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An analysis of ~N KA and EN —7lA is presented in which the imaginary parts of the ampli-
tudes are in approximate agreement with finite-energy sum rules and the real parts are cal-

l

culated in terms of the imaginary parts via fixed-t dispersion relations. The resulting differ-
ential cross sections and polarizations are in fair agreement with experiment. Certain fea-
tures and implications of the amplitude structure are discussed.

I. INTRODUCTION

Line-reversed hypercharge-exchange reactions
present a number of intriguing features which can-
not be understood in terms of simple Regge phe.-
nomenology. For example, it has been known for
quite some time' that a model with a pair of ex-

change-degenerate Regge poles K*-E**is in clear
contradiction with basic experimental facts. One
may hope that amplitude analysis, which has
thrown much light on the structure of mN ampli-
tudes, will provide some insight into the problems
of hypercharge exchange as well. One may also
hope that through such an analysis a common pic-
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ture of the structure of amplitudes of nondiffrac-
tive two-body reactions will eventually emerge.

Recently amplitude analyses of hypercharge-
exchange reactions have been published by Barger
and Martin' and by Irving, Martin, and Barger. '
Unlike mN scattering, these analyses are not
completely model-independent; certain assump-
tions motivated by the results of the w P-m n

analyses are necessa, ry. The resulting ampli-
tudes, however, exhibit a number of interesting
features and provide very useful information.

The purpose of the present work is to present a
set of amplitudes for mN-KA and KN-mA in which

(a) the imaginary parts of the amplitudes are in

approximate agreement with finite-energy sum
rules (FESR), (b) the real parts of the amplitudes
are calculated in terms of the above imaginary
parts by means of fixed-t dispersion relations,
and (c) the resulting amplitudes give differential
cross sections and polarizations in fair agreement
with experiment.

The starting point of our work is a set of imag-
inary parts consistent with the analyses of Barger
et al."(to be subsequently denoted as the BMI
solution). Then fixed-f dispersion relations, to-
gether with the available experimental informa-
tion on the low-energy region of nN-KA and
EN-mA, determine the real parts. This approach
has been tested in detail in mN charge exchange, ' '
in charged' and neutral' pion photoproduction, and
to some extent in KN charge exchange"', it has
also been applied in hypercharge-exchange reac-
tions ("hybrid" model), ' but in a somewhat dif-
ferent way.

Section II presents the essentials of the formal-
ism to be used in our calculation. Section III
discusses the details of our procedure, in par-
ticular in fixing the contributions (resonance pa-
rameters) of the low-energy region. Section IV
discusses the basic features of our calculated
real parts and compares them with those of
Barger et al. ,"3 as well as with the corresponding
quantities (vector and tensor exchanges} of charge-
exchange reactions; it also compares with ex-
periment our differential cross sections and polar-
izations. Finally, Sec. V summarizes our con-
clusions and discusses certain possible implica-
tions.

II. GENERAL FORMALISM

In this section we outline the basic formalism
used to describe. the two line-reversed reactions
shown in Fig. 1. The s channel is taken as K n
-m A and is described by amplitudes A(v, f } and

B(v, f), where 4MNv=s u The corr-esp. onding
u-channel amplitudes describing m'n-K'A are

TF' (P. ) K

K (p K) Ii &(MN)

FIG. 1. Kinematics of the line-reversed reactions
E n —m' A and n+n K+A.

&~, '(v, f)=-2M A'"(v, f)+ —"vB~'(v, f),I

with 2M=M„+M~. The amplitudes for E n-w A

are then I', = +~„+ + +~„, while those for m n-K'A
take the form F „=I'~„+~-I"„.Notice that with
these sign conventions exchange degeneracy (EXD)
would imply ImE~„~= -Im E~, ~. The amplitudes are
normalized so that

in the s channel; analogous relations hold for the
barred amplitudes.

The amplitudes A.~'~ and B~'~ have definite
crossing properties and are expected to satisfy
the following dispersion relations, apart from
possible subtractions (see below):

ReA '
(v, f) = —P dximA ' (x, i)

0 X-V X+V

denoted by A(v, f) and B(v, f). Since our approach
is based on dispersion relations, we need cross-
ing-symmetric combinations of these amplitudes.
These are conveniently taken as'

At'~ (v, f) = —', [A(v, f)+A(v, f)]
=-,'[A(v, t)+A(-v, t)],

Bi ~(v, f) = —', [B(v, f)+B(v, f)],
=-,'[B(v, t)+B(-v, f)];

for large v these correspond to exchanges of def-
inite signature in the t channel. The correspond-
ing nonf lip and flip 8-channel helicity amplitudes
(SHA} are, to leading order in v,
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Rea' '(u, t)= —9 dxIma' '(x, t) v ).
j. ~ 1

0

(1.8)

imA(~) (p f ) s(&) (f )gPy (&)

ImB "(v, t)=b('(f)v"& " '
(1.9)

Here o. ,(f) and a', (t) are effective Regge expon-
ents. In this way the above expressions for ImA
and ImB represent the over-all vector (K*) ex-
change contributions (Regge-pole exchange plus
absorption or other corrections). Similarly the
expressions for ImA(') and ImB(') of (1.9) repre-
sent over-all tensor (K**=—Q) exchange. It will be
convenient to define

A" (v f)=( ' (f)s '(t)v"' "
B(,', ) (p, t) =$'("(t)|&(')(t)v"' '

where

~ I+ s-I any(t)
(&) f) sin&(n, (t }

Thus for v& py

(1.10)

ImA(')(v, f}=ImA(,~~ (v, f),
1mB("(&, f ) = 1mB(" (v, f ) .

(1.12)

In general o. ,' (i) need not be the same as n, (t).
However, for simplicity and in accord with Ref. 2
we take

a, (f) =a,'(f)=-a(f) =0.4+f . (1.13}

As in Refs. 4-9, we proceed by splitting the
dispersion integrals of (I.V), (1.8) in two pieces:
a low-energy piece, 0& v& v„, where ImA ' and
ImB~' are calculated in terms of low-energy ex-
perimental information, and a high-energy piece,
v~& v& ~, where we use the expressions (1.9) with

(1.13). Numerous calculations, including those of
Refs. 4-9, show that above P~b = 3 GeV/c such
expressions provide good parametrizations of the
imaginary parts of the amplitudes. Then the most
reliable way to calculate real parts should be
through dispersion relations (DR).

The DR for A~+~ requires a subtraction; thus we
shall write a DR for the difference A. + -A,+,„
'Zhe rest do not require subtractions; neverthe-
less, by splitting the dispersion integrals as
above and using mell-known Hilbert transforms
(see e.g., the Appendix of Ref. 2), we can write
all DR in the form

We assume that the asymptotic form of the imag-
inary parts of the amplitudes at large v, say,
v& v„, can be represented by effective Regge-type
contributions of the form

ReA "(v, f) =ReA, ~) (v, f }

Py 1 1
+ — dpi A(')(~, f)

W o g-V X-V

-a "(t)8 '
(v, f),

ReB '
(v, t) =ReB~,~~(v, t)

+ — dximB +& (x, f )( 1 j.

0 X-P X+V

s('&( f)
V

(1.14)

(1.15)

where

S ')(v, f) = — dxx ' + . (1.16)
1

Here v„=v„(0) + t/4M, and in our calculations we
take v„(0)=1.85 GeV. Finally, the large-v limit
of (1.14} and (1.15) yields the FESR which the
amplitudes must satisfy. ' In the present work we
use the lowest-moment FESR.

III. DETAILS OF THE PROCEDURE

From the formalism of Sec. II it is apparent
that, given information on the imaginary parts of
the amplitudes in both the low- and high-energy
regions, we can calculate the complete amplitude
through the dispersion relations (1.14) and (1.15).

The high-energy part is completely determined
by the functions a(' (f ) and 5 ' (f) of Eqs. (1.9).
These we shall calculate on the basis of the am-
plitude analysis of Refs. 2 and 3 (BMI solution) by
inverting the relations (1.3), (1.4). Our choice is
motivated by the following features of this analy-
sis:

(a) Concerning the vector exchange (K*), the
imaginary parts of both the flip (ImE(, &) and non-
flip (ImF, ') SHA have the t structure of the dual
absorptive model (DAM), "'"i.e., of Bessel-func-
tion form -J„(Rl-f), with 8 =1 fermi. It is well
known that such a structure for the vector ex-
change (p) is supported by several amplitude anal-
yses of m p-m'g. "

(b) The imaginary parts of the flip amplitudes
for vector and tensor (K~*}exchange are assumed
to be exchange-degenerate (in our sign convention,
ImE,+) =-ImE(, )). Analyses of KN charge-ex-
change reactions based on phenomenology'3 and
FESR' ' as well as the t structure and relative
magnitude of the K'P-K'P polarizations' in-
dicate that this assumption is rather well satisfied
by the corresponding vector (p) and tensor (A, )
exchanges. We consider this point a particularly
attractive feature of the BMI solution.

(c) ImF(,+)(v, t) deviates somewhat from the f
structure of DAM (it looks like a "displaced"
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Bessel function of zeroth order). Such a deviation
for the nonf lip SHA of the tensor exchange has al-
so been found in wN scattering analyses" and is
consistent with the corresponding FESR.

(d} As a result of (a} and (c}, EXD is broken for
the imaginary parts of the nonf lip amplitudes.
The requirement of sizeable polarization for KN
-wA is easily seen to imply some amount of EXD
breaking.

The low-energy integrals of Eqs. (1.14), (1.15)
provide non-negligible corrections to the real
parts at energies below 20 GeV. To calculate
these we must resort to resonance saturation,

since phase-shift analyses are not presently avail-
able. Unfortunately, there is a rather large un-

physical region involved here, with Y,*(13/5),
N*(14 IO), N*(1520), and N*(1535) all below thresh-
old in hypercharge exchange, as well as the nucle-
on and Z poles. Apart from the Born terms, the
couplings of these resonances below threshold are
not precisely known. In accord with Ref. 9, as a
first approximation we take the unbroken SU(3)
values of these couplings. The appropriate effec-
tive Lagrangians and the resonance contributions
are given in Ref. 9 and will not be repeated here.
In Table I we give the SU(3) values for the cou-

TABLE I. Resonance masses, spin parities, and coupling strengths for resonances above
and below threshold for K n 7t A (s channel) and x+n K+A (u channel). The relative phase
of the resonance contribution is given by ft}z in the convention of Ref. 9.

10 (I,r,)» (G.V)

Name J+ Exp. range ~
Couplings
of Ref. 9 Solution 1 Solution 2

Z (1670)$
Z(1750)—

Z(1765) 25

Z(1915) 25

Z(1920) '

Z (1940)ps

Z(2030) T

Z(2080) 23

0.2-0.75

0.7-2.5
1.5-4.8
0.35—1.5
1.3-3.8
1.2-5.5
1.15-3.2
0.64—3.5

0.5

2.0

2.72

0.49

2.38

3.92

3.4

2.25

0.676

2.29

7.50

1.51

3.6

2.64

0.775

2.49

0.676

2.29

7.50

1.51

3.6

2,64

0.775

2.49

N (1675)p
N(1688)

2

N (1700)-

N (1780)T
N (1860)7

&0.5

&0.5

1.8-4.2
0.5M.3

1.0-3.7

0.18

0.10

1.48

0.0

0.0

2.02

0.5

0.7

—0.392

0.0

2.02

0.5

0.7

Couplings of resonances
below threshold

Z (1385)&2 -7.5- -1.86 a -4.64' -7.44

GgV *n'N)G gV W'A)

-7.44

N (1470)g
N (1518)~2

N(1550)
2

43 8 146c
0.056-0.17

183 6 1c
0 113~

—28.7

0.119

-8.37

-28.7
0.119

—8.37

' Reference 16.
Listed as Z(1880) in Ref. 16 (Data Card Listings, average mass =1920 MeV).
Determined by +50% of value of column 3.
Determined by +60% of value of column 3.' Corresponding to F /D ratio of Ref. 9 (Table IV).
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plings of the resonances below threshold, as well
as the experimental range of values for the product
(I', I",}'"of the pa, rtial widths I', and I', for the
decay of resonances above threshold into the mh

and I7N channels. " The set of resonances pre-
sented in Table I is the same as in Ref. 9; this
contains all the established Z resonances (up to
the mass of interest, Mz =2.08 GeV) as well as
some Z resonances whose existence is very
likely M

The partial-wave decompositions of the A and B
amplitudes are well known. ' The contributions of
the resonances above threshold to both the FESR
and the dispersion integrals of Eqs. (1.14), (1.15)
will be calculated in the narrow-resonance approx-
imation, where

(2.1)

R

SOLU T I ON I

' —' —SOLUT I ON 2

(-)
ImF

-t (GeV )
2

ImF

-t (GeV )
2

Here f» is the partial-wave amplitude of parity
(-1}'+', with j= la-,', I', are the partial widths for
decay of resonance R into KN and mA, Q& is the
relative phase of the resonance contribution (see
Table I), and Pz (P„) is the initial (final) c.m.
momentum evaluated at As=Ms = resonance mass.

With the partial widths of the resonances chosen
as in Ref. 9 and 10 (see Table I, third column} and

with a 'l(t } and b~'i (t) calculated from the BMI
solution of Fig. 2, the FESR for A+ is badly
violated [see Fig. 3(a), upper left graph]. " The
resulting ai'l (t } is of opposite sign to that of the
BMI solution, thus completely breaking exchange
degeneracy between Im&~,+l and ImE~, ~ [feature
(b) above]. The rest of the FESR are in fair
agreement, at least for small

~
t

~ [Fig. 3(a)].
There is, however, significant experimental un-

certainty in some of the resonance elasticities
and total widths; also, the couplings of the reso-
nances below threshold are, in general, sensitive
to the value of the 1'/D ratio. ""Therefore, we
have proceeded by allowing some variation in the
resonance strengths. For the resonances above
threshold we allow variations within the range of
values of Table I (column 2), and in a few cases
somewhat outside this range. For the resonances
below threshold we allow variations in a range of
about +50% of the values of Ref. 9; for details see
Table I. We allow no variations in the couplings
of the nucleon and Z poles.

In our final solutions (Fig. 3, Solutions 1, 2) all
FESR are roughly accounted for, at least for
( t (

& 0.7 GeV'. Also, the t structure of the BMI
solution is fairly well reproduced (apart, perhaps,
from Ai ~). For (t ~& 0.7 GeV' we are unable to
account for the FESR, at least for reasonable
values of the resonance parameters.

The final values of our resonance parameters

l2—

y

[
y

02 0.5 (GeV )

are given in Table I (fourth and fifth column).
These same parameters are used to saturate
Immi l(v', t) and ImB ' (v', t) in the low-energy
dispersion integrals of Eqs. (1.14), (1.15).

IV. RESULTS AND THEIR BASIC ASPECTS

We present in detail calculations with two dif-
ferent solutions:

(1}For Solution 1 the resonance parameters are
given in the fourth column of Table I. The func-
tions a ' (t) and 5 ' (t) have been calculated from
the imaginary parts of the BMI solution of Fig. 2

(solid lines). Throughout Figs. 4-7 (see Refs.
18-29) the results of the calculations with this
solution are shown with full lines.

(2) For Solution 2 the resonance parameters are
given in the fifth column of Table I. In this solu-
tion we have allowed a change in sign of the
N(1675) contribution, still keeping its strength
within experimental range. The functions a ' (t)

FIG. 2. Input imaginary parts of SHA. In our sign
cnnventions exact EXD corresponds to -ImE„+ =ImE„,
n =0,1 (Sec. II).
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(0)

----- FESR LHS
FESR RHS

(b)
SOLUT ION I

(c)
SOLUT ION 2

(+)

0

0

(+)
A

/
/

/
/

/
/

/
/

/
/

I
/

0.2 /0.
I /

4 06
I

Q2 0.4 0.6
I I

0

2- -2-

4- -4-

6- -6-

GeV
-t

0.4
I

4 0.6
I I

0.2 0.4 0.6
I I I

0.2 r'5

— FESR LHS
FESR RHS

2 2-
0.6 GeV

I I 0

0.4 0.6
0 I &&I I I

0.2 0.4 0.6
I I I

-2- i~

//'
/o /

4 // /

/
/j'

/
/y/.

// /
/. /I 0.2 ii0.4

I . I
~

I I0

~ ~

————FESR LHS
FESR RHS

0.4 0.6 -t
I

GeV

(+)

A( )

FIG. 3. LHS vs RHS of FESR for various cases: (a) LHS calculated from resonance couplings of Table I, column 3,
vs RHS calculated from the imaginary parts of SoIution 1 (=—BMI solution, Fig. 2, solid lines); (b) LHS from Table I,
column 4, vs RHS from the imaginary parts of Solution 1; and (c) LHS from Table I, column 5, vs RHS from the imag-
inary parts of Solution 2 (Fig. 2, dash-dotted lines).

and b('i(t} have been calculated from the imaginary
parts of Fig. 2 (dash-dotted lines); these differ
from Solution 1 only in a small change of ImE,'
(but always within the limits established by Barger
et al."). The main effect of these changes is in
the polarization of w P-K'A at i t i& 0.15 GeV', as
we discuss below, this quantity is particularly
sensitive on the exact input imaginary parts and
resonance parameters. Also, the change in sign
of the N(1675} contribution somewhat improves the
over-all agreement with FESR [Fig. 3(c)].
Throughout Figs. 4-7 the results of the calcula-
tions with this solution are shown with dash-dotted
lines.

The resulting real parts of the SHA are qual-
itatively similar for the two solutions (Fig. 4) and
their basic features can be summarized as follows.

(i) &lip amplitude of vector exchange (ReE', ').
This exhibits the characteristic "double-zero"

[ReF&, (v, t)], —= Mt ReA, ~-(v, t)

=tan ~ma ImF, (v, t).
Since ImFi, i(v, t) has a simple zero at a(t) = 0
(t = -0.4), [ReE~, ~],~ has a double zero. The
complete ReFi, ~=-~tReAi ~, as calculated from
(1.14), contains also two extra terms. Expanding
these extra terms in powers of I/v, we have

(4.1)

VJg

dxtmA )(x, t)( — )-a '(t)s '(v, t)
0

dximA' '(x, t)2

V7T 0

& a(t)+y
at i(t) "

( ) 1
-+O(ljv'). (4.2)

structure. We understand this feature as follows.
From Eqs. (1.4), (1.10), and (1.14) we obtain
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SOLUTION I——SOLUTION 2

F(-)
I

0.50.2
I l i I

I
)

I . I 2
0.2 0.5 -t (GeV )

I.O

0.5

0.2

O. I

0.5

0.2

O. l

0.5

p —K'h

SOLUTION I

SOLUTION 2

=4.0 GeV
ab

v 39GeV
o 4.0
~ 4.0

t t't t'

-Re F
I

0.2
O. I

0.5

)
C9

I.O-
Xl

0.5—

-0.5—

(-)
Re Fo

0.5
I 2.——-t tG V)

0.2

O. l

0.5

0.2
O.l

0.05

6.0

o 7.91

x 8.0

0.02

0.0 I

o I5'7

-t (GeV )
2

FIG. 4. Calculated real parts of SHA.

The quantity in square brackets is precisely the
difference between the left-hand side (LHS} and
the right-hand side (RHS) of the zero-moment
FESR for A . Since this FESR is somehow sat-
isfied, the quantity in brackets is relatively small
and, being also divided by v, implies a relatively
small correction to ReA,~ at high energy. The
rest-of the terms in the expansion of Eq. (4.2) are
proportional to the differences of higher-moment
FESR for A and provide also small corrections
at large v.

It should be stressed, however, that the cor-
rection to ReA,~, implied by the extra terms of
(4.2), and the similar corrections to ReAi,+,~i and
ReB ~ are very important in our approach. This
particularly holds for the nonf lip amplitudes (see
below), where these corrections are sizable and
significantly affect the magnitude of sensitive
quantities, such as polarizations. E.g. , if in our

O. I 02 0.3 0.4~ ~. 0.7 0.8 0.9 I.O

-t (GeV )

FIG. 5. Calculated differential cross sections for
7r p K A data: V 3.9 GeV, Ref. 18;O 4.0 GeV, Ref. 19;
0 4.0, x5.0, and 0 6.0 GeV, Ref. 20; 4 4.5 and V 6.0
GeV, Wf. 21;0 7.91 GeV, Ref. 22; x 8.0 and 0 15.7
GeV, Ref. 23.

calculations [with o.,'=a, =n(t)] we were to use
ReA =ReA,',„and ReB ' =ReB,'~, we would get
zero polarizations for both mN-KA and KN-mA.
We believe that our procedure gives reasonably
accurate corrections because, as we mentioned
in Sec. II, the expressions (1.9) [or equivalent ex-
pressions of the form ImF „' =bi„' (t)v" ' (Refs.
6-8)] have been found to parametrize correctly
the imaginary parts of the amplitudes above
phb= 8 GeV (Refs 4-9); once these forms are ac-
cepted as correct high-energy parametrizations
of the imaginary parts, analyticity should, through
DR, give the best real parts.

Equation (4.2) shows that the magnitude of these
corrections depends on the difference between
LHS and RHS of FESR. The point here is that,
in general, the expressions (1.9), although good
parametrizations at high energy, can only ap-
proximately satisfy FESR~'~' (in particular for
several moments}, because FESR involve extrapo-
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latlons of (1.9}down to threshold. To improve 'the

agreement with FESR we must replace (1.9) by
more sophisticated forms, like

1mB(+)

pi+�)

(i)vtt(t) 1+$(t) (f )Vtf(t) -t

[with a(i)&o.'(f)]. However, then the extra term
5 ' v ' provides an equivalent correction to
ReB 'l (see Appendix of Ref. 8 for detailed dis-
cussion).

(ii) Fiip amplitude of iettsot sxoitange (ReF l+&).

This is smooth and rather strong near t = -0.4 (no
double zero). An argument similar to that of (4.3)
shows that its over-all structure should be close
to the form

I.O

0.5—

O.I

O.gr

0.2

O. l

0.2—
O. l

KN —ark

.9 GeV
K p-~'h
0 $,9 GSV
0 5.95
+ 4.25

I
(K n-wh)~

~ as

(K n-~ h)
o ss

[Rez", (v, t)], = Mt Re-a&'& (v, i)
=-cot-', snImE; (v, i). (4.3)

0.2

O. I

0.05

I

{K n-~™+
6.0

ImE(, ) has a zero at t = -0.4, but it is canceled by
coty sH.

We may conclude that both + 1 and +(i+) of o"r
solutions are, roughly, dominated by a single
Regge pole (with small absorption or other cor-
rections}

|'itt) &ottfiiP amPlitudes (ReEfo l). Our solutions
for ReF~, l (Fig. 4) are in agreement with those of
Barger et al. (within the limits set by their anal-
ysis'). In particular our Solution 1 (solid line of
Fig. 4) gives a.iso ReF&;l in agreement with Refs.
2 and 3. Notice the change of sign near t= -0.4
of both our solutions for ReE(o ); this seems to be
a common conclusion of several analyses concern-
ing the real part of the nonflip amplitude for ten-
sor exchange. """As we have seen (Fig. 3),

0.02

O.OI

CIOOI—

SOLUTION I——.SOLUTION 2

K p-~oh
& I4.5

O.l 0.2 0.5 0.4 0.5 0.6 07 0.8 09 I.O

(GIV )

FIG. 6. Calculated differential cross sections for
XN-mA„data: G 3.9 GeV, Ref. 24;0 3.95 GeV,
Ref. 25; & 4.25 GeV, Ref. 26; 0 3.9 QeV, Ref. 27;
0 5.8 and 6.0 GeV, Ref. 28; 4 14.3 GeV, Ref. 29.
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FIQ. 7. Polarization at 4 QeV for m p-K A and EN nA . Full lines: Solution 1. Dash-dotted lines: Solution 2.
Dashed lines: Solution 1 with only ]ItnE~&'l) increased by 30%. Data for s p —KtA: 0 S.95 GeV, Ref. 18; n 5.0 GeV,
Ref. 20;0 4.5 QeV, Ref. 21. Data forEN —~A: 0 3.95 GeV, Ref. 25; x4.25 QeV, Ref. 24; A4.25 GeV, Ref. 26;

3.9 GeV. Ref. 27.
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for large ~f ~
our FESR are badly violated; this

results in a BeE,' somewhat too large.
A single Regge-pole exchange [with a nonsense

wrong-signature factor n(f ) in the residue of Eto ~

and a ghost-eliminating factor n(t) in the residue
of E; ] would produce ImE,' and ReE,' com-
pletely different from those of our solutions (and
of Refs. 2 and 3). Clearly, our nonflip amplitudes
require large corrections to the single Regge-
pole exchange.

%'ith our solutions we now proceed in the cal-
culation of the differential cross sections for
wN-KA and KN-wA at several energies (Figs. 5
and 6). Our results, although not comparable with
fits of high quality, for 0& -t& 0.6 are in fair
agreement with, and exhibit the basic features of,
the experimental data. In general do/df(wN KA)
is steeper than do/dt (KN-wA) (Refs. 1, 9), and
for ) f [ &0.15 GeV' we have do/dt (KN-wA)
&do/dt(wN-KA). It is well known that absorptive
Regge-cut models fail completely to account for
this fact. '3 With the common trajectory n(t) of
Eq. (1.13) the energy variation of the cross sec-
tions is also fairly well accounted for. Clearly,
improvements are possible, e.g., by choosing
somewhat different effective Regge exponents in
Eqs. (1.12) [i.e., n,'(t ) g n, (f )] . Again, as a re-
sult of breaking FESR, for ( f ( &0.6 we obtain
cross sections which are too large.

Finally, Fig. 7 presents our calculated polari-
zations at 4 GeV. For ZN-mA we find large pos-
itive polarization, in accord with all experiments.
For nN-KA the experimental situation is less
clear; our solutions are in accord with the data
of Crennell et aE." In general, our polarizations
are positive near t = -0.3 and change sign near
f=-0.4. However, for small It] (& o.2) our
nN-KA polarizations are very sensitive to the
input imaginary parts of SHA and to the exact val-
ues of the resonance strengths. To illustrate this
we have increased by 30% the magnitude of ImE~, '~

of Solution 1, keeping the t dependence, as well
as the resonance strengths and Im+,', the same.
The corresponding polarizations are shown in
Fig. 7 (dashed lines). Compared with Solution 1
(solid lines), the wN-KA polarization changes
sign for

~
f

~
& 0.2 GeV'. In contrastthe d, ifferen-

tial cross sections do not change appreciably.
Finally we note that both Solutions 1 and 2 lead

to helicity correlation parameters T [-Re(E,E,*)]
of the same magnitude and t structure of Refs. 2
and 3."

V. CONCLUSIONS

%'ith the BMI solution for the imaginary parts as
a point of departure we have produced an amplitude
analysis that has the properties (a)-(c) listed in
the Introduction.

A basic feature of our solutions is that the imag-
inary parts of the flip amplitudes for vector and
tensor exchange satisfy EXD [in our sign conven-
tion: ImE~, '(v, t) =-ImE, ' (v, f) for v& v„]; how-
ever EXD is broken for the imaginary paxts of the
nonQip amplitudes [ImE;~=-31mE, near t=0].
On the other hand, we have seen (Sec. IV) that our
solutions for F," are approximately consistent
with dominance of a single Hegge-pole exchange;
in contrast, our solutions for E~'~ must involve
strong corrections to the leading Hegge poles.

It is then possible that the leading Regge poles
satisfy EXD to a good approximation, but for the
corrections, EXD is significantly broken. In
bypercharge-exchange reactions the nonflip am-
plitudes are particularly strong; this is probably
why, at least for energies & 15 GeV, EXD is
broken ""

If the corrections to the leading Regge poles
come from lower-lying singularities in complex
angular momentum, we expect that, as the energy
increases, EXD will improve in hypercharge-ex-
change reactions. If, however, the corrections
come from singularities with trajectories com-
parable to those of the leading poles, EXD will
still be broken at higher energy.
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