for the m'p data is 1.28
GeV/c, which is almost equal to the 1.29-GeV/c
center-of-mass incident momentum for the pP
data. These two distributions are almost identical.

Figures 13{e)and 13(f) compare the forward-
hemisphere events induced by incident 5.7-GeV/c
w' mesons with the nonannihilation 5.1-GeV/c PP
data. The center-of-mass incident momentum
for the 5.7-GeV/c w" data is 1.58 GeV/c and that
for the 5.1-GeV/c pp data is 1.4 GeV/c. Again, the

two momenta are similar and so are the two dis-
tributions. It is seen that for the forward-hemi-
sphere n'p data and for the nonannihilation data,
the higher the incident momentum in the center-
of-mass system, the more the distribution is
peaked near I'„=1.

If we now look at Fig. 13(c), which gives the P„
distribution for the backward-hemisphere events
induced by 3.9-GeV/c w' mesons on protons, we
find a strikingly different distribution compared
with that for the forward-hemisphere events. In
Fig. 13(d) we plot the P„distribution for the an-
nihilation events for the 4.4-GeV/c pp data. The
similarity of the P„distributions between the
backward-hemisphere events and the annihilation
events is quite obvious. The same similarities
exist for Figs. 13(g) and 13(h), which show the
5.7-GeV/c w'p data and the 5.1-GeV/c pp data, re-
spectively.
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FIG. 11. The P~ and (P~)2 distributions for the fina1-
state particles in the reactions (A) pp -ppx+7I and (B)
pp- ~'m'n x at 4.4 GeV/c: (a) the transverse-momen-
tum distribution of the pions for reaction (A); (b} trans-
verse-momentum-squared distribution of the pions for
reaction (A); (c) the transverse;-momentum distribution
of the baryons for reaction (A}; (u& ~h.e transverse-
momentum-squared distribution of the baryons for re-
action (A); (e) the transverse-momentum distribution of
the pions for reaction (B); (f) the transverse-momentum-
squared distribution of the pions for reaction (B).

FIG. 12. The P„and (P~)2 distributions for the final-
state particles in the reactions {A) pp ppx+n and

(B)pp —7!'7I'7I m at 5.1 GeV/c: (a) the transverse-
momentum distribution of the pions for reaction (A);
(b} the transverse-momentum-squared distribution of
the pions for reaction (A); (c) the transverse-momentum
distributions of the baryons for reaction (A); (d) the
transverse-momentum-squared distribution of the
baryons for reaction (A); (e) the transverse-momentum
distribution of the pions for reaction (B); (f) the trans-
verse-momentum-squared distribution of the pions for
reaction (B).
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We believe that the similarity between the an-
nihilation channel and the m'P channel with back-
ward hemisphere data is due to the fact that both
channels are dominated by baryon exchange.
Furthermore, we believe that the similarity be-
tween the nonannihilation pp channel and the m'p

channel with forward-hemisphere data is due to
the fact that these channels are dominated by me-
son exchange. Note that we have not had to isolate
resonant reactions to come to these conclusions.

If the above explanation does indeed have valid-.

ity, we make the following predictions:
Final states dominated by meson exchanges will

have P„distributions similar to those in Figs.
13(a), 13(b), 13(e), and 13(f). Reactions with the
same number of particles and similar incident
momentum in the center-of-mass system will
have similar P„distributions. The higher this
momentum, the more the P„distribution will peak
toward P„=1.

Final states dominated by baryon exchanges will
have P, distributions similar to those in Figs.
13(c), 13(d), 13(g), and 13(h). Reactions with the
same number of particles and similar momentum
in the center-of-mass system will have similar
P„distributions. The higher the momentum, the
more the P„distribution will shift towards P, =1.

An additional test of the above ideas can be made
by studying the reaction p+n-p+n+m'+m . The
backward hemisphere in this reaction (those events
where the proton and the neutron both reverse di-
rection in the center-of-mass system) is a region
of meson exchange rather than a region of baryon
exchange. Hence, for this reaction, if you plot
P„ for the events in which the baryons both re-
vexse direction, the distribution shouM be the
same as the P„distribution for the m'p events with
forward-hemisphere data. These distributions
should be similar to those of Figs. 13(a), 13(b),
13(e), and 13(f). We also predict that the P„dis-
tribution for events where both nucleons are in
the forward hemisphere will be the same as when

both nucleons are in the backward hemisphere
(baryon exchange). These distributions should be
similar to those of Figs. 13(c), 13(d), 13(g), and

13(h).

V. CONCLUSIONS

We have defined a variable P„which is charac-
teristic of the complete multibody final state.
This variable indicates the peripherality of the
event and ranges in value between 0 and 1. When

P„=O, all the particles of the final state are in a
plane perpendicular to the incident direction.
When P„=1, all particles are collinear with the
incident direction. We also describe the relation
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.FIG. 13. P„distributions for 7t+ and p induced four-
body final states: (a) the P„distribution for forward
events from 7I+p —pn+7r+m at 3.9 GeV/c (see Fig. 9 or
text for definition of forward events); (b) the P„dis-
tribution for pp-pp~'m events at 4.4 GeV/c; (c) the
P„distribution for backward events from x'p px+n+n
at 3.9 GeV/c (see Fig. 9 or text for the definition of
backward events); (d) the P, distribution for pp

~+~+~ ~" events at 4.4 GeV/c; (e} the P„distribution
for forwaxd events from 7r+p -p71+7I+7r at 5.7 GeV/c;
(f) the P„distribution for pp pp7t'+m events at 5.1
GeV/c; (g) the P„distribution for backward events from
7r'p-p7r+n+7(" at 5.7 GeV/c; (h) the P„distribution for
pp -7t+7I+7r 7I events at 5.1 GeV/c.

between P„and the Feynman variables X, in the
limit of lax ge energy. We have calculated the P„
distribution for the assumption that the final state
is dominated by Lorents-invariant phase space.
We have also examined the behavior of the P„dis-
tribution, assuming a resonant final state and a
mixture of resonant final state with Lorentm-in-
variant phase space. We conclude that P„ is a
useful variable to consider when trying to elimi-
nate Lorentz-invariant phase space from a sample
containing a quasi-two-body process. We also
point out that the study of a P„distribution could
be very useful in detecting phase-space-like pro-
cesses at high energy and large final-state multi-
plicities (tE ~ 10).
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We have applied this variable to a study of PP
and m'p four-body final states. We have presented
evidence for kinematic similarities behveen the
four-body annihilation channel in Pp interactions
and four-body m'p baclavard-hemisphere events at
the same center-of-mass incoming momentum. A
similarity exists fox the pp nonannihilation chan-
nels and m'P forward-hemisphere events. How-

ever, the annihilation and nonannihilation channels
are strikingly different when examined in terms of
I'„, as are the backward and forward hemispheres
in the pion-induced four-body final state. We believe
these phenomena can be understood in terms of

the difference between baryon- and meson-ex-
change processes. We have proposed an experi-
mental test of this hypothesis.
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