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nances and their interactions.
Note added in Proof. It was pointed out to the

author that the concept of inclusive decays has
been discussed in the following papers: V. Ritten-
berg and H. R. Rubinstein, Phys. Lett. 40B, 257
(1972); H. Satz, Nuovo Cimento 12A, 205 (1972).
These authors discussed applications to pn and
e'e annihilations, respectively.
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The theoretical and practical difficulties involved in extracting p -photoproduction cross
sections from measured dipion mass distributions are discussed. To circumvent the theo-
retical ambiguities, a standard definition of the p cross section is suggested. The defini-
tion requires that the mass and width of the p be externally specified; however, we have also
attempted to analyze the data to determine these parameters. Because of the theoretical
ambiguities, it is not feasible to determine the mass and width from individual curves, and
even a simultaneous fit of all the curves gives results which depend on the assumed fitting
function. Thus the width has a theoretical ambiguity of order 15 MeV in addition to any
statistical uncertainty.

I. INTRODUCTION

Unfortunately there is no universally accepted
procedure for extracting p' photoproduction cross
sections from measured dipion mass spectra.
Several, apparently equally plausible, definitions
have been used by various experimental groups.
Since the final numbers quoted for the cross sec-
tion usually involve considerable processing of
the raw data, this has often made a meaningful
comparison of different experiments virtually
impossible. The purpose of this paper is to out-
line the theoretical and practical difficulties which
make interpretation of p'-photoproduction experi-
ments uncertain and to propose a standard defini-
tion of the cross section which does permit such
comparisons. It should be emphasized that while
our immediate interest is the analysis of p' photo-
production from complex nuclei, ' the present dis-
cussion applies equally well to production from

individual nucleons.
If we look at some experimental data (see figures

in Sec. IV), the reasons for the difficulties are
quite apparent. The p' peak is very broad and is
badly skewed by an interfering background. With-
out an adequate theory of the shape of such a spec-
trum it is impossible to decide, in princiPle, what
fraction of the events is to be attributed to the p'
meson. Further, the shape is found to change as
a function of t, becoming less skewed for larger
values of

~
t (. It is clear from a study of the

shapes of the dipion mass spectra produced from a
variety of nuclei that the skewing is a coherent
effect, although the data could contain an incoher-
ent component as well. A further practical dif-
ficulty is the p-u interference, which seriously
distorts the spectrum near its peak.

The physical origin of the skewing is generally
well understood, although it has been expressed
in a variety of theoretical forms. Basically the
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dipions are produced by a diffractive mechanism,
and the skewing is believed to be due to the inter-
ference of a nonresonant background with the p'
resonance. Ne shall describe the process intu-
itively in Sec. II, mhere me also give a qualitative
discussion of the theoretical ambiguities mhich
make a unique data, analysis impossible. %e also
propose there the standard definition of the cross
section. These ambiguities will be elaborated more
concretely in Sec. IG, in the context of the SMing
mode12 which me favor. This more teehnieal dis-
cussion can be skipped without prejudice to the
remainder of the paper. Section IV proposes a
practical procedure for implementing the standard
definition and describes how difficult it is to ob-
tain unique results, even from very-high-quality
data on mass distributions. Our conclusions are
given in See. V.

II. QUALITATIVE DESCRIPTION OF
THE THEORETICAL AMBIGUITIES

The intuitive picture which we prefer is that the
dipions are mainly diffraetively produced. This
is suggested by the experimental fact that do/
dt dm, is not strongly energy dependent in pro-
duction from hydrogen. There is of course evi-
dence for other mechanisms in the bubble-chamber
data. ' The simplest intuitive picture of diffractive
production is that it is a consequence of a kind of
shadow scattering associated with the absorption
of the p and nonresonant dipion constituents of the
physical photon. This shoms up most clearly in
the model proposed by Siding' in which the pro-
duction amplitude is the sum of a, diffractive p
amplitude and a Drell term4 which may be regarded
as coming from nonresonant pion pairs in the phys-
ical photon.

If one studies the complete dipion structure of the
physical photon, it turns out that the interplay be-
tween resonant and nonresonant contributions leads
to an enchancement of the spectrum belom the res-
onance and a depletion above the resonance. Fur-
ther, the po constituent of the photon is found to be
spatially confined, while the nonresonant dipions
have a rather loose structure. This picture will
be elaborated in a forthcoming paper by one of the
present authors (DRY).

If one accepts this general picture, then the the-
oretical difficulties begin to become obvious. The
two constituents are intimately related and there
is no unique way to distinguish them experimen-
tally. %e mould expect the nonresonant part to
have the larger absorption cross section mhich,
however, mould have a shadowing eorx ection sim-
ilar to the Glauber correction for scattering from
deuterium, as has been discussed by Bauer. ' Thus

the relative absorption of the two constituents is
rather uncertain and mould have to be introduced
as a free parameter in an analysis. Further, one
would expect (gauge invariance demands) a con-
tribution to the production amplitude which cannot
be interpreted in terms of shadow scattering. In
this last contribution, the photon interacts directly
with the nucleon in some manner and produces a
dipion state which may interfere with the onemhich
is diffractively produced. Although there are pre-
scriptions for dealing with the problem of gauge
invariance, to our knowledge no real understanding
of this contribution exists.

There are three or four different theoretical
fox mulations of this physical situation. In the past
they seemed to be competing models, but it nom

appears to us that they are really trying to repre-
sent the same basic physics. One of these is the
SMing formulation, which has already been men-
tioned and which will be elaborated in the present
paper. Another is the Hoss-Stodolsky formula, tion, '
which appears to ignore the nonresonant back-
ground and instead introduces a strong mass vari-
ation in the production amplitude of the p'. %hile
their derivation of this mass variation is uncon-
vincing, it does seem to represent the cox rect
physics (approximately). In fact, if one assumes
that the observed dipion mass spectrum should
be proportional to that occurring in the physical
photon, one obtains their result. This approach
may nom be criticized on the grounds that the
nonresonant dipion constituent should have a
greater cross section than the po, mhich mould
affect the amount of skewing. Anothex approach
is that of Kramer and Uretsky' in which the basic
mechanism mas taken to be the Drell amplitude,
which then fed into a p resonance in a rather ad
hoc fashion. This led to too high a cross section
at the p' mass since it cox'responded, in effect,
to taking a rather large value for the p absorption
cross section. This model has subsequently been
modified' so that it fits into the general phenom-
enological framework to be described in the pres-
ent paper. Finally, there are the dual resonance
models' mhich treat the resonant and nonresonant
contributions in a unified way and also give a good
qualitative description of the p shape. Their vir-
tue is that they have a smaller number of free pa-
rameters, but we feel that they do not adequately
take into account the probable vax iation of pro-
duction amplitude with ma, ss mhich is due to the
different nature of the photon's constituents.

For the reader already persuaded by the pre-
ceding arguments about the theoretical ambigu-
ities in sepaxating out the p' cross section, me
now present our standard definition as an expedient
until these pxoblems are ovexcome. It seems most
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plausible to us to try to define the cross section
which mould result if the p were nearly stable but
with its other interactions (such as total cross
section} unchanged. This is admittedly a dubious
concept, but it does suggest a definition. If the p'
mere sufficiently narrow, one could simply mea-
sure the spectrum at the po mass and obtain the
cross section from the formula (assuming back-
ground and p-&u interference are first eliminated}

/ q
k

/

r
/'

/ q

k-q &
/' q

We now propose this definition even for the case
of a broad resonance. In support of this proposal,
we make the following points:

1. There are arguments by Bauer' and Pumylinxo
that the nonresonant contribution is precisely com-
pensated at the p' mass.

2. This def inition eliminates the uncertainty
about horn much of the skewing is due to the vari-
ation of the p' amplitude with the observed mass
and how much is due to the nonresonant background
(in our opinion, this is a meaningless question
anyway}.

3. Aside from any theoretical justification, the
definition does permit the comparison of different
experiments. There are practical difficulties in
applying the definition, but we leave these until
later.

III. A CRITIQUE OF THE SODING MODEL

Let us now examine the theoretical uncertainties
in the Siding model. ' W'e first analyze the non-
resonant background (the "Drell" terms') and then
the photoproduetion of the p' resonance, including
the contribution in which the nonresonant back-
ground feeds into the resonance. For uniqueness
we treat the p' as an elementary particle (associ-
ated with an elementary field} rather than as a
dynamical resonance.

%'e consider coherent 2m photoyroduction from a
nucleus or nucleon. Since the po is treated as an
elementary particle, there is no difficulty in sep-
arating out unique classes of diagrams and avoid-
ing "double counting. "" All diagrams in which
the e pair has not been a p which decayed mill be
called "nonresonant". The principal ones are the
Drell amplitudes [Fig. 1(a)] but there is also a
generalized contribution [Fig. 1(b)j. Not very
much is knomn about this last contribution except
that it is required by gauge invariance. For nuclei,
Bauer' has estimated a part of it in which the pho-
ton virtually dissociates into a pion pair, both
members of which diffract through the nucleus.
His contribution is similar to the Glauber eorrec-

PIG. 1. Diagrams for production of nonresonant pion
pairs. Part (a) shows the usual Drell terms while part
(b) shows a generalized contribution whose presence is
demanded by gauge invariance.

tion in deuterium, and it partially compensates
the usual Drell contribution.

The total nonresonant contribution is'2

where e" is the photon polarization. The first two
terms are pictured in Fig. 1(a). T (T, ) is the
amplitude for scattering of a negative (positive)
pion from the nucleon or nucleus; the third argu-
ment is the off-mass-sh 11 dependence of this
amplitude, All contributions from Fig. 1(b) are
lumped together in M.

It seems reasonable to assume that the nonres-
onant contribution is gauge-invariant separately
from the p terms. That is,

T (s, t, k q,) T,(s„t,k -q )+u M=O. (3.2)

In this equation

s, = (p'+q, )'=(P+& -—q,)' .
We noted that the scattering amplitudes T, depend
on the off-mass-shell parameter [(0+q,)'-m„'
=2k q, ] of the incident pion. Not much is known
about this off-mass-shell dependence. We want to
emphasize that it is somewhat illogical to try to
take it into account while ignoring the contribution
from M, since the two are related by gauge in-
variance. To illustrate the ambiguities associated
with this off-mass-shell dependence, we write the
amplitude as a mass-shell part plus a correction

T,(s„t, k q, )= T,(s„t)+0 q, 7,(s„t, k q,)
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and also reexpress M as

M=M, —q v' +q 7

Then P
(o)

/rq
p / +

i q

F«=ee + T (s, t)- T, (s+, t)+M,NR y, q
& P, q

+ +&

(3.4)

+
k ~ w P

/
/ q/'

with

T (s, t) —T, (s+, t}+k M, =0 . (3.5) P P

Nothing has been lost in this redefinition, but it
does illustrate our point that it is rather meaning-
less to take a particular off-mass-shell dependence
seriously while neglecting a related contribution
from M. In any case, we also note that the off-
mass-shell contribution does not have the pion
pole as a factor, and therefore there is no reason
to expect it to be more important than M.

Our lack of precise theoretical knowledge of the
nonresonant background is the first of several
ambiguities to which we draw attention. In a po-
tential model treated in lowest order, T and T,
would cancel and it would be possible for M, to
vanish. If the scattering is primarily diffractive,
however,

/

/

q +

P P
(b)

/'q

p +

, q

FIG. 2. Diagrams for production of pion pairs from

p decay. Part (a) shows the general term. Part (b)

singles out the contributions from pion pairs feeding
into the p . This is called the "nonresonant" part of
Fig. 2(a).

T —T+ ~ f ((d —(d+ ) (7 ~ (3.6}

which is clearly nonvanishing away from symmetry.
There is obviously no unique prescription for
choosing M, to satisfy (3.5). To obtain information
about M, it is necessary to carry out a dynamical
calculation based on a physical model. The part
of M, estimated by Bauer' tends to reduce the Drell
amplitude by approximately replacing o'„" in (3.6)
by o'„'=v',"-o'„'"'"'. For heavy nuclei, this is a
sizable modification. For lighter nuclei, the phys-
ics is less reliable, but qualitatively there should
be such an effect. However, it should be mentioned
that this contribution does not produce gauge in-
variance, so there must be others as well. Pump-
lin" gives a similar estimate as the correction
for the proton. Because so little is known about

M„we do not attempt to construct a general phe-
nomenological expression for it; we shall simply
lump it together with several other unknown con-
tributions in the final data analysis. Intuitively,
we expect these corrections to be somewhat
smaller than the Drell terms which contain the
poles and lead to the skewing of the p peak.

Having discussed the nonresonant background,
let us consider all contributions in which the w pair
results from a p decay. Collectively these are
represented in Fig. 2(a). However, we wish to
draw attention to a particular subclass of diagrams

m'=(q, +q )',

ee"I&„(q —q )"=I +I—
(3.7}

where

k"1„„=0, (q, +q }"Iq„=0 .

I ~ is the part of I associated with the subclass of
diagrams shown in Fig. 2(b) (bubble graphs) and

I p is the remainder, which is usually thought of
as the diffracting p' contribution. However, the
diffracting p would also obtain contributions from
the subclass. We draw attention to the subclass
primarily to emphasize the fact that since the p
is unstable to n-pair decay, we should expect a
very significant variation of the p' scattering am-
plitude with respect to the external mass. Before
discussing this, we wish to draw attention to some
features of the p' propagator which will also affect
our phenomenological analysis.

corresponding to the nonresonant amplitude feeding
into the resonance as shown in Fig. 2(b). (Here
the p propagator includes vacuum polarization
bubbles. ) The total contribution from the p is

F =eeuI }
1

u (q+ q- 2 2+~ 2)hm -mp +»am



f30 ROBIN SPITAL AND DONALD R. YENNIE

The function v{m') in the denominator of the
yropagator is important primarily because its
imaginary part is related to the total vridth. Hovr-
ever, the entire denominator is analytic in the
cut plane (cut: 4m, '& m'&~) and the existence of
an imaginary part implies that Hen is nonvanishing.
It is conventional to define the po mass as the
point at which the real part of the denominator
vanishes. " Hence

Res(mp') = 0.

It is also convenient to define the pole to have unit
strengih at this point. Therefore, we set

Res'(mp') =0.

This is like the definition of charge renormaliza-
tion in the case of a stable particle. (We note that
it is the value of w at m' =0 vrhich gives the
Gounaris-Sakurai' finite-width correction in the
electron-positron colliding-beam analysis. ) We
then expect the p propagator to have a structure

D m'=
(m' - mp') +(m' —mp')' f(m') + imp I'p(m} '

where f is related to I'p by a twice-subtracted
dispersion relation. When FP is taken to be a rel-
ativistic p-wave width, f is easily calculated and is
given explicitly in the work of Gounaris and
Sakurai. Since we expect that I'P may not be that
simple, we will treat fphenomenologically. I.et

I
( 2 2)f( 2) I+(m mp)g(m ) p

then

I + (m* —mp') g(m')
(m'- mp')+impl'p(m) '

I,'=-l, [I+(m'- m,') g] .
Since we expect f to be of order I'p/mp' from the
disyersion relation, these changes from the form
usually used are rather small. However, it is
necessary to be aware of their presence, partic-
ularly if one attempts to fit the data vrell out on the
tail of the peak.

Now vre return to the subclass of terms in which
the nonresonant amplitude feeds into the p . Pro-
ceeding in analogy to our discussion of the p' prop-
agator, vre note that the looy integral has an imag-
inary part because of the instability of po. (Note,
hovrever, that the net contribution is nearly real
since E„„is nearly imaginary. ) This is the analog
of the vridth in the propagator. In fact, Bauer' and
Pumylin'0 noticed that if the bvo yions are yut on

the mass shell before forming the p', I(~) reduces
to the p-wave projection of E~ times just the right
phase-space integral to give the width of the po.
The effect of adding this to the P-wave part of ENR
is to make the replacement

2 2 2s) m mp +Her(m ) E(gag p) (3 9)~ m'- m'+s(m')
P

Just as in the case of the propagator, we expect
that associated with this imaginary contribution
there will be a real contribution which will vary
significantly vrith m2. With plausible assumptions
about the mass dependence of the imaginary yax't
(i.e., the m' dependence of E~), we could attempt
to calculate this real part of the loop integral
(hence imaginary contribution to the amplitude).
Such attempts have been made by Kramer and
Quinn, ' and Kramer, ' using dispersion relations,
but we shall not follow that yath here. Suffice it
to say that the resulting m2 variation in the am-
plitude vrould give a violation of vector-meson
dominance (VMD) in the comparison of Gompton
scattering and p photoyroduction.

The total amylitude for w-pair production may
now be written

~ (505 -P) +
1

2'lf' NR 2 2 +
P P P

x jEi') [mm mp'+Res(m')]+fpI pn (m'))

x[I + {m' —m,')g],
vrhere I P includes the contribution from the real
part of the loop integral as well as that from I(~).
We may think of I(P as the amplitude for a photon
to produce a stable p meson of mass m,' it includes
the polarization sums of (3.7). The other factors
then give its probability of propagating as an un-
stable particle and finally decaying. Excluding
the imaginary part of the loop integral from the
definition of I P is somewhat a matter of taste.
Qutbrod has argued (privately) in favor of including
it in the amplitude since it represents a contribu-
tion vrhere the m pair did propagate as a p' before
decaying. In the nuclear ease it seems clear that
it should not be included if one vrishes to compare
experiment vrith the usual optical-model calculation.
On the other hand, the usual optical model calcu-
lation is obviously oversimplified. A more correct
treatment mould treat the po and m'-pair states as a
coupled-channel problem. Since it does not ayyear
feasible to give such a treatment (in fact, it may
be inconsistent in view of all the other approxi-
mations made}, there is an inherent ambiguity in
the physical interpretation of the data. However,
we feel that this ambiguity does not invalidate the
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general physical picture and conclusions. Some
discussion of these subtleties may be found in the
work of Gottfried and Julius" and Bauer. '

IV. FITTING THE DIPION MASS SPECTRA

We have seen enough of the theory of the p' shape
to recognize that it is somewhat ambiguous except
at the p mass. This theoretical ambiguity should
be taken into account in fitting the data and will be
reflected in the resulting uncertainties in the cross
section, in the principal fitting parameters (mq, I'q},
and in the strength and structure of the Drell term.
Omitting the non-P-wave background term (which,
however, could influence experimental results in
some circumstances), we may rewrite the e-pair
amplitude as

fq I q (mq ') + (m q —mq q) C, + (m q —m q) ' Q, + ~ ~

m —mp~+im I"

At the present time we cannot hope to calculate

the coefficients C&. For example, in Sec. III we
have identified several contributions to C,: the
Drell amplitude (most important, but with strength
somewhat uncertain}, propagator correction, and
the variation of Fp with m'. Undoubtedly there are
others. We are relatively confident only of the
sign and approximate size of this term, which has
the Drell amplitude as its most important constit-
uent. (Incidentally, we may want to have Q, include
the mass dependence expected for the Drell term,
rather than have that dependence taken care of by
higher terms )T.he other terms are corrections to
these corrections, and we have no confidence even
in estimating their sign. One might hope that their
importance will be small if a narrow mass region
is used for analysis. If a larger mass region is
used, we would expect these terms to be important
and take into account our theoretical ignorance, de-
emphasizing the influence of experimental points
far out on the tail. Unfortunately, as we shall see
later, correlations among the parameters make
things much more complicated.

Alternatively, we may write the cross section as

mI'q dtdm q mq —mq2+tmqI'q mq —m q+tm~

m2 m2 pyz
2 2 & I pg2 m2

i=3
(4.1)

In writing this expression, we have made use of
our prejudice that A, and A, are approximately
proportional to 1/m' and 1/m', respectively, from
the Drell amplitude. We see no reason to continue
such dependence for higher terms. We have no
idea what the radius of convergence of such an
expansion is, but we intend to use it only in the
mass range reasonably close to the p' mass, so
that only a finite number of terms should be im-
portant.

We have also taken into account the p-eo inter-
ference by modifying the A, term as shown. The
complex number $e' ~ is called the "mixing param-
eter" or "mixing strength". It has a value close
to 0.01 e"' according to the DESY-MIT experi. -
ment. " The parameters to be determined by least-
squares fitting are thus mq, I'q, "Re()e' ),
Im(&e'~), A„.. . ,A„,.

Now suppose we have a set of data, possibly in-
cluding an incoherent background, from which we
wish to determine the cross section. Let us also
suppose that mp and j. p are specified and are not
to be obtained from the data. (We will discuss
later the difficulties of determining mp and Fp
from an experimental mass distribution. ) Accord-
ing to (2.1) we have only to determine da/dt dms

with its error. This may be done by fitting any
convenient interpolating formula to the data (we
shall discuss the complications of p-ao interference
later) Thus .all the data will participate in the
determination of the cross section, not simply the
value measured at mp. It is to be emphasized,
however, that this is not an area method. The
difficulty with an area method is that we simply
do not know what portion of the area is to be at-
tributed to the p', i.e., we do not know a Priori
the shape of the p' in photoproduction.

Next we consider the effect of a smooth, incoher-
ent background. Suppose this can be adequately
represented in the region of interest by

B= a, + a, (m' —mq')+ ~ ~ ~ + a, (m' —mq')

We see immediately by comparison with (4.1) that
the observed cross section could be fitted with the
form (4.1) if we modify the A, through j =i+ 2

(ignoring the slight difference in form for the first
few terms as well as the small mass dependence
of I'q}. Thus, if we include the possibility of a
numerator polynomial in (4.1}, it is inherently
impossible to separate background out of the data
by a mass-distribution analysis alone. There is
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of course also the possibility of an incoherent
background having the basic shape of the p', say
in the case of inelastic p' production from hydrogen
or with nuclear excitation. These must be allowed
for by experimental measurement or estimated
theoretically. We feel that because of coherence,
smooth incoherent backgrounds should be com-
pletely unimportant in most nuclei.

We now describe some of our experiences in
applying (4.1) to experimental data. Our first
concern was with the extraction of p'-photoproduc-
tion cross sections from the dipion mass spectra
of the two experiments analyzed in Ref. 1. The
Cornell group" had already analyzed their data
with a procedure similar to the one we propose
here, but with a three-parameter numerator poly-
nomial. It was therefore decided not to reanalyze
their mass distributions. Incidentally, in their
analysis they obtained I

p
= 124 + 4 MeV with mz

fixed at 775 MeV. On the other hand, the 195 mass
spectra of the DESY-MIT group" had been analyzed
in a rather different way and it was decided to redo
the analysis using our prescription.

According to the definition of the cross section in
Sec. II, this requires knowledge (or arbitrary
choice) of the p' mass and width. In order to find
these parameters, one could fit the data of Ref. 18
directly, and indeed this has been done and will be
discussed below. However, the data of Ref. 19 are
low-resolution data with at most 18 points (spaced
30 MeV apart) in each mass spectrum. Since the
parameters mz and I'~ are of such great impor-
tance, we thought it best to look at more-accurate
higher-resolution data.

The DESY-MIT,"Cornell-Rochester, ~ and
Daresbury" groups have performed very precise
measurements of the mm mass spectrum in order to
observe the interference of p and v final states.
The mass resolution in these experiments is about
5 MeV and there are nearly 60 data points on many
mass distributions. From the wealth of these
magnificent data generously supplied to us by these
groups, we have made a serious attempt to deter-
mine a value of I z to be input to the optical model
analysis of Ref. 1. As for m~, it is our position
that due to possible uncertainties in the mass scale,
it is best to let each experiment choose its own
p' mass. The low-resolution data of Ref. 19 (LRD),
choose m~=770 MeV and that is the mass used in
Ref. 1. However, it is comforting to note that
when the DESY-MIT high-resolution data are fitted
in the same way as LRD, both sets of data agree
on m~= VVO MeV (see Tables IV and VI, below).

Naturally $e' ~ also emerges from fits to the
high-resolution data. But our primary purpose was
to compare LRD with the optical model. In LRD
the experimental aperture largely "washed out"

Carbon

k =6.4 GeV
~=O.OOl GeV

2

3—
X

2

0.63
l

0.73 0.83
m (Qev)

0.93

FIG. 3. A typical nonrunaway fit to a typical mass
spectrum. Values of m& I &, and (e' ~ are given in the
N=5 line of Table III. The long-dashed curve is the
contribution of the p only fA&mI'z/((mt -m~t}t+m~tF~t)].
The curve with alternate long and short dashes is the
background contribution Q& term + +A4 term). The
solid curve is the total fit, p+~ +background.

the p-a interference and indeed fits to LRD do not
demand the presence of e decays; in fact, for
some values of the mass and width, even very
small mixing strength can worsen the fit. Thus
we did not consider the mixing parameter to be
a goal of our fitting efforts. For this reason we
felt justified in not bothering to fold experimental
mass resolution into our theoretical fitting func-
tions. In the same spirit we arbitrarily fixed I'
at 11.4 MeV and m at 783.9 MeV throughout, mak-
ing no attempt to determine these from the data. Such
simplifications may well affect $e' which depends
greatly on the narrow "cliff" region of the mass
spectrum (see Figs. 3 and 4), but should not affect
the p'width significantly. (If they do, the task of
determining I"~ from complex-nuclei mass spectra
is even more uncertain than we believe it to be. )

We now proceed to describe some of our exper-
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FIG. 4. A typical runaway fit to a typical mass spec-
trum. The values of m&, I z, and (e' ~ are given in the
N =6 line of Table I. The long-dashed curve is the con-
tribution of the p only. The curve with alternate long and
short dashes is the background contribution (A& term+.
+A& term). The solid curve is the total fit, p+~+back-
ground. The short-dashed curve is an N = 5 fit to the
same data with mz fixed at 770 MeV, I'& fixed at 139
MeV, and y =59.9.

iences in applying the fitting procedure of (4.1}
to the high-resolution data of the various groups.
While this account may simply reflect the naivetd
of the authors, who are novices at such statistical
analysis, we believe it does point up some genuine
problems in fitting broad resonances which may
have implications beyond the present example.

Our first approach was to try to analyze each
curve independently of the others, with the aim
of taking an average of the results at the end. How-
ever, if one allows all parameters to vary freely
to minimize the X' of each curve, chaos reigns
supreme. " The fits are excellent (as is clear
from Figs. 3 and 4}, but no sense emerges from
the results because of serious difficulties:

The form of (4.1}clearly admits simultaneous
changes of parameters which cause little change

TABLE I. A typical runaway fit to a DESY-MIT spec-
trum (carbon, k = 6.8 GeV, t =—0.001 GeV2). For each
value of N, the data were fitted with Eq. (4.1) leaving
m&, I'&, Re(ge'~), and Im((e'~) free. The N =6 fit is
drawn in Fig. 4. The errors given in the tables depend
on the goodness of a quadratic fit to the region near the

minimum. They are therefore unreliable when very
large.

N X m (MeV) r& (MeV) Re(|ref~) Im((e'~)

3 59.6
4 59.1
5 59.0
6 50.0
7 48.1

775 ~ 2.2
773+ 2.8
771+8.5
779~ 6.3
773 ~ 7.6

158 + 4.9
151 + 10.4
149 + 12.7
90.7 + 12.4
70.7 + 14.6

0.0025 + 0.0009
0 ~ 0025+ 0.0010
0.0024 + 0.0010
0.0052 + 0.0022
0.0066+ 0.0037

0.0069 + 0.0008
0.0069 + 0.0008
0.0069 + 0.0008
0.0082 + 0.0017
0.0103+0.0039

TABLE II. Typical results of N =5 fits to the DESY-
MIT data using Eq. (4.1) leaving m, I', Re(ge'~), and
Im()e~~) free. In general, the curves disagree with
each other, but the results are not inconsistent with the
p having a definite mass and width.

Element k (GeV) —t (GeV ) X

c
c
c
H

H
Pb

6.4
6.0
6.0
6.0
6.4
6.4

0,001
0.001
0.003
0.001
0.005
0.001

28.8
38.0
44.1

49.1

19.0
32.0

773+ 6
758+ 7

772 ~46
758+25
709~ 39
782 + 11

137 +8
115 +9
153 ~106
136 ~ 76
84.9+ 71
95 +25

in the function through the region of interest. It
had been expected that this would merely lead to
larger and larger errors in m~ and I'~ as the num-
ber of parameters increased. Instead, in some
cases, these large correlations among parameters
led to ridiculous "runaway solutions" where the
values of m& and l ~ were quite unreasonable. A

typical example is given in Table I. This runaway
behavior corresponds to a long multidimensional
tunnel in parameter space in which }f varies only
slowly. Except in cases where the iteration pro-
cedure for minimizing X' failed to converge, we
could find no bias-free criterion for eliminating
these runaway solutions. Nor could we find any
such criterion for choosing the number of param-
eters to be used. Some of the ridiculous values of
m& and 1

&
have errors which are deceptively

small. That is, they indicate that a fit with rea-
sonable values would have a very large X'. But
this turns out not to be the case; the quadratic fit
at the minimum is valid over too limited a region
and cannot begin to describe the complicated tun-
nel connecting the reasonable and the ridiculous
fits. Some examples of values of m& and l z from
individual curves are given in Table II. We were
unable to find any consistent pattern in such re-
sults; in particular, the spread in values seems
to be somewhat larger than statistical. Table III
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TABLE III. A typical nonrunaway fit of a DESY-MIT
spectrum (carbon, k = 6.4 GeV, -t =0.001 GeV2). The
procedure was the same as for Table I. The N =5 fit
is drawn in Fig. 3.

TABLE IV. Results of the over-all fit to the DESY-
MIT data for N =3, 4, and 5 (Ref. 16). Note the depen-
dence of the parameters on N.

N )( ~
p

(Mev) Tp (MeV) Re(ggf~) Im((e+) N I'& (MeV) ~& (MeV)
Degrees

of freedom

3 29.9
4 28.8
5 28.8
6 28.8
7 26.9

775+ 1.6
773 + 2.5
773 + 6.0
773+ 5.9
757 ~ 12.5

145 + 4.0
137+7.7
137+8.0
133~ 18.7
116+ 18.3

0.0010+ 0.0009
0.0012 + 0.0009
0.0012 + 0.0010
0.0014 E 0.0011

-0.000 03 + 0.0019

0.0067+ 0.0008
0.0067 + 0.0008
0.0067+ 0.0008
0.0068 + 0.0010
0.0081 + 0.0020

3 153.9+2.2 776.1 + 0.9 1083.0
4 145.0 + 3.7 773.6+ 1.3 1059.1
5 138.4+ 3.9 769.7 + 2.7 1015.9

1103
1071
1039

shows a typical nonrunaway fit.
In order to further illustrate these difficulties,

we call the reader's attention to Figs. 3 and 4.
Figure 3 shows a fit to a typical mass spectrum
for a nonrunaway case. That is, the parameters
for this fit (see Table III) are reasonable; and as
N varies from 3 to 7, no drastic changes in the
parameters occur. Figure 4 shows a runaway fit
to a different spectrum, with parameters given in
Table I. Also shown is a fit to the same data with
$Rp fixed at 770 MeV and I ~ fixed at 139 MeV. The
two curves look almost identical to the eye, al-
though their X"s differ by 9. Note also the great
similarity between the data and curves of Figs.
3 and 4.

Finally, we were forced to conclude that no
procedure was likely to permit analysis of individ-
ual spectra for the values of m~ and F~. It seemed
clear that all curves must be fitted simultaneously
to obtain the best values of mz and I'&. Since the
p-& interference and other shape factors might
well vary as a function of A, k, and t, no effort
was made to fit them simultaneously for all curves.
In retrospect, it might have been more desirable
to put a smoothness criterion on these parameters,
but we were not prepared to undertake the massive
computing program which that would have entailed.

We then resorted to an "over-all" fit. Our pro-
cedure was to evaluate X'„, for several pairs of
fixed m& and F& values as the sum of g' from indi-
vidual curves. In each individual fit the mixing
and A„.. .,AN, were permitted to vary freely.
For ¹3,4,5 the best combination of mp and Fp
was determined by interpolation to minimize g„,.

The results of this procedure for 32 DESY-MIT
high-resolution spectra are shown in Table IV.
Note the startling variation of F~ with N. We do
not see how to choose between the different values
of N on any statistical basis. Incidentally, with
this procedure, we were able to include most of
the data curves. This is in contrast to the attempt
to fit individual curves where we generally obtained
runaway solutions for curves with too small a
number of data points.

The Cornell-Rochester and Daresbury groups

TABLE V. Fits to the Cornell-Rochester and Dares-
bury data with m& =770 MeV and I'& ——137 MeV.

Energy Degrees
Element (GeV) of freedom Group

C
C
Al
Al
Pb
Pb
C

7-8
8-9
7-8
8-9
7-8
8-9
4.2

20
25
27
32
32
38
49

22.2 Cornell-Rochester
72.5 Cornell-Rochester
25.7 Cornell-Rochester
27.3 Cornell-Rochester
34.8 Cornell-Rochester
54.9 Cornell-Rochester
55.2 Daresbury

did not supply us with a sufficient number of high-
resolution spectra to make an over-all fit worth-
while. Instead, we fitted their high-resolution
spectra with parameters close to those resulting
from the DESY-MIT over-all fit. The results of
these fits are presented in Table V. The fits are
very good in 5 of the 7 cases and we have no rea-
son to believe that the problems with the other two
cases are due to anything other than statistical
fluctuations.

After this experience, we tried the simultaneous
fitting procedure on LRD. We briefly investigated
the effect of $ 40 on LRD and found that $ &0.003
increased X'„,for the 195 curves for most values
of m~ and F~ in the range 760-780 MeV and 120-
150 MeV. With N= 5, the best mass for LRD is
undeniably 770+2 MeV (see Table VI), and the
best width is 124 MeV. It is interesting to note
that this agrees with the width determined by the
Cornell group. " The DESY-MIT group had anal-
yzed their curves under different assumptions and
preferred a width of 140 MeV. These differences
are quite compatible with the ambiguities we en-
countered in fitting the high-resolution data. The
lower width in LRD may be due to some subtle
effect of the p-~ interference on the data. Al-
though the resolution is too broad to detect the in-
terference, the data might retain some systematic
behavior from the interference which is now man-
ifest in a change in the apparent width.

The analysis of the accompanying paper' was
carried out before the present one and we had to
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TABLE VI. Best mass as a function of assumed width

for the DESY-MIT low-resolution data (LRD). There are
698 degrees of freedom in these over-all fits. (At the
time these fits were made, 20 mass distributions were
omitted. These were at high -t values where the data
are most uncertain and they could not have had a signif-
icant effect on the results. Had they been included, there
would have been 778 degrees of freedom. ) t (GeV )

I'p

(MeV)
do
dt

TABLE VII. An illustration of the linearity in I'& of
the cross sections obtained from LRD with our proce-
dure. mp 770 MeV was used throughout. Examples
were selected at random. 195 mass spectra were fitted
in all.

1 (Me V)

120
127
135
145

m& (MeV)

768.8 + 2.3
769.6+ 2.5
770.3+ 2.8
771.2 + 3.2

X

665.7
664.0
672.7
695.4

k =5.8 GeV

-0.001 120
125
130
135
140

5.21
5.20
5.19
5.18
5.17

select arbitrary values of I'z and mz as "standard".
These were taken to be 127 MeV and 770 MeV,
quite close to the values later obtained from LRD.
However, the most important feature of the LRD
results for the cross sections is their almost
precise linearity in I ~ as illustrated in Table VII.
IThis is not totally unexpected The. basic idea of
our procedure is to use (4.1) to fit a smooth curve
to der/dt dm in order to read off the value at m~.
All reasonable curves that fit the data well should
give roughly the same value of do/dtdm~ .] This
makes it trivial to convert our results for any
width in the range 120-150 MeV and allows us to
extract information from the A dependence of the
cross sections independently of I'~. See Ref. 1.

In retrospect, we feel that our analysis of the
low-resolution data probably gives a misleading
value for I'z because of its neglect of the p-co
interference. One of the values from the high-
resolution data is probably more reasonable. But
which one? Not only do we have the range of
values given in Table IV, but additional parameters
or other assumptions could have led to values well
outside this range. The ambiguity for theoretical
reasons is accordingly considerably larger than
the statistical error in fitting these fine data. Our
present prejudice is that the width (from photo-
production) is about 140 MeV with a (conservative)
theoretical ambiguity of 15 MeV.

V. SUMMARY AND CONCLUSIONS

64

115

183

12

197

108

-0.003

-0.007

-0.001

120
125
130
135
140

120
125
130
135
140

120
125
130
135
140

120
125
130
135
140

-0.009

-0.001 120
125
130
135
140

k =6.6 GeV

-0.003 120
125
130
135
140

k =62 GeV

66.9
67.0
67.1
67.2
67.3

37.7
37.9
38.0
38.2
38.3

346
345
345
344
344

5.83
5.82
5.81
5.80
5.80

424
423
421
420
419

141
140
140
139
139

(1) We have emphasized the theoretical ambi-
guities which make a unique decomposition of the
data into p production plus background inherently
impossible at the present time. While we elabo-
rated these ambiguities for the Siding model, they
would be true in any model when one goes beyond
the leading approximation. At the same time, all
the current models appear to describe well the
qualitative features of the data, and to incorporate
the underlying physics which accounts for these

features.
(2) We proposed a standard definition of the

cross section, Eq. (2.1), which minimized the con-
sequences of the theoretical ambiguities, Provided
the mass m& and width Fz are externally Provided.

(2) We studied the problem of determining m~
and I'z directly from measured mass distributions.
We were unable to develop a reliable procedure
for analyzing individual curves for this purpose,
but found that some sense could be made out of



136 ROBIN SPITAL AND DD DONA LD R. YE NNI E

over-all fits to a lar
it still turned out th t

a arge number of curv
u a the value of

es. However

sensitive to the
e of Fp was very

' ' e o e number of free paramet
fitt' th Thves. The difficulties w

t db thy e p-~ interference
l dif 'ar ficulties would p

roa resonance.
(4) The DESY-MIT low-resol g

erent value of F from the'
olution data and

'
eir high-res-'.b

, an in agreement with

h db li dth t
i e by a similar r
a the p-e interfer

washed out b the
rence would be

y e broad resolution and
t it ) busence, but it ma be l

e i ed value of the width.
&5~ The large uncer taint in

the width do
in y in our knowledge of

dence of the hot
oes not appreciabl y affect the A depen-
e p otoproduction results

is reflected in thin e values of )f,(' and
ults. Rather, it

(6) We have not t '
d is

d t
o ried to relate this

ina ions of the ' 'd

i e collidin -beame ' ' g- am experiments(e's
w ich give 1

p
=149+23 MeV." I

that experiment al
e . Incidentally

a so suffers from
e.g., finite width corrections

propagator, possibl f
ec ions to the p

tex) which, while
e orm factor ta the p mn ver-

i e perhaps less severe
case of photoprod t'

vere than in the
uc ion, should be tak en into

account if there should ever be
in e data.

Finally, it is interestin tong
r o vector-meson dom'

of the p -photon
ominance the value

o on coupling constant e
enters the discus ' ' ' er' cussion in two differ

of f~. Also since in VMD
m es it possible to find au '

a unique value

(S.l)p mp 4mp -m2 I 2

P 6m m'
P

this wwould determine th e p width
e experimental forward

duction cross section is ro eei p oportio o (

p P
as ic scattering amplitude is

When theoretical and
are taken into accou t t

ic and experimental unc ertainties

lations is indicted b th
account the overlap of th ese two re-

The center of th
e y the shaded re '

gion of Fig. 5.
e region has

w ence I'p 130 MeV.
f' 't - 'dth

m and indicated by the 30% theor
of Fi . 5) d t o th
this approach to l

roy e quantitative ussefulness of

b fth
o p. Nevertheless

o e result indicates that
l'tt' d s ' t'0' e escription of p' photoproduction.

VIVID Determination of I

120—

cv I I 0—
C9

100—
Experimen to I

O
If I =103'.

ot f /4~

(I p
=127 M

heoreticql Cross Sectice

103 pb/GeV
2

f 2/4~=2. 52

I

KO
80

1.5 2.0 2.5
2

FIG. 5. E

f /4m

Experimental and theor
We write the

eoretical one-nucleon fo
e p -nucleon forward elasti

on orward photoproduction
e astic scattering amplitude as

= —. , A-dependence fit (R f

re at this value with
l l of

rec ions. (A ve n
'

o ' ~ ' = 108 pb/GeV2+
0

eV in accordance with th e result of



p~ SHAPE IN PHOTOPRODUCTION

ACKNOW( LEDGMENTS

%e are grateful to Professor D. Cassel and
Professor J.Orear for getting us started in least-
squares fitting. Professor K. Gottfried, Professor
F. Pipkin, Professor R. Talman, and Dr. N. Mistry
contributed much helpful discussion at various
stages of our fitting efforts. One of us (DRY)
wishes to thank Professor G. Kramer, Professor
J.Uretsky, and Professor T. F. Walsh for helpful
discussions of the theory of the p shape. A special
thanks goes to Dr. T. H. Bauer; Sec. III is largely

an exposition of his work. %e thank Dr. U. Becker
for helpful comments on the manuscript in its
final states. DRY wishes to thank Professor S.
Drell for the hospitality of the theory gxoup at
SLAC, where some of the early mass fitting was
done, and Dr. P. Seyboth for extensive program-
ming assistance at that time. Finally, we thank
the Cornell-Rochester, Daresbury, and DESY-
MIT groups for generously supplying us with their
data, without which much of this work would have
been impossible.

~Supported in part by the National Science Foundation.
~R. Spital and D. R. Yennie, following paper, Phys. Rev.

D 9 138 (1974).
2P. Soding, Phys. Rev. Lett. 19, 702 (1966).
SJ. Ballam et a/. , Phys. Rev. Lett. ~24 955 (1970); ~24

960 {1970); Phys. Rev. D 5, 545 (1972). CEA Bubble-
Chamber Collaboration, Phys. Rev. 146, 994 (1966);
Y. Eisenberg eta/. , Phys. Rev. D 5, 15 (1972); Nucl.
Ihys. B42, 549 {1972).

4S. D. Drell, Phys. Rev. Lett. 5, 278 (1960).
5T. H. Bauer, Phys. Rev. D 3, 2671 {1971).
8M. Ross and L. Stodolsky, Phys. Rev. 149, 1172

(1966).
~G. Kramer and J. L. Uretsky, Phys. Rev. 181, 1918

(1969).
SG. Kramer and H. R. Quinn, Nucl. Phys. B27, 77

(1971); G. Kramer, Z. Phys. 250, 413 {1972).
~J. L. Uretsky, Phys. Rev. D 7, 140 (1973); P. Dewey

and B. Humpert, Nucl. Phys. 333, 589 (1971); H. Saty
and K. Schilling, Nuovo Cimento 67A, 511 (1970);
P. Dewey and B. Humpert, Nuovo Cimento Lett. 1
651 (1971).

~ J. Pumplin, Phys. Rev. D~2 1859 (1970).
Soding's approach was elaborated by Pumplin (Ref. 10)
and Bauer (Ref. 5), both of whom noted the "double-
counting correction. " (W'e are unaware of a precise
definition of that phrase. ) Our present discussion
agrees with the principal contents of these two papers,
but disagrees with Pumplin's on some less important
details with regard to the method of handling the
gauge-invariance problem.

~2The generalized Nard identity ensures this simple form;
off-mass-shell corrections in the pion electromagnetic
form factor precisely cancel such corrections in the
pion propagator. This fact was first pointed out in
another context by F. Low in Phys. Rev. 110, 974 {1958).

~3The value of m& is defined by the vanishing of the real
part, and I'& is given by the imaginary part at the same
point. This differs slightly fxom the position of the
pole in the second sheet.

~4G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21,
244 (1968).

~5K. Gottfried and D. I. Julius, Phys. Rev. D 1, 140
(1970).

~8H. Alvensleben et a/. , Phys. Rev. Lett. 27, 888 (1971).
~~The fitting parameter F

&
is xelated to I'& (taken to be

a mass-dependent p-wave width) by

m'-4m ' '"
r (m)=1 ~

~ m mP -4m„2

~SG. McClellan et a/. , Phys. Rev. D 4, 2683 (1971).
~9H. Alvensleben et a/. , Nucl. Phys. B18, 333 {1970).
20H. J. Behrend et a/. , Phys. Rev. Lett. 27, 61 (1971).

P. J. Biggs et a/. , Phys. Rev. Lett. 24, 1201 (1970).
22In all fits described in this paper, the numerator

parameters Ao, . . . ,A~ ~ and $e'~ are always left free.
m& and I'& are sometimes left free and soxnetimes
fixed as indicated in the text.

23J. Lefrangois, in Proceedings of the 1971 International
Symposium on E/ection and Photon Interactions at
High Energies, edited by N. B. Mistry (Lab. of Nuclear
Studies, Cornell University, Ithaca, N. Y., 1972).


