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The mass-~insertion term in the Callan-Symanzik equation may not be negligible, even in
the deep Euclidean region, because the asymptotic behavior of vertex functions may be
different from that of individual dominant graphs. When contributions from different
orders of perturbation are related by a constraint, such as the condition that the physical
coupling constant is at a nontrivial Callan-Symanzik eigenvalue, cancellations between
dominant graphs may occur. This and other circumstances under which vertex functions
may fail to satisfy homogeneous Callan-Symanzik equations asymptotically are illustrated
with a very simple example, thus emphasizing that the question of asymptotic scale invari-
ance may not be always decided by studying the properties of the g function alone.

I. ASYMPTOTIC BEHAVIOR AT A CALLAN-SYMANZIK
EIGENVALUE

The Callan-Symanzik equations have been very
useful in studying the asymptotic behavior of
Green’s functions. They are equations of the
form
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(mz 5'7—”5+ng -N7> '™ (p,,m?,g)

=am?AT™(p, m?,8), (1)

where T™ denotes an N -point proper vertex,’
and AT™ the corresponding vertex with the in-
sertion of a zero 4-momentum mass operator.
If g is dimensionless, as in the g¢* theory, for
instance, dimensional analysis gives

M, m?,g) =" TN (p, m?/\2,g) (2)

and £, v, a are only functions of g.

For Euclidean, nonexceptional momenta,? Wein-
berg’s theorem applied to each dominant graph
to any order in g leads one to expect that

(N) 2

where A is independent of A. Hence it is commonly
assumed that the asymptotic behavior of T |
when all the momenta are large but nonexceptional
and Euclidean, can be deduced from the approx-
imate equation

(-—)\25% +ﬁ(g)%— —N’y(g)>f‘as(phm2/)\2,g)=0.

(4)

Since the behavior of I';s for large A obviously

depends on the properties of B(g) and ¥(g), in-
tensive studies have been made about their be-
havior as a function of g, particularly about the

existence and the nature of the zeros of .

For diverse reasons the possibility has been
considered that the physical coupling constant g
satisfies an eigenvalue condition.® One assumes
that B has real zeros: B(g;)=0, and that the phys-
ical coupling constant g happens to coincide with
one of the zeros of B, i.e., g=g; for some i. (All
the quantities m, g, as well as the vertex func-
tions I', refer to renormalized ones. We avoid
any reference to unrenormalized quantities except
in Sec. III.)

When g is equal to an eigenvalue, Eq. (4) re-
duces to

2
<_xza%‘—N7>r,s<ph’;l—2 ’g>=0’ (5)
corresponding to simple scaling with anomalous
dimension y(g), it is often assumed that in this
special case one recovers asymptotic scale in-
variance, probably with anomalous dimensions
for the fields. It is also known that it is not nec-
essary for g to be such that B(g)=0 identically:
If the effective coupling constant g(In)), to be
defined shortly, goes to a zero of B for large A
[i.e., gnA)~)-.g;], one may also recover as-
ymptotic scale inveriance. But having the phys-
ical coupling constant g to be such that B(g)=0
apparently seems to be a clear -cut situation with
asymptotic power behavior. The purpose of this
note is to emphasize that this is not always true,
and to illustrate this with a simple example. More
generally, the point is that the equation B(g)=0,
when satisfied for a nonvanishing g, relates terms
of different orders in g. As a result Eq. (3), true
graph by graph in the example, is not true for the
sum of graphs. The simple example simultaneous-
ly illustrates the known fact that g(lnA)~ ;.. 0
in the weak coupling region need not imply as-
ymptotic freedom, if the physical coupling con-
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stant is large and outside the range of attraction
to the trivial zero of B at the origin.

II. A SIMPLE EXAMPLE

We will consider scalar fields ¢ and ¢, cor-
responding to particles with physical masses u
and m, respectively, with a g& ¢? interaction.*

A simple illustration of the phenomenon mentioned
in Sec. I is obtained in the so-called chain ap-
proximation. In this approximation the connected
2-point function (&®), and 3 -point function (& ¢¢),
are given by summing chains of ¢.loops in the &
line only, and the infinite series can be trivially
computed. The corresponding I''? for the & field
is

r'?(s,m, u,G)=(s - u? [1 "GdHG’:_:)]

cone[(2)- ()]
(6)

where G =g2/u? so that it is dimensionless, s is
the square of the momentum of the & leg,

(1-4x)72-1

- _ 2y A2 T2X) =2
F(x)=2+(1-4x) ln(1_4x)1/2+1,

)

H(x)= -(—i%F(x), @)

with the logarithm negative and the square root
positive for x<0, and 4 is a positive constant
independent of G and the masses.

The Callan-Symanzik equation reads

2 d_ 20 m\ o m }
[ ot +m Py +B<G,“2 3G -2y( G, 0z
xT?(s,m, u,6)=aT?, (9)
2
AT(? EmzAlr(z) + a<0’%> u? Azl-w(z) .
One finds, in this chain approximation,
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(10)
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(11)

A TP = 1,

We see from Eq. (6) and Eq. (11) that at least
for small G,

r? ~_ constXs,

§—=c0

AT® ~~ const,

§—>=c0

so that Eq. (3) is true.

By neglecting AT jn the asymptotic region
and defining T?=sT"'? one arrives from Eq. (9)
to the asymptotic equation

_a__ 2 (2) _
(sas b +2y)r,s (s,m,1,6)=0.  (12)
The solution is

& (s,m, u,G) =12 (s, m, u,G(t))

S
. —_—
xexp[-2 [ nG(nar],
(o]
(13)

where

t=1n(s/s,)
and the effective coupling constant G(t) is a so-
lution to the equation

2 5(t)-@) (14)

dt ’
with the boundary condition G(0)=G. Equation
(14) yields

Ge~!

[1-GdHm*/u®)+GdHm*/u®)e "] " (19)

G(t)=

So at least for small G, G(¢)~;~~0 and one
may expect asymptotic freedom. Explicitly,

i-‘(af)( So,M, K, E(t))t’::o Const,

while
exp{-z ‘/:y(é(t’))dt’} 7 const. (16)

Thus ' (s,m, 1,G)~,,_.

with asymptotic freedom.
However, suppose that the physical coupling

constant is such that G-'=d Him?/u?), so that it

is at a Callan-Symanzik eigenvalue corresponding

to a less trivial zero of B. Equation (12) reduces

to

const., in agreement

(525 +20)E2(sm, 1, 0=0. (17)

One might think that one then has a less trivial
type of asymptotic scale invariance, with anom-
alous dimension 2y=1, so that I?~____s~!, and

r'? o const. (18)

This answer is not quite correct as one sees
from Eq. (6); the correct behavior for this case
is

r‘® .~ Ins. (19)

—>=c0

The reason for the discrepancy is easy to locate.



9 DEVIATION FROM POWER LAW AT A CALLAN-SYMANZIK... 1127

From Eq. (11) one finds that at the Callan-
Symanzik eigenvalue

RE) VS5 (20)

instead of the ratio given by Eq. (3).. The fact
that AT is no longer so relatively small is re-
sponsible for the logarithmic deviation from a
power behavior even when B is identically zero.
Symanzik already stressed® that the consistency
of neglecting AT' always has to be checked by
examining the anomalous dimensions of the fields.
In this case, apart from logarithms & has ef-
fectively dimension 2 and the normal product
N,(®%) corresponding to one of the mass insertions
has effectively dimension 4 at the eigenvalue

(in the one ¢-loop chain approximation), so AT

is not negligible.

This extremely simple example also serves to
illustrate how the weak coupling result G(¢)—~;..0
for asymptotic freedom can be upset when the
coupling constant becomes big enough to reach
the second zero of B. The interesting results in
non-Abelian gauge theories,® showing asymptotic
freedom for weak coupling, may not be necessar -
ily valid for strong-interaction physics unless
one can establish a large domain of attraction
in the coupling-constant space for the trivial
zero of B at the origin.”

To be sure, the departure from power behavior
in this example is only logarithmic; but the mech-
anisms brought out very simply by this example,
namely, the non-negligible mass-insertion term,
in addition to the escape of the effective coupling
constant from the trivial zero of B, which is
commonly known but also clearly exhibited in
this example, deserve careful study in any con-
sideration of asymptotic scale invariance in the
strong coupling domain.

III. CONNECTION WITH BOUND STATES

A further motivation for looking at this model
with the over-simplified chain approximation is
to compare with the corresponding f¢* theory
with a bound state. It is well known® that in the
Z4=0 limit of the g®¢? theory, where Z; is the
wave-function renormalization constant for the
& field, the 2¢ elastic scattering amplitude in
the one-loop chain approximation coincides with
that of the f¢* theory, also in the chain approxi-
mation, if there is a 2-¢ bound state in the f¢*
theory at the mass u. We do not know to what
extent Z,=0 is a generally meaningful condition
for turning a particle composite.® But for our
purpose, since the equivalence does hold for the
amplitude that we have considered in the chain

approximation, we can ask what happens if one
considers the question of asymptotic scale in-
variance within the framework of the f¢* theory
for the corresponding 2-point function of the com-
posite field.

The connected Green’s function G? for the
normal product N,(¢?) in the f¢* theory, with
the existence of a bound state at mass u explicitly
exhibited, is
1 1
7 T bf?[Fm®/s) - Fm?/u?)]’
where s denotes the square of the momentum
carried by the composite field, b is a positive

constant, and u? is a function of f and m? through
the relation

1+ foFm?/u?)=0. (22)

In the g® ¢ theory, on the other hand, the
connected 2-point Green’s function for & is
G'(s,m, u,g)=-T?), and Z,=1 -GdH(m?/p?).
So in the limit Z,=0, which in this case coincides
with the eigenvalue point studied éarlier,

GP(s,m,f)= (21)

const.
F (m®/s) - Fm®/u®)] "

G(Z)(s,m, I-L;g)=[ (23)
Thus the 2-point functions are not identical

if we use N,(¢?) as the composite particle field.
G(Nz) approaches a constant as s—- —«; therefore

the asymptotic behavior seems compatible with

canonical scaling. The Callan-Symanzik equa-

tion for G(Nz), however, takes the form

011 2 - 2v ()| 6P -a6 48,

(24)

where AG(N” denotes the usual mass-insertion
term, and where B’=bf2%, y'=~bf. The presence
of the additional term on the right-hand side of
Eq. (24) seems to have been first discussed by
Coleman and Jackiw. As s— — the right-hand
side of Eq. (24) approaches the constant b, hence
G(,,f) does not satisfy a homogeneous Callan-
Symanzik equation asymptotically. It is easy

to see that no further modification of the anom-
alous dimension term 2y’ can get rid of the con-
stant b on the right-hand side of Eq. (24), simply
from considerations of the behavior at the sub-
traction point. Although this further anomaly
occurs only for the 2-point function in this case
and in the case analyzed in Ref. 10, there seems
to be no compelling reason why it may not appear
in some higher -point functions for more com-
plicated theories, rendering the deduction of
asymptotic behavior from a homogeneous Callan-
Symanzik equation impossible for such functions.
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We may note that without the term 1/f in Eq.
(21), G(NZ) would have satisfied Eq. (24) without
the constant b on the right-hand side. In other
words, if one can consistently define an alter-
native local product ¢? such that its 2-point func-
tion coincides with Eq. (23) of the original &-field
Green’s function, then from the viewpoint of
deducing asymptotic behavior from the Callan-
Symanzik equations it is advantageous to consider
the problem in the ¢* framework rather than the
®¢? framework. This is intuitively plausible
since the large dimensional mass-insertion term
N,(®?) does not appear in the ¢* framework. This
interesting possibility is under further investi-
gation.

IV. CONCLUDING REMARKS

We learned that in a theory with the physical
coupling constant at a nontrivial zero of 8 the
vertex functions do not necessarily have asymp-
totic power behavior, because the mass-insertion
terms may be non-negligible compared to the
vertex functions. This happens in a finite order
in the example considered; obviously one has to

be more careful if all orders are important in
strong-interaction physics. The same problem
of non-negligible mass insertions may arise in
theories with other constraints, such as Z=0
conditions. The inhomogeneous term in the
Callan-Symanzik equation for Green’s functions
involving two or more normal products also may
not be asymptotically negligible.
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