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We discuss a finite-$ formalism for the electromagnetic interaction of a massive charged
vector meson with an arbitrary magnetic moment ~. The theory is Lorentz-covariant, re-
normalizable, and gauge-invariant. We consider the case $ = ~ =1 to show that the theory is
unitary after introducing a fictitious particle and two new vertices in the theory.

Lee and Yang have discussed a covariant agd
gauge-invariant $-limiting formalism for the
charged vector meson with a mass nz and an arbi-
trary magnetic moment ~.' For finite $&0, the
theory is renormalizable but the physical S matrix
is not unitary. If the limit $- 0 exists, then the
limiting S matrix is unitary. Yet it is not clear
whether the limit exists, because the Green's
function is not renormalizable in the limit $- 0.

We shall discuss a finite-$ formalism for the
same type of vector meson within the framework
of the indefinite-metric quantum field theory.
Namely, instead of adding a gauge-invariant term
—([(a„+ieA „)p'„][(„—aieA„)p„] to the Lagrangian
and considering the limit $- 0, we add a gauge-
violating term —((a „p„}(a,Q, ) and consider finite
nonzero (. [The symbol* denotes the Hermitian
conjugate in the indefinite-metric space times
(-I)", n =number of "4" subscripts. ] In so doing,
we make the interaction vertices simpler than
those in the $-limiting formalism. ' The theory ap-
pears simple and natural by choosing $ =1. In this
case, the field y =—a „p„/m describes a "ghost sca-
lar boson" (i.e., the negative-metric spin-zero
part of P„) with the same mass m as the positive-
metric spin-one part of P„(x). Furthermore, the
propagator for p„ is greatly simplified.

The present finite-$ formalism for P„ is equiva-
lent to introducing, a Lagrange multiplier into the
usual positive-metric massive-vector-meson the-
ory." The Lagrange multiplier (i.e., the ghost

field} removes the bad divergences in the usual
theory and makes the theory renormalizable and
well defined. According to our previous study of
the massless Yang-Mills field and quantum elec-
trodynamics with nonlinear gauge conditions (e.g. ,
a „A„+pA „A„=0, p c 0), the Lagr ange multiplier
will upset unitarity if it does not obey the free-
field equation. ' Moreover, using the equation for
the Lagrange multiplier, we can isolate the un-
wanted extra absorptive part in the amplitudes of
all orders due to the source term. The theories
are unitary after the fictitious particle is intro-
duced to remove the extra absorptive part in the
amplitudes.

Similarly, in the finite-$ formalism the ghost
field obeys a field equation with some source
terms which give an extra absorptive part to the
amplitudes and upset unitarity. (We note that the
ghost field y does not have a free Lagrangian and
its detailed interactions cannot be seen directly
from the Lagrangian. ) Using the field equation for

X we obtain the effective interaction Lagrangian
Z,ff(y) of the ghost field y. The present theory is
unitary after introducing a fictitious particle which
removes the extra absorptive amplitudes. The ad-
vantage of the present formalism is that the theory
is both unitary and renormalizable for the same
value of $. We may remark that the theory is real-
ly gauge-invariant because the expectation values
of the gauge-violating quantities in the physical
states vanish.
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where we use the notation in Ref. 1 (except the def-
initions of s„and of Hermitian conjugate),

x x (xf x2 x3 x4 3xp) (xp f)

Eyv =~PAv ~vA

Gv
——(8 2

—ieA „}p,—(6, —ieA, )dtd„,

G„'„=(5„+ieA„)(p,—(Sv+ieA„)(p».

(2)

We do not introduce the metric operator g, which
is used in the old literature, because it violates
the elegant and manifestly covariant property of
the indefinite-metric quantum field theory. ' The
field equation for P„ is

(6 v
—ieA „)G„,—m'(p„+ (S„(S„(j)„)+ie«(p„F2„=0.

(3)

The Lagrangian for the vector field P„ interact-
ing with the photon field A ~(x) is

2=2(+Zy,

h( 62 P())( v Pv) 2GpvG))v

—m2pqp~ —zeKF q

(avA„)' 6
~y 4FjfvFjfv 2p s jf g jf

[(p„(x), (II)»(y)] =i(5„,—m 26„6„}S(x—y, m'}

+im-'s„s„a(x-y, [-'m'),
(9)

(e*, ))d-=- (2() 'Jd'p e(p, ) 5( o' ~ e )e'
One can calpulate the (P„propagator from (9):

o'„„(e)= j4'e e ""
(O

l

-O'(4 (e)O „(O)) I
'„O) ((O)

= -i(5„,+ m 'k„k,)(k'+ m'} '

+im k&kv(k + $ 'm ) ',
5.'„„(k)= i5„„-(k +2m )2' (g =1) .

The Feynman rules from the Lagrangian (1}in
momentum space for the 3-vertex V [i.e.,
dt)„(p)dtps(p')A„] and the 4-vertex U (i.e. ,
(j)„(t)()A„A„)are respectively

V=i [e5 8(p+p )(d
—5 „( «p +p+«p)e

—5()2(-«p +p + «p )»] e

(12)

(13)

and

ly contain the terms Q„„n(x—y, p'), where Q„„
=g„„or8„8„and p'=m' or $ 'm'. The coeffi-
cients of these terms are completely fixed by the
equal-time commutators (6) and we have'

For the free field, the canonical conjugates of
P„and P~ are

v„= i(a, (p»-s„(p',)-, , =vi)+s „j'„()(k= 1, 2, 3),

The free Hamiltonian H, for P„ is

HV = v» 3» + ( 'v»v4 + m 2(t) „(td» + (V x T() ) ~ (V x dt)» }
+3("3V» (j)4+ vt) V» (p4 v4V3 (j)» 34 V» (j)» }

(4)

U= ie (25-2v5 ()
—5»„5()v —5 v5()„), (14)

which are the same as those in Ref. 1 with g =0.
The (j)„propagator is given by (12) and the photon
propagator is well known. So the Feynman rules
are covariant and the theory is manifestly renor-
malizable for $&0.

From (7) and (9), we have the following commu-
tation relation for the field:

I X(x} X (y)]=-i& '&(x-y, ( 'm'), (»)
which implies that x(x) is indeed a negative-metric
field for ~& ( ~ 0. The divergence of (3) gives the
equation of motion for the interacting y field:

and the equal-time commutators are
(a+ $ 'm')x =s(x), (16)

[w„(x), (t)„(y)]=- „i„5(x53-y) (x, =y,},
[v„(x), (t), (y)] = i5„„5'(x-—y) (x, =y ), (6}

and all others vanish. The field equation (3) with
e =0 and its divergence lead to

(a+m2)4 „+m(1 —t.)s„x=0

(-a-=s„', x=6„4„/m), (7)

(0+ $ 'm'}(0+m')$„=0 (t'oo 1). (8)

Because of Lorentz covariance, local commutativ-
ity, and (8), the commutator [(j)„(x),(p„(y)] can on-

S(X}-=—
] &,(A, G„.)+ ]s.(A„F„.) (17)

&eK= -1eA „8„X+ie$ 'mA „Q„+ Qq~„F„„
m$

+(« —1) A„dtovF„„
(ie)'
m$

—(« —1) (6 „dt)„)F„„ (18)

where we have used Eq. (3) and the definition of
Fo,„ in (2). The "effective" interaction Lagrangian
Z,s(X) ts



CHARGED VECTOR MESONS AND ( FORMALISM 1115

+ ff(x) = x's(x) . (19)

We note that the source terms in (16) contain a
term with X and some other terms without y. This
differs from that of the massless Yang-Mills field
f )„where the source terms in the equation for the
ghost field y„=b„f„contain only the term with X, .'

[det(5ac ~ labe-fbe )]-Z (21)

to the amplitude (e.g. , the vacuum-to-vacuum am-
plitude expressed in terms of the path integral).
This unwanted extra absorptive part is exactly
canceled to all orders by the unitarization factor
of Faddeev and Popov4

det(5" -g D 'e'"f' s „), (22)

which may be regarded as coming from the Feyn-
man fictitious particle c with an effective interac-
tion gc* ~ (f &&5„c). Similarly, the source term
-beA „s„X in (16) will contribute (see Appendix)

Xc gefc'sc Xy=CI[(5 gO e fl sp)xa]=0

(20)

In this case, the source term gf „xb„y, will con-
tribute an extra absorptive part'

the physical state lphys) must also satisfy

x(K}"
I phys& =x*(K)"

I phys& =o (26)

F*(K)S(F(K)), (27)

where S(F) is given by (18) with x replaced by F.
When )=~=1 we have

for consistency. That is, the ghost particle y can-
not be present in the physical states defined by
(24}.

Because of the interaction of X, the physical $
matrix defined in the subspace (spanned by the
physical states) of the indefinite-metric space, is
not automatically unitary. This is quite different
from that of quantum electrodynamics with linear
gauge condition. However, in the present formal-
ism the problem of unitarity can be "solved" in a
way similar to that in the massless Yang-Mills
field theory and in quantum electrodynamics with

nonlinear gauge conditions. Namely, we can intro--
duce a fictitious particle F with mass m and a fi-
nite number of new vertices' to remove the extra
absorptive amplitude due to the interaction of y.
In this way, the resultant physical S matrix is uni-
tary.

The ghost-eliminating interactions of the ficti-
tious particle F should be

[det(1 +ef(Q +m') 'A„s„)] ' (28)

beF A„S-„F+ —F p„(m'5„„+S„S„—5„„5,')A„.
m

(28)

[a„A„(x}]"lphys& =0, (24)

where (+}denotes the positive-frequency part of
the Heisenberg operator a„A„(x). Because of the
equation of motion'

to the amplitude. Unfortunately, because of the
presence of the source terms without x in (16), the
total extra absorptive amplitude due to y cannot be
expressed in a simple closed form as (23).

From the expressions (16) and (17), one might
think that the theory will be greatly simplified by
taking the limit $- ~. But this is not so because

y is not finite and well defined in the limit. Also,
the theory is not independent of $, as one can see
from (16) and (18). Different choices of $ would,

in general, correspond to different theories. If
K = 1 the source terms S(X) in (18) become simple
because of cancellation. We may remark that even
if K =0 there are still some source terms in (18)
and the theory depends on the parameter $.

As usual, we must define the physical state
lphys) by

The Feynman rules which correspond to these two
new vertices are respectively

and

pep„[for F*A„(q)fp„F(p)] (29)

——(m'5„„—q„q, + q'5„„)

[for F*P&(k)(m 5&„—q„q„+q 5„,)A„(q)]

(20)

and a factor -1 for every closed loop. ' If zc1 we
shall have two more new vertices. The fictitious
particle F cannot, by definition, be present in the
physical states. ' It should be emphasized that
these new vertices are introduced only for adjust-
ing the absorptive part of the amplitude (i.e., for
unitarizing the S matrix).

To demonstrate unitarity of the theory after the
introduction of the fictitious particle, let us con-
sider the absorptive part of the self-energy pro-
cess of the physical vector meson p [with momen-
tum P~ and polarization e„(P)]

Qa, A„(x) =Pm((4 s X
—0 5 X*) (25) e(p) e(p k)~(k) -e(p)—, —
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where y is the photon and the external particles p
are physical, i.e., f d'k &„8

(2 )4(ie}'&~(p)~()(p) .
km

.
[(p kp, )

&„88,

p„~„(p)=o

The absorptive part is obtained from

(32)

wher e

(33)

z" „.8.()=[5 ~ (2p —k)„—5 „(p+k} ~ —5 „(p-2k} )[58.8(2p —k)„-58 „(p—2k)8-5()„(p+k)8 ], (34)

by putting k' of y and (p —k} of Q on their respective mass shells. Since

we see that (33) contains an extra absorptive part

d'k . , 1 (p-k) (p-k)8 d'k (ie)'& (p)~()(p)
(2v)'

' ' " ik' im'[(P -k)'+ m'] "" (2v)' m'k'[(P - k)'+ m']

x[3.,(k'+ ~'}'-k.k, (k'+2~')]
due to the interaction of the ghost X. This will be removed from the theory by the absorptive part due to
the process

e(p)-~(p-k)~(k)- e(p).
According to the Feynman rule (30), the process (37) contributes the following absorptive part':

(-1) 2, , » . , (m'g„„„k„k+-„{)„k)(m',f)(-),k k(+)„38'k}
d'k {-e)'~ (P)e g(P)5)
2~4 m's P-k'+m' ~k'

with A" of y and (p- k)' of I' on their respective
mass shells. The expression (38) exactly cancels
(36), and therefore the result is unitary. '

The expectation value of the gauge-violating
ghost field X in the physical states vanishes, i.e.,
(y) =0. Thus, the field equation (3) reduces to

([(&„—ieA „)G„„-m'(b„+ice(p„F„„])=0, (39)

which is gauge-invariant. We can also verify that
the gauge-noninvariant parts of the dynamical
characteristics of the physical system [e.g. , the
energy-momentum tensor T~ „and the angular mo-
mentum tensor M» derived from the I.agrangian
(1)] are not observable because their expectation
values in the physical states vanish. Thus, the ob-
servable quantities are gauge-invariant.

To conclude, the finite-g formalism for the elec-
tromagnetic interaction of the massive charged
vector meson could be renormalizable and unitary
for the same value of E,. The equation of motion
for the Lagrange multiplier (i.e., the ghost fieM)
and the fictitious particle play an important role
in the formalism. The Lagrange multiplier and
the fictitious particle have been successfully ap-
plied to the Abelian gauge theory with nonlinear
gauge conditions and the non-Abelian gauge theo-
ry. ~ We believe the new vertices (29) and (30) will

lead to unitarity to all orders, although we have
explicitly verified this only in the lowest nontrivial
order One m. ight think that such a formalism is
not so natural as that of the usual quantum electro-
dynamics because the field-theoretical definition
of the physical 8 matrix is not automatically uni-
tary. Also, although the resultant S matrix is uni-
tary, it may not be, in general, analytic. How-
ever, the finite-g formalism is no worse than the
quantum electrodynamics with nonlinear gauge
conditions in the sense that in both cases the ficti-
tious particle is necessary for unitarity. We note
that the physical S-matrix elements in the quantum
electrodynamics with nonlinear gauge conditions
are analytic and unitary in all orders only after the
fictitious particle is introduced.

The author wishes to thank Dr. %. J. Hurley and
Dr. C. C. Chiang for discussions. He is also
grateful to Professor A. M. Gleeson for discus-
sions and comments.

APPENDIX

We shall use the equation of motion for the La-
grange multiplier X and the Feynman path integral
to express the "extra" amplitude (due to the source
terms in the equation for y} to all orders in a sim-
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pie closed form. The method is independent of
gauge invariance. We have also applied it to the
Georgi-Glashow model, the Yang-Mills field, etc.
and obtained the correct results.

In general, one may introduce the Lagrange
multiplier field X in the Lagrangian Z for the vec-
tor-meson field Q„and derive the field equation
for X. Suppose one has an effective Lagrangian
for x (which leads to the equation for the negative-
metric field x):

&(X, X')=a„X'a„X+& ' 'X*X-X*S-XS*. (Al)

We may remark that the cox responding effective
Lagrangian for (1) is not renormalizable by stan-
dard power counting. Yet, the nonrenormalizable
amplitudes due to X and X~ cancel the nonrenormal-
izable amplitude due to the charged vector mesons
(i.e., the physical components of P„and Q„), so
that the theory based on the Lagrangian (1) is re-
normalizable. ' However, the interaction of X and
X* in the intermediate states will contribute extra
absorptive amplitudes and upsets unitarity. Using
the Feynman path integral, the amplitude due to
the interaction of X and X* in the intermediate
states is

exP ~ d&&XX* dXX

=exp -i d xSx +$ 'm' 'S

d[x, x*]=&[x]d[x*] (»)
if 8 does not contain X explicitly. Thus, the unitary
and renormalizable amplitude A is

A. „,= X,b, 'exp i d'xZ+Zs d yp, yu, A. p,

WX X*)=X*++( 'm'+ie&, a, )X —X'S- XS*.

{A4)

It follows that

X= exP i d xgXyX* d X X

=[det(1+( + $ 'm') 'ieA„a„)] '

xexp -i d'xS(x}[(O+t 'm'+ieA a ) 'S*]

(A5)

Therefore, the unitary and renormalizable ampli-
tude is

(A6}

We note that the vertices in X ' are different from
those in X '. Moreover, there are two different
types of the fictitious particle introduced in X '.
The first type, coming from the exponent part of
X ', is the scalar particle I' with a mass m$ "'.
The second type, coming from the determinant
factor in X ', is a "fermion" scalar particle c
with a mass m( "'. The effective coupling of c(x)
is ice*A ~8 &c, and each loop of c carries an addi-
tional factor (-1)because the determinant factor
appears in the numerator of (A6).

To substantiate the above approach, let us con-
sider the Qeorgi-Qlashow model in the absence of
fermions":

g, = --,'B„, 5»'+-,'[(a „+gi„x)y]' —v(y)

(AS)

where go=external source terms. The external
particles are, by definition, physical, and the sub-
scription abs denotes the absorptive part (which is
finite after renormalization). In (AS), the extra
absorptive amplitude due to X in the Lagrangian g
is canceled by the factor X,b, '. The fictitious
particle E introduced in X,b, is a scalar particle
with mass m$ '". In the momentum space, X '

gives

(-1)S(k)[i(P + t-'m')]-'S'(V)

in the lowest order. This shows a minus sign as-
sociated with the I' propagator and agrees with the
expression (88).

We may remove the extra absorptive amplitude
in the Lagrangian {1)by considering (16) with S
given by (18). In this case, the effective Lagran-
gian for X and X~ is (S—= S+ieA„a„X)

B ~
—8 B~ —8 B +gBp XB~,

0 =0 +'n4

(A7)

+3a(xs) +x' (a"8' ——,gvx4')+, (x'),

which leads to the following equations:

where x = (i, x, y, e), g» = -g» = 1 (k = 1, 2, 3), q is
a unit vector, and V(P) is an isospin-invariant
quartic polynomial of P. The addition of fermions
as source only makes additional algebraic compli-
cations, and no new physical problem. Introduc-
ing the Lagrangian multiplier X, we modify (A'I) to
read

g„=——,'8„„+-'[(a„+gB„x)p] —p(p)+X, a "B„
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&-g
(e "B'„——,gv x p') + —,X' = 0,

B,"+nX3 =0,

(A9)

(A10)

which is renormalizable. The amplitude due to the
interaction of g in the intermediate states is

e ' "' d X X*

-e „B"'+e'X+gB&'xB„+(e'p+ gB'xQ}x p =0,

(A11)

eu(e ~+gB xp)+ - +, X~xv
e v(y) g' -,

ay

-g(eqp+ gB„xp)xB"=0. (A12)

2

det 5"-8 ', Q' 5„-g,g,

2

+g gCabcBb ~ p
c a

(A15)

It follows from (A11) and (A12) that

2

e'X ——,(X'xv) xy+gB„xe~X =0, e'=-e„e~

&' = X*' e'5"-, &'(5- - &.n. )

jJ2

(A14)

(A13)

which completely determines the interactions of
the L'agrange multiplier field y. The fact that X

does not obey the free equation implies that the
gauge condition X =0 [cf. Eqs. (A9) and (A10)j does
not persist for all times. Consequently, the
source terms in (A13}will upset gauge invariance
and unitarity of the theory. As usual, one may re-
gard the source term gB„x8"y as coming from an
effective interaction gX' ~ (B xe "X). The two de-
grees of freedom X and X* "correspond" to the two

unphysical components in the 4-vector photon field
A ~ (i.e., the combinations of the longitudinal and
the timelike photons). Equation (A13) could be de-
rived from

which must be removed from the amplitude. The
unitary and gauge-invariant amplitude A„ is

A„, = . Y 'exp i d x Sc+2's d B

(A16)

This result agrees with that obtained from another
approach. " We may remark that if Y ' in (A16) is
replaced by Y,&, ', the theory will not be gauge-
invariant.

If the gauge symmetry is spontaneously broken,
we have"

0 = 4+ n(~+4)

It just gives rise to a mass term -(g'v'/$')X' in
(A13). The amplitude corresponding to (A16) can
easily be obtained. The result is the same as that
in Ref. 10. It is important to note that although

B, and B," become massive there are still two un-
physical components in B~. Thus, there are two
degrees of freedom X and X* in (A14}. The mas-
sive vector particles with three physical compo-
nents are made up of the two transverse compo-
nents associated with B," (a =1, 2) and the would-be
Goldstone bosons as the longitudinal components.
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