
MASS OF THE GRAVITON il21

The conclusion that clustexs of galaxies are bound is
reached by observing that clusters are found much
more commonly than could come about by statistical
fluctuations. Further, the observed velocities of the
component galaxies would have greatly dispersed them
over the age of the universe, if there were no binding.
However, a long-standing problem has been that the
virial masses are greater than the observed masses for
many clusters. [One does a virial theorem on the
observed parameters of a particular system and
hopes to find Vtot = -2(total kinetic energy). ] It ls gen-
erally agreed that there are two possible solutions to
this problem: (1) Either at various times in the past,
up to quite recently, the clusters lost some of their
existing masses, for instance, by quasar explosions,
or (2) there are intergalactic "missing masses, "
probably in the form of ionized hydrogen, which
account for the discrepancies. (There is preliminary
evidence for this solution. ) But the important point to
observe is that even under solution (1) we are not
prevented from establishing our conservative mass
limit because the dispersion that may have occurred
in the possibly recently disrupted clusters would
have to be relatively small. Finally, we note that
another solution would be to postulate some unknown
long-distance force other than gravity. If one assumes
this undefined ad Roc hypothesis then, of course,
nothing at all can be said about large-sca1. e dynamics.
We should mention that Y. Yamaguchi (private commun-
ication) has suggested that a magnetically contained
plasma between galaxies might conceivably yield such

a force. Although this in an interesting speculation,
it is doubtful that such a mechanism could mimic accu-
ratelythe effects of gravitation. See H. J. Rood, V. C.
A. Rothman, and B. E. Turnrose, Astrophys. J. 162,
411 (1970); G. B. Field and W. C. Saslaw, ibid. 170,
199 (1971); D. S. De Young, ibid. 173, L7 (1972), and
references therein.

~2E. Holmberg, Ark. Astron. 5, 305 (1969). See p. 309.
~3A. Sandage, Astrophys. J. 178, 1 (1972). See p. 22.
~4G. de Vaucouleurs, Publ. Astron. Soc. Pac. ~83 113

(1971).
~5Somewhat weaker limits on the graviton mass,

using a variety of less sensitive methods, have been
obtained by N. G. Hare, Can. J. Phys. 51, 431 (1973).
It is interesting to note that as long ago as 1957
Zwicky suggested that clustering up to certain sizes
might imply a gravitational cutoff at distances of
around 3 x 10 pc. Since the Hubble scale has changed
by roughly a factor of 10 in the meantime, this
implies that Zwicky was speculating on a cutoff limit
roughly 50 times our own more conservative estimate.
Among the possibilities suggested for the origin of this
speculated cutoff was the existence of a cosmological
term in Einstein's equations. See F. Zwicky, Publ.
Astron. Soc. Pac. 69, 518 (1957).

~TEarlier E. Hiida and Y. Yamaguchi [Prog. Theor. Phys.
Suppl. , extra number, 262 (1965)l suggested that the
analysis of the dynamics of clusters of galaxies could
yield a bmit on the graviton mass as low as 5x 10 + g.
(See p. 264 of the above reference. )
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In a previous work, it was shown how to derive the scaling laws near a critical point using
renormalized perturbation theory. The calculations of the Callan-Symanzik functions p and
y which lead to the critical exponents are extended to next order in &. The existence of a
solution to the eigenvalue conditions P(g) =0 in four dimensions, at fourth order in the
coupling constant, is shown to be renormalization-dependent.

In the framework of Wilson's theory of critical
phenomena, ' we have discussed in a recent article'
how scaling laws for the correlation functions
near the critical point may be derived from the
ballan-Symanzik equations in 4 —~ dimensions
applied to a g(y')' interaction, where rp(x) is an
n-component order parameter. Higher-order cor-
rections in e have now been computed. ' The pur-
pose of this addendum is to give various quantities
which are useful in these calculations, '4 like the
expansions of the renormalization constants, of

(la)

8

P p2- gl
(&h)

the ballan-Symanzik P and y functions, and of the
solution of the eigenvalue condition. The notations
are identical to those of Ref. 2.

For simplicity we have done the calculations in
the massless theory' with the following convenient
renormalization conditions for the vertex fd'nctions:
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FIG. 1. Contributions to Z& and Z4 expanded in powers of E.

r"](p„.. . , p„u)l»=u, (lc)

Z, '=1+A,u+B,u + C,u'+ O(u ),
Z~ = 1+B~u~+ C~u~+ D~u4+ O(us),

Z, '= 1+A,u+B,u'+ C,u'+ O(u'),

(2a)

(2b)

(2c)

where the coefficients A;, E;, and C& are given in

where SP is the symmetry point P, P~ = 4(45&, —1),
u is the dimensionless coupling constant, and l is
an arbitrary dimensionless parameter that we have
introduced in order to exhibit the dependence on
the subtraction scheme.

In this work, we had to compute the values of
the diagrams given in Figs. 1 and 2. A diagram
with L loops is still to be multiplied by S~, where
S= 2m'~'(2w) '/I"(d/2), but we shall absorb this
normalization factor into a redefinition of the
coupling constant u- u/S. Each diagram has been
expanded up to the relevant order in e.

Each graph of Fig. 2 stands for the derivative of
the corresponding Feynman diagram, taken at the
point p'= e'.

Then, the renormalization constants Z„Z„Z4
of the vertex, wave function, and y' insertion,
respectively, are expanded in powers of u:

Fig. 3 as functions of the diagrams.
Consequently, the function

P(u) = e —ln
d 14Z1(u)

du Z, '(u) (3)

may be determined up to order u ~e' with P+ q ~ 4
as

P(u) = -au+ (1+ —,e + —,e')u'n+ 8)
6

—~3, (9n+ 42+ e [&(19n+86) —2(5n+ 22)J

+ (n+ 2}lj}u'

+ +{23n'+414n+ 1264

—(n+8)[2(5n+ 22)J —(n+ 2)lJ

+ 24(5n + 22)g (3))u'

+ O(u
&

u e& u 6
&

u f ) &
(4)

where

1 y j.
J = — dy ln 1 —«+ ——(1 —«+«y) =1.7494. . . .o& o - 4X

The zero u„of order e of this function P(u}is then

3(3n+ 14), ~ 18(3n+ 14)', (5n'+ 322n+ 1104)
n+8 (n+8)' ' (n+8)' ' 4(n+8)'

12(&» ~ &2) [&(5» ~ 2&)& —( ~ 2)1]

)(n+8)~ 2(n+ 8)~ (5)

The critical exponents g and y are given in terms of the functions
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FIG. 2. Contributions to the wave-function renormalization Z3 expanded in powers of e.
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FIG. 3. The coefficients of Eq. (2) as functions of the diagrams.
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( ) (
)dlnZ, (u)

dQ

n=y. (u )

and

( ) ( )
dlnZ4(u)

dQ

2-n== 2-)7+y, (u„).
y

by the relations We first obtained at the needed order

y, (u) = u' 1+(—,' —l)e+ 2(l' —&1+~8)e' — u[1-21 4 (e&l' —51+~~)]

Q
+ [3n'(2l '- 2l+ 1)+ n(96l ' —176l + 33) + 384 l ' —736 l + 162+ 16(5n + 22}J]288 (8)

y (2)= — 2+ 2 2 —n41 22 —22) —[n(l — ll 32 —ll).
(n+ 2) Q

4 6 2 36 (9)

Then ere found

n*(n 2) 3(3n ~ )4),
)2(n+ 8)2 (n+ 8)'

+em ( ~n~ ~n3++n2 + 1120n+ 2884)—,K(3) + O(&'),
1 24(5n+ 22}

(n+8)' (n+8 ' (10)

(n+ 2} 6(n+3), 12(5n+ 22) (n'+ 222n+560) 36(3n+14)(n+3)

(n+ 2) (n+ 2)(n'+ 22n+ 52)
2(n+ 8} 4(n+ 8)'

+(n+2)e', (& ~n+ ~2'n+8 3'n+31 n2+3 88) —, , f(3) +O(e').n+8 ' (n+8 (12)

Notice that in these last results the renormaliza-
tion-dependent terms l and J cancel as expected.

It is instructive to look for the solution of the
equation P(u) =0 in four dimensions. If we choose
for simplicity n= 1, P(u) becomes

p(u) = —,
' u' —pu'+~2, [63+24&(3) + I- 18J]u + O(u') .

We note again that the coefficient of Q4 depends
on the subtraction scheme through J and l.4 The
renormalization condition (1) fixes here J to an
explicit value but l is still an independent parame-
ter. Thus the coefficient of Q' has a totally arbi-
trary sign and magnitude. Therefore the problem
of a perturbative determination of a nontrivial
solution of P(u) =0 is somewhat ambiguous.

~A thorough and extensive review is given in the work of
K. G. Wilson and J. Kogut, Phys. Rep. (to be pub-
lished).
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