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An inclusive decay amplitude is defined and discussed. It can be understood as a continua-
tion of an absorptive part of 2 —2 scattering which is related in a different kinematical region
to a total cross section. In exotic channels we employ an assumption of smooth behavior of
this amplitude to obtain a relation between the width of a resonance and total cross sections.

Some examples are discussed.

I. THE INCLUSIVE FOUR -POINT FUNCTION

We investigate here decay reactions of the type
R~ c+ anything, which we denote by (R, c¢). Let
us use the definitions P=pgy=p,, P®=s, and E=en-
ergy of particle c in the rest frame of R. It is
then easy to see that

s=M?+u?®-2ME, (1)
where M and p are the masses of R and ¢, respec-
tively. We can now define an inclusive decay rate
by

(B2 = pu2p/2 2 ... 4%,
T(s)= 167°M? ZflM' 2w (21r)3 2w (21r)3

><(21r)‘6“)(P- 1k‘>, (@)

where the sum is over all allowable decays that
contribute to (R, ¢). The integral over I'(s) is

fds I(s)=(n,)T, (3)

where I is the width of the resonance R and (n,) is
the average number of particles of the type c ob-
served in its decays. These results follow along
the same lines of reasoning that lead to inclusive
distributions in high-energy production processes.
As a matter of fact it can be viewed as a continua-
tion of the high-energy production processes down
to a resonance pole in the incoming channel. It is
therefore also easily identifiable with a disconti-
nuity of a two-body reaction amplitude ¢+R~¢+R.
To investigate this last point let us look at the
various cuts in the ¢R forward-scattering ampli-
tude using the narrow-resonance approximation.
We show some characteristic cuts in Fig. 1. As
an example we consider here the case of a pionic
decay of K *(1420). We encounter both s- and u-
channel cuts. One should note that s =(Mz= u)? cor-
responds to #=(M ¥ p)?. Thus it turns out that the
elastic # channel opens up at the end of the observ-
able s-channel decay region. Nevertheless the in-
clusive decay rate of Eq. (2) represents only the
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discontinuity across the s-channel cuts. We will
consider in the following the discontinuity across
all the s-channel cuts only and designate it by
A(s). It can be represented by

d3k,
f Ia? 2(4)1(211)3 o 2w,,(21r)3
x (27)15(® (P- 3 k‘>, @)

where P is either pp +pz or pgp —p. according to
whether we consider scattering or decay pro-
cesses. Above the elastic threshold one can use the
optical theorem to write

A(s)={[s = M +pP][s = M1 = pR]} /%0 4(s),
s=M+pP, (5)

thus relating A(s) to the total cross section of ¢R
scattering. In the decay region one can use Eq.
(2) to relate the same function to the inclusive de-
cay rate:

2
A(S)=(?§-%7§ I(s), m*<s<(M-pF. (6)

Here we used m? to designate the lowest threshold
of the decay region. The upper limit is determined
by E=p. Thus we see that the optical theorem can
be generalized in an obvious way in the narrow-
resonance approximation to include both the total
cross section and the inclusive decay rate as mani-
festations of the same absorptive part in different
kinematical regions. The function A(s) represents
all the interesting physical features such as reso-
nances in the low-energy region. They can be ob-
served if they fall into the decay region. Since our
initial particle R is unstable, we may expect to ob-
tain a direct information in the scattering region
only through model-dependent evaluations of cross
sections in nuclei. The measurable inclusive de-
cay rate represents therefore the best available
information about the function A(s).

Several comments are in order: (i) All the dis-
cussion is based on the narrow-resonance approxi-
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FIG. 1. The location of several s- and % -channel cuts
of the inclusive (K *,m) problem for K *(1420).

mation. This means that while looking for the lo-
cation of cuts, one considers R to have zero width.
Eventually one calculates of course the width I" and
the hope is that as long as it is small with respect
to M, the narrow-width approximation is justified.
In reality the fact that I can be of order p ruins
the careful distinction between the boundaries of
the different physical regions in Fig. 1. (ii) In our
discussion we ignored the effects of spin. The re-
sults should therefore be regarded as averaged
over the spin states of R and summed over those

of ¢. One can of course formulate the same prob-
lem for each individual helicity component. In par-
ticular the spin components of R may be of interest
in future applications. (iii) One may also extend
this discussion to nonforward four -point functions
(¢#0). Over a finite ¢ range, one finds contribu-
tions from inclusive decays. They form then a con-
tinuation of the absorptive part of the corresponding
elastic scattering amplitude.

II. RELATION BETWEEN WIDTH
AND CROSS SECTION

Let us discuss now the case in which the ¢R quan-
tum numbers are exotic. It is of particular interest
because in this case, one may safely assume that
the absorptive part A(s) is a smooth function in the
entire s range. From our experience with exotic
meson-baryon channels, we know that this is the
case and we try to generalize this property to the
present problem.

As an example let us investigate the consequences
of a structure like A(s)=cs in the case y,m< M.
The inclusive decay rate becomes then

Ecs _cs(MP =)
7l'2M2 - 161[2M3 ’

r‘(s)z8 0sssM? )

whereas the asymptotic total cross section is o,
=¢. Using Eq. (3) we find then

cM?®
("c>r i —6? ’ (8)
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which gives an interesting relation between the
width of (R, c¢) and the asymptotic cross section of
CR.

The assumption that A(s)=cs is, of course, ar-
bitrary. Nevertheless if we assume that no signif-
icant structure exists at low s values, we can view
it as an upper limit on the order of magnitude of
T'. In other words, we allow the real A to be
smaller than ¢s but not much larger than that. Al-
ternatively, if (n) is given, we can use the result-
ing ¢ of Eq. (8) as a lower bound on the order of
magnitude of o,:

(n)T'= gé—"z or- 9)

Let us investigate the consequences of this rela-
tion for several interesting cases. As a first ex-
ample, we will look at the decay properties of the
K *(1420). The kinematics of this problem leads
to the structure of cuts shown in Fig. 1. Using the
available data® we find that for (K **, 7~), one ob-
tains (n,.) ~0.2 and therefore (n,-)I'~20 MeV.
Inserting this value into Eq. (9) we obtain
op(m*K**)2 2.6 mb,

Alternatively one can work back from cross sec-
tions to widths. Nuclear measurements? show that
op(4;p)=2313 mb and 0,(Qp)=21+7 mb in the
ranges of 10-15 GeV. Let us assume that the cor-
responding meson-meson reactions are reduced by
at least a factor of % and set 0,(4,7)< 15 mb and
o,(@r)< 14 mb. If the main decay mode of 4, is
A, -pm, we find for (4], 77) that (»,-) =0.5 and Eq.
(9) leads to T, s 110 MeV (assuming MA1=1.1
GeV). Similarly if the @ decays are dominated by
Q —~ K*n, one can conclude for (@', 7~) that (n,-)
=4 and Eq. (9) leads to I's 150 MeV and I's 190
MeV for the choices My =1.2 GeV and M, =1.3 GeV,
respectively. Note, however, that for M=1.2 GeV
one finds n?=0.4 GeV?, (M -pn)2=1.2 GeV?, and
M?=1,44 GeV?. Hence the approximations needed
for the derivation of Eq. (8) do not really hold and
the integration range in s is reduced by a factor
of 2. The prediction for I'" should be reduced ac-
cordingly by at least a factor of 2. These results
indicate that in the @ range there are presumably
several resonances present.

The continuation from the decay to the scatter-
ing region is clearly a speculative step. Never-
theless the results show that it seems quite rea-
sonable to assume that a smooth function describes
both in the case of exotic channels. We would like
to suggest that experimental data in these channels
be presented by the function A(s) of Eq. (6). Its
comparison with whatever information is available
from nuclear experiments can lead to further in-
sight into the question of the structure of reso-
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nances and their interactions. )

'Note added in proof. It was pointed out to the
author that the concept of inclusive decays has
been discussed in the following papers: V. Ritten-
berg and H. R. Rubinstein, Phys. Lett. 40B, 257
(1972); H. Satz, Nuovo Cimento 12A, 205 (1972).
These authors discussed applications to p# and
e'e" annihilations, respectively.
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The theoretical and practical difficulties involved in extracting p’-photoproduction cross
sections from measured dipion mass distributions are discussed. To circumvent the theo-
retical ambiguities, a standard definition of the p® cross section is suggested. The defini-
tion requires that the mass and width of the p° be externally specified; however, we have also
attempted to analyze the data to determine these parameters. Because of the theoretical
ambiguities, it is not feasible to determine the mass and width from individual curves, and
even a simultaneous fit of all the curves gives results which depend on the assumed fitting
function. Thus the width has a theoretical ambiguity of order 15 MeV in addition to any

statistical uncertainty.

I. INTRODUCTION

Unfortunately there is no universally accepted
procedure for extracting p° photoproduction cross
sections from measured dipion mass spectra.
Several, apparently equally plausible, definitions
have been used by various experimental groups.
Since the final numbers quoted for the cross sec-
tion usually involve considerable processing of
the raw data, this has often made a meaningful
comparison of different experiments virtually
impossible. The purpose of this paper is to out-
line the theoretical and practical difficulties which
make interpretation of p°-photoproduction experi-
ments uncertain and to propose a standard defini-
tion of the cross section which does permit such
comparisons. It should be emphasized that while
our immediate interest is the analysis of p° photo-
production from complex nuclei,' the present dis-
cussion applies equally well to production from

individual nucleons.

If we look at some experimental data (see figures
in Sec. IV), the reasons for the difficulties are
quite apparent. The p° peak is very broad and is
badly skewed by an interfering background. With-
out an adequate theory of the shape of such a spec-
trum it is impossible to decide, in principle, what
fraction of the events is to be attributed to the p°
meson. Further, the shape is found to change as
a function of {, becoming less skewed for larger
values of |¢|. It is clear from a study of the
shapes of the dipion mass spectra produced from a
variety of nuclei that the skewing is a coherent
effect, although the data could contain an incoher-
ent component as well. A further practical dif-
ficulty is the p-w interference, which seriously
distorts the spectrum near its peak.

The physical origin of the skewing is generally
well understood, although it has been expressed
in a variety of theoretical forms. Basically the



