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An attempt is made to clarify the relation between current quarks and constituent quarks.
Assuming that the two are related by a unitary transformation, we outline the properties of
this transformation and, in the process, discover a new U(6) x U(6) xO(3) classification
algebra for the hadrons. An example of this transformation is constructed in the lightlike-
plane formulation of the free-quark model, where the transformation is found to be essen-
tially unique and is just the operator solution to the problem of saturating chiral SU(3)"
x8U(3). Using the algebraic structure of the free~quark model phenomenologically, matrix
elements of currents between different hadrons are related. This abstraction of free-quark
algebraic properties works fairly well for the axial-charge and magnetic-moment operators,
although it fails for bilocal operators. Nevertheless, we obtain many successful approxi-
mate relations between matrix elements of currents, not the least of which is the recovery

of the ratio up(proton)/u p(neutron) =— 3.

I. INTRODUCTION

The subject of the relation between current
quarks and constituent quarks has recently come
under a great deal of discussion. It is the purpose
of this paper to briefly summarize the distinction
between the two types of quarks and then to explore
their relationship. In this exploration we shall
take the point of view that they are related by a
unitary transformation, an approach which has
been strongly advocated by Gell-Mann.!'? Further-
more, in view of the many beautiful properties
possessed by lightlike charges® (local operators
integrated over the null plane, x°+x%=0), we shall
work completely within the framework of these
charges, rather than within that of the more usual
charges integrated over a spacelike hypersurface.

We shall find that there are rather strong con-
straints on the properties of the current-constit-

uent transformation, although the transformation
itself cannot yet be defined uniquely. Most impor-
tantly, we shall see that it almost certainly cannot
be the identity. We shall also find that considera-
tion of the properties of this transformation leads
us to a larger algebra of operators than the origi-
nal U(6)—we shall find a U(6) X U(6) x O(3) algebra
of good operators which are invariant under boosts
along z, thus serving to define the complete quark-
model classification of hadron states.

The transformation will be constructed in the
free-quark model, where it is well defined and
has no arbitrary parameters. We shall then spec-
ulate on how it might be constructed in interacting
quark models.

Finally, we proceed to demonstrate how this
transformation may be applied to relating matrix
elements of current operators between different
states in U(6) xO(3) multiplets. In these applica-
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tions we shall adopt the approximate procedure of
abstracting the transformation properties of op-
erators from the free-quark model.

II. CURRENT QUARKS AND LIGHTLIKE CHARGES

Current quarks have been with us since 1964,
when Gell-Mann* noticed that a compact and sug-
gestive form for the generators @; and @} of
chiral SU(3) xSU(3) is obtained by writing them
as bilinear products of local fermion fields g(x),
the “current quark fields’

Q.~ [a*xa" e, (1a)

@i~ [ a*xa g, (1b)

where }; is the usual 3 x3 matrix representation
of SU(3), i=0,...,8. The Q;, Q? in nature are
postulated to have the same algebraic structure
and Lorentz properties as the above expressions.

The form of (1a) and (1b) led Dashen and Gell-
Mann® to consider the algebra of other operators
of the form

fd 3xq ' (x)Tirg(x),

out of which only a subgroup, which we shall here-
after call U(6)y, cirrents, SUrvives in the p®— o limit.
In the language of lightlike charges, only the gen-
erators of this subgroup, the F{, can be meaning-
fully restricted to the x°+x®=0 plane. Only these
“good” F{ can form a closed Lie algebra.

U(6)y, currents CONSists of 18 generators in addition
to those of chiral SU(3)xSU(3). These new gener-
ators transform like antisymmetric tensors in
space, and as 8 +1 in SU(3). Postulating the exis-
tence of tensor currents 4”(x), the generators of
the lightlike U(6)y, currents Can be written

Fy= j d*x 5(x")F} (%), (2a)
Fi=1 f A 6(x") FH(x), (2b)
Fi=-} f d*x 6(x)FH(x), (2¢)
Fi=} [ax ()57, (20)

where x*=(1/V2)(x°+ %), & }(x)=(1/VZ)[Fx) + Fi(x)]

is a component of the vector current F4(x) and
F7*(x) is the corresponding component of the axial-
vector current F3*(x).

Before going on to the algebraic properties of
the F" in (2a)-(2d), we must mention some of the
more striking properties of such lightlike charges.

The most important of these properties is that of
vacuum annihilation, F¥0)=0. It is clear from the
region of integration that the F{ commute with the
transverse-momentum operator P,, and with P*
=(1/vZ)(P°+ P?). The vacuum has eigenvalue p*=0
so that the F{* can only connect it with another p*
=0 state. However, p*>0 for all states with non-
zero mass and finite momentum, so that if the F{
decouple from infinite-momentum states (p*=—x),
they must annihilate the vacuum in the absence of
zero-mass states. The pleasant thing about the

F{ in (2a)-(2d) is that they do seem to decouple®
from infinite-momentum states (disconnected
pairs), and hence correspond to the “good” opera-
tors of Gell-Mann! (i.e., those operators with
vanishing matrix elements between finite-mass

and infinite-mass states in the p*- « frame).

Of course, if the F{ act on a state at rest with
mass m, they can lead to a state of different mass
m*#+m, provided that the final state has momentum
p*=(m?-m*?)/2m. Only if the F are conserved,
[P~, F#]=0, will they not lead to states of differ-
ent mass. What the vacuum annihilation property
does guarantee, however, is that the F{ cannot
produce any disconnected pairs. Thus, application
of various F{"’s to a state an arbitrary number of
times does not lead to an arbitrary number of
pairs: There exists a possibility that we shall re-
turn to the original state after a finite number of
steps, and thus obtain a finite-dimensional repre-
sentation of the group. Such “good” generators are
clearly the only possible candidates for the gener-
ators of a group with finite-dimensional represen-
tations.

The Lorentz properties of the F{* are not simple.
It is clear that they are invariant under finite
boosts along 2, [F*, A,]=0, but they are not invari-
ant under transverse boosts. In particular, a
state with given helicity and transverse momentum
p 1 #0 does not have the same U(6)y, cyrents Classifica-
tion as a state with the same helicity but different
EL. To remedy this defect, we must introduce
special transverse boost operators which leave
the F{ invariant. Thus, defining

1
Ey =530 +dy), (3a)

1
EzzF (Az_Jx); (3b)

we can easily check that E, and E, commute with
all F{. States with transverse momenta p, gen-
erated by means of the E, can thus be classified
in the same U(6)y, currents r€presentation, whatever
p, may be:

I(R, p)cun'ents’ 51_) = e-ipL.E L |(R, p)Cun'ents . 51_ = 0> ’ (4)
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where R signifies the representation, and p the
member of the U(6)y, currents Classification. The
transverse boost-rotation in (4) can be decomposed
into a pure Lorentz boost preceded and followed

by rotations. An E-boosted state like that in (4)
can be related to a certain mixture of helicity
states with the same momenta.

As to other properties of the lightlike charges
(2a)=(2d), we merely note that they have the
same charge conjugation C as their spacelike
counterparts (+ for the uncharged F}‘, — for the un-
charged F}, F3, and F,), but do not have
definite parity ®. Instead of parity, we can define
the operation ® =e~"'2¢ under which the F{ are
eigenvectors. Thus, R™!F;,®R"'=+F;, R™'FIR™
=~F3, etc.

Finally, we come to the algebraic structure of
the F{. Just as we used the “current quark field”
q(x) in (1a) and (1b) as a suggestive shorthand for
the algebraic and Lorentz properties of @; and @ 3,
we can use a similar shorthand for the properties
of the lightlike charges F{. Again we use a local
relativistic quark field, but now quantized on the
x*=0 plane, after the manner of Kogut and Soper.”
In this scheme good operators are constructed
from the independent fields ¢,(x) = 5(1 + o®)q(x),
which have the anticommutation relations

{q-:(x), q+(y)}x+=y*=2].W(l + aa)é(x— —y')

X ﬁz(il - g;) ’ (5)
{2.(x), 4,()}+-,+=0, etc.

In terms of these ¢,(x) fields, we can represent
the proposed U(6)y, curents 2lgebra of the operators
defined in (2a)-(2d) by

Fi~VZ [d*xo(el (g, (6a)
Fi=aA7) [atxeeialmpe g,  (6b)
Fi~(1/V2) J d*x 5(x")q] (x)Bo23nq,(x), (6¢)

Fi~(AT) [d%8)l@oting ),  (6)

where the tilde is taken to mean “has the same
algebra as” —it does nof necessarily mean that
we believe that the F{ in nature are formed out
of simple bilinear combinations of some field.
The utility of the current quark-model expres-
sions (6a)-(6d) lies in their suggestive power.
If we take such suggestions seriously, we are led
to believe that vector, axial, and tensor currents
actually exist in nature and have the appropriate
commutation relations. The existence of vector
and axial currents in nature is well verified, since
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we can measure some of them directly in weak
and electromagnetic interactions. Furthermore,
their charges (6a) and (6d) do seem to generate
the indicated chiral SU(3)xSU(3) algebra, as is
attested by the success of sum rules like the
Adler-Weisberger relation. The tensor currents
are more speculative however. They do not seem
to be coupled directly to other interactions as the
vector and axial currents are. However, they do
appear in more generalized schemes of current
algebra, and may even have measurable matrix
elements in the appropriate Bjorken scaling
limits.? Thus, when we assume the existence of
the U(6)y, currents 2lgebra we are making an agsump-
tion which is in principle testable. Hereafter we
shall assume that a well-defined U(8)y, currents alge-~
bra does exist, and that it is generated by the F{*
defined in (2a)-(2d). The F{ are integrals over
operators, which are in principle measurable.

If the reader wishes, however, he can exclude the
tensor currents Fi and F? and break the group
down to chiral SU(3)xSU(3) without doing violence
to any of the theoretical conclusions that follow,
although a great deal of phenomenological power
is lost thereby.

We may now use the forms (6a)-(6d) of the F{
to suggest even more algebraic properties. For
example, we can make guesses about the
U(6)y, currents Classification of various local operators
like vector and axial-vector current components.
We might even go so far as to classify bad opera-
tors (i.e., operators which do not decouple from
infinite-momentum states, like scalar and pseudo-
scalar densities) with respect to U(6)y, currents-
Fritzsch and Gell-Mann? have outlined how such a
scheme may work, and have established rules for
determining which of the many possible algebraic
relations may be plausibly abstracted from simple
models (free quarks, quarks plus vector gluons).

In summary, the operators F{ may be assumed
to form the group U(6)y,curents, Which can be used
to classify various local currents (as well as
integrated charges) in simple irreducible repre-
sentations of the group. The picturesque term
“current quark (antiquark)” can be used to describe
the 6 (6) representation of U(6)y, currents Out of Which
larger representations can be constructed. For
example, the axial-vector current component
Fi5(x) transforms as a particular member of a 35
of U(6)y, currents, thus appearing to “consist” of one
current quark and one current antiquark (¢q)curents-

There is only one flaw which prevents this
scheme from being immediately useful: We do
not know the U(6)y, currents Classification of hadronic
states.

In order to make the nature of this problem as
clear as possible, we need some notational de-
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vices. Let us label a “physical state” —i.e., a
hadron—by the traditional Poincaré group quantum
numbers: energy-momentum p bt Pp7, spinj,
and helicity 2. Furthermore, we may have to
designate the channel we are interested in by other
quantum numbers such as charge, isotopic spin,
hypercharge, etc. We shall use the symbol @ to
collectively designate these quantum numbers.
Thus, we designate a “physical state” by Iﬁl,p*,
p7;i,h; Q) or, for brevity, simply by |H) when we
do not need to specify the indices in detail.

Now if the matrix elements of the F{ between
all such physical states were known (which is
possible in principle since the F{ are measurable),

each physical state could be decomposed into
J

states transforming irreducibly under U(6)y, currents
(this is always possible among the finite-mass
states, since the F{* cannot lead out of this set).
Any one of this second set of states can be des-
ignated as member p of representation R of
U(6)y, currents- HOWever, such a classification is
not complete, and we shall assume that other
quantum numbers a can be found which do complete
the classification. Thus, we have a complete set
of states IE.L’ p+ (R’ o, a)currents) (OI‘ jUSt |Rcunents> for
short) whose members transform as irreducible
representations of U(6)y curents-

Armed with these notational devices, we can
expand a physical state into a sum of states which
transforms irreducibly under U(6)y, currenis :

|5.L’ p+’ P-;j,h;Q) = Z (SL,P+(R, P, a)cunentslﬁj_, P+, p_;j, h;Q)IEL, P+(R, P, a)cmcnts)

R,p,a
or simply

IH> =Z <Rcunents IH>|Rcurrents> ’ (7)
R

the specific values of the indices being understood.
In operator form this becomes

|H(Rcunents)) = Vchunents> ) (8)
where
|4 =Z!H(Rcunents)><Rcunems I . (9)
R

Although the matrix elements of V are defined by
(7) (where (R yqents |[H) can be computed from the
matrix elements of the F{* between physical states)
the operator V is not defined until we establish a
basis, i.e., an association (R, p, @)curents

<~ (p7;7,h,Q). In principle, we can choose any
basis we wish without changing the physical con-
tent of the transformation, but in practice we
shall find a “natural” one. Note that if the
|Rcurrents ) States from a complete set, then V is
necessarily unitary,

The formalism developed so far is, of course,
just that. It does not help us to find out what the
U(6)y, currents Classification of hadron states actually
is. What we really need to know are the matrix
elements {(Rcurens |[H). To throw some light on this
problem, we must turn to a consideration of the
regularities of the hadron spectrum.

III. CONSTITUENT QUARKS

One of the most striking regularities to emerge
from our growing knowledge of the hadron spec-
trum is the occurrence of “supermultiplets” of
hadrons with different charge and spin. It is a
remarkable fact that groups of roughly degenerate

T

hadrons can be found whose quantum numbers are
predicted by a simple ansatz. Thus, the mesons
can be represented as if they were composed of a
spin-} “constituent quark” and a “constituent anti-
quark,” M ~(qq) onstituens - Mesons of higher mass
can be constructed by adding orbital angular mo-
mentum to the quark-antiquark system. Similarly,
baryons behave as if they were constructed of three
constituent quarks, B ~(¢qq) onsiment- Again, higher
mass baryons are constructed by adding orbital
angular momentum and insisting that the over-all
wave function be completely symmetric in quark
variables.

The multiplets are grouped so that states with
the same orbital angular momentum seem to be
roughly degenerate. The masses of the multiplets
increase as the orbital angular momentum gets
larger.

The most suggestive description of this situation
is that proposed by Lipkin and Meshkov,® who pos-
tulated the existence of a set of 35 +1 operators
W§ (W, Wi, W3, W?) whose algebra closes on a
group which we shall call U(6)y, s0n- The eight
W, (i=1,...,8) generate SU(3), while W, is pro-
portional to the baryon number.

The W are the generators of an approximate
U(6)w, strong Symmetry of Py (the lightlike analog of
the strong-interaction Hamiltonian). Thus, we as-
sume that [W§, P5]=~0, at least on single-hadron
states (idealized resonances). This approximate
conservation of the W explains the rough degen-
eracy of the multiplets, while the group structure
guarantees the observed “constituent quark” struc-
ture. This latter property follows from the identi-
fication of the fundamental representation of the
group, 6, with a constituent quark. Thus, mesons
at rest belong in 6 x§=§£+l representations of the
group (e.g., the pseudoscalar and vector octets
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and singlets fit into a 35 +l), while the baryons at
rest fall into 6xX6x6=20+56+170 (e.g., the lowest-
lying baryons the 3* octet and 3+ decimet fill out a
56. The negative-parity baryons fall into a higher-
lying 70).

The most tantalizing feature of U(6)y o, i that
its generators, the W, have precisely the same
algebra, charge conjugation, and parity as the
generators F{ of U(6)y curents- The only difference
is that the F{ are well-defined operators, whereas
most of the W are not. For some of the W; (in
particular, for =1, 2, 3) the conserved-vector-
current (CVC) hypothesis assures us that W, =F,,
and it would be no great step to generalize CVC to
the entire octet and set W; =F; for all i in the lim-
it that Pg is invariant under SU(3). As for the oth-
er W, we know only the empirical fact that they
generate roughly degenerate multiplets of hadrons.
Otherwise they are ill defined, and in the absence
of recognizable multiplets would not be defined at
all.

The most natural course of action under these
circumstances would be to postulate that the W{"
and the F{ are actually equal. This would imme-
diately tell us the U(6)y curents classifications of
states, and many predictions could be made. The
only real problem with this idea is that it does not
work. Dashen and Gell-Mann® have attempted to
classify the 4+ octet and 3* decimet in a 56 of
U(6)w, currents in the infinite-momentum frame (which
is equivalent to the more modern usage of lightlike
charges acting on states at rest). They have shown
that such a classification would imply that the
anomalous magnetic moments of all +* octet bary-
ons must vanisk, along with the octet-decimet
magnetic transition amplitudes. Furthermore,
they found G,/G, =—%£. Since these results are
far from being true in nature, one arrives at the
necessity of describing the physical baryons as
complex mixtures of many U(6)y curenss irreducible
representations. This impurity of physical states
under the transformations generated by U(6)y currents
[or its subgroup chiral SU(3) xSU(3)curents ] is, in
fact, the raison d’etré of the many mixing schemes
which have been proposed to obtain information
about the matrix elements of currents between
states of infinite momentum.'® While these differ-
ent schemes vary in detail, they all seem to agree
on the need for very appreciable mixing between a
variety of irreducible representations.

We can thus contrast U(6)y, y.ong, Whose empiri-
cal success presents the picture of nearly con-
served charges and hadrons lying in simple irre-
ducible representations, to U(6)y, cymenis» Whose
charges are far from being conserved (the fact
that many higher resonances must be included to
saturate the Adler-Weisberger sum rule attests
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to this), and under which hadrons appear to be
complicated mixtures of irreducible representa-
tions.

There is, moreover, a theoretical reason why
we cannot equate the W{* and the F{. Since the W
are supposed to generate finite-dimensional multi-
plets of physical hadrons, they must have simple
spin properties. Thus, since the smallest
U(6)y, suong multiplets contain hadrons differing by
at most one unit of angular momentum, the gener-
ators W{ must not be able to change spin by larger
amounts—i.e., they must be parts of vectors. As
we shall see in Sec. IV, the F{ cannot be parts of
vectors unless they are all coupled to conserved
currents. In general, the F{ contain unlimited an-
gular momentum, and thus cannot be used to clas-
sify hadrons of definite spin into finite-dimensional
multiplets.

Let us now see how the F{* and W{ might be re-
lated to one another in terms of the notation es-
tablished in Sec. II. We have seen that we can em-
pirically group sets of physical states { |H)} into
U(6)y ,swong multiplets, which we shall denote by
[(R, p, @) yong) (again, we assume the existence of
other quantum numbers o necessary to specify the
state). Establishing the association mentioned in
Sec. II is easy: We set (R, p, @) currents
-~ (R, p, @)swong- The unitary operator V which is
thereby defined tells us exactly what the relation is
between U(6)y, ong and U(6)y, currenss TEPTreEsentations.
If W =F{, then the two representations are the
same, and V=1 in the basis established by our as-
sociation. In general, VF{V~! defines a new U(6),
algebra different from U(6)y cyens- In the above
basis it makes sense to define the otherwise ill-
defined W as™!

We=VFy-1, (10)
that is,

wi= >

R,p, P

I(R, p’: a)strong)(Fg)g’p <(R) P, a)stmng l’

(11)

where (F{ :f:p is the matrix element of F{* between
states p and p’ in the R yens representation. As
such, it is just a Clebsch-Gordan coefficient.
Clearly, if the U(6)y, ;yon, multiplets were exact-
ly degenerate, and since W{ in (10) only takes us
from one state to another in the same representa-
tion, we would have [W§, P;]=0. In fact, the
multiplets are split in mass and we have [ W, P5,]
~ 0, In either case, the W{ can change spin by on-
ly one unit. Thus, this definition of W seems to
fit all our requirements. If Vhas C=+ and ® =+
then the W will have the same C, ®, and algebra
as the F{!. If V+1 the W{ can be both approxi-
mately conserved and components of vectors (at
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least between single-hadron states) without im-
plying similar properties for the F{.'?

The W{ have several properties besides C and ®
in common with the F{’. Since the W{' generate fi-
nite multiplets of hadrons, they must annihilate the
vacuum W{|0)=0. By assumption, they form a
closed Lie algebra [ U(6)] and have meaningful re-
strictions to the x*=0 plane. They must therefore
be good operators. Azimuthal symmetry implies
that the behavior of W{ under rotations about the
Z axis is the same as that of the F{, requiring
that [J,, V]=0. Furthermore, the definition (9) of
V implies that [ A4, V] =0, since the F{ have this
property. Thus, the U(6)y . classification is
independent of the momentum of the state along 2,
[As, Wg]=0. We shall see, however, that the W
are probably not invariant under E boosts, so that
the U(6)y, yong Classification of a state may depend
upon its transverse momentum. The classification
is simple only for states with §, =0.

The transformation V expresses the general idea
of the phenomenological mixing schemes in a com-
pact way. It allows one to describe, say, baryons,
as simple objects, “containing” just three quarks
where classification is concerned, and at the same
time giving them the necessary complicated struc-
ture where current matrix elements are involved.
V must be very far from unity if the results of
these mixing schemes are any guide.

The usefulness and structure of such a transfor-
mation have been demonstrated phenomenologically
by Buccella, Kleinert, Savoy, et al.’ in the infinite-
momentum frame. These authors have succeeded
in fitting many coupling constants by means of this
approach. The present work will be more theoret-
ical in nature, and will concentrate more on show-
ing how such a transformation arises physically.
Our result will be seen to have transformation
properties similar to that of Buccella, Kleinert,
Savoy, et al.

The idea that a unitary transformation V is re-
sponsible for the mixing of U(6)y curens TEPresen-
tations is an old one. It appears in attempts to
find representations of the current algebra at in-
finite momentum (Dashen and Gell-Mann,® Buc-
cella, Kleinert, Savoy, et al.!°) and in many other
research efforts of the last seven years. The ex-
istence of such a transformation is also implicit
in the phenomenological mixing schemes.!®

IV. SPIN AND THE U(6) X U(6) X 0(3)““,,Ig ALGEBRA

Before going on to the properties of the transfor-
mation V, we must digress a bit in order to dis-
cuss the important problem of the spin structure
of the W{*. This investigation will lead us to a new
and larger algebra for classifying hadron states

as well as to some valuable insights into the nature
and necessity of the transformation V.

Spin must be defined carefully for lightlike
charges, for although they preserve p*, lightlike
charges do change p® when they lead to states of
different mass. Since by spin we always mean the
angular momentum of a state in its rest frame,
the appropriate operators (for states with p, =0)
are

81 = J1P0+MA i ) (123.)
9;:=J5. (12c)

These J form an SU(2), commute with boosts along
Z, and ¢, and §, commute with P,. M is the mass
operator M? —2P*P‘ P,-P,. These are the cor-
rect spin operators for states with p, =0, having
matrix elements equal to those of J in the parti-
cle’s rest frame.

The spin structure of the W{* may be derived
simply by noting that in the smallest nontrivial
representations (the 35~ of mesons and the 56" of
baryons) the partlcles differ in spin by, at most
one unit. Thus, the W must have |Ad|<1. This
condition can be maintained only if the W{* are
parts of vectors under commutation with §. In
fact, since not all the W{ have the same charge
conjugation, the W{ must form two vectors which
we shall denote:

{wi,wi,a3tc=-, (13a)
{al, @3, wilc=+, (13b)

and the W; must be scalars. The Q{ operators are
defined by the commutators

Qi=-i[ 9, W3], (14a)
Qi=i[g,w3l, (14b)
Q3=-il8, w3l. (14c)

We assume that none of these commutators vanish.
Given the U(6)y, y:on, algebra of the W and the
commutation relations of W{* with §,,

[95,W3l=0, (15a)
[9, wil=iw?, (15b)
[9,, W3]==iw} (15¢)

(which follow from similar relations for the F; and
and [ v, J,]=0), it is possible to prove that the op-
erator sets (13a) and (13b) form vectors under the
g if and only if

[517 W ] 0 (163,)

(8, [8, w3l =w3. (16b)
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That these relations are not so easily satisfied
may become more evident when we realize that the
F{ almost certainly do not satisfy (16a) and (16b).
Consider the F{ in the rest frame of some parti-
cle. As lightlike charges, the region of integration
of the F{ is not invariant under rotations about the
% and y axes. Thus, although the Lorentz indices
of the vector, axial, and tensor currents out of
which the F{ are constructed transform correctly
under rotations, the change of the region of inte-
gration will alter the value of the charge, unless
the current is conserved. This is actually true for
the vector currents F(x) in the SU(3) symmetric
limit, and so the F, are actually scalars'® (V may
thus commute with the F;).

It is clear, however, that for F"5(x) and F""(x)
exact conservation is unlikely.' In this case, the
F§{ are not components of a vector. We shall see
in Sec. V that even in the free-quark model, the
F{ have unlimited |Ad|, and thus the states in
U(6)w, currents T€PTeEsentations cannot have definite
spin. This is the major defect of the idea of using
the F{ to classify hadron states. This is equally
the reason why V is far from unity—V cannot be
the identity if hadron multiplets are to contain par-
ticles with definite spin.

Conditions (16a) and (16b) thus become powerful
constraints on V. Can they be considered as equa-
tions for V? Unfortunately, the answer is no.
Given any V, such that the W satisfy both Eqgs.
(16), any other UV, (where U is unitary and com-
mutes with all §) will also produce W{ satisfying
(16). Nevertheless, Eqs. (16) will serve as guides
for the construction of V in models.

Equations (16) have some powerful consequences.
It is easy to verify (by repeated use of the Jacobi
identity) that the ], Q%, @3}, and @, (defined by
(W3, Q3] =if ;.9 ) form a 35 of U(6)y song. More-
over, commutation of Q{’s among themselves
yields W{*’s. The entire algebraic system closes
on a U(6) xU(6)swong generated by

Gi: =3(W; £ Q,), (17a)
2 =3(wixQf), a=1,2 (1)
G, =3(Q] xW3). (17c)

When we add the J to the algebraic system, we ob-
tain an algebra U(6) XU(6) XO(3) ong of good opera-
tors, which are all invariant under boosts along Zz.
As such, this should be a useful classification al-
gebra for hadron states. We also note that the al-
gebra contains the correct generalization of the
“quark spin” and “quark angular momentum” op-
erators. Thus, the quark spin vector is defined as

S=(q), Q2 W), (18)

while the quark angular momentum is
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f-3-8, (19)

both § and L obey an SU(2) algebra, and [T, §]=0,
as required for spin and orbital angular momen-
tum.'® This large U(6) X U(6) XO(3),0ne algebra
thus gives meaning to the scheme of classifying
hadron states as if they were composed of spin-3
quarks with various orbital angular momenta. Un-
like other U(6) xU(6) classification schemes, this
one is composed entirely of good operators so that
the classification still has meaning for lightlike
charges (or, equivalently, in the infinite-momen-
tum frame).

The final aspect of U(6) XU(6)song Which we shall
discuss is its relation to a U(6) XU(6) currents. Just
as W =VF{V~!, we should expect that operators
®7 are defined by Q7 = Ve{V"!, and that the F{ and
& form a U(6)XU(6) currenss algebra. These & are
explicitly worked out for the free-quark model in
Appendix A. It is easily seen from the form of the
free-quark model results that the #§ have a mod-
el-independent form, given the lightlike plane
commutation relations of Gell-Mann and Fritzsch.!
Thus,

o, = J'd‘xé(x*) %Re( 37__;-“;)

XFIE,x5%,97), (20a)
1 1
1_1 4 +y
a}=4 [dteolx )ﬂRe(y————__x__'_ie)
XF &, 25X 0L97), (20b)
1 1
2__1 4 +y 2 R S—
#? zjd x6(x )nRe(y__x_H.E)
XFIrER,x5X,97), (20c)
1. 1
3_1 4 +\ = ——
@,—zfd x 6(x )wRe<y‘-x"+ie)
X|€F§+(i.u x-; iu y-) ’ (ZOd)

where the F{¥(x, y) are the usual bilocal currents.!®
Note that we have implicitly assumed factors which
damp the 1/(x~ —=y~) at very large values of
(x==y7).

It can be explicitly verified that these &' and the
F§{ form a U(6) XU(6) currents algebra. It should also
be clear that the ®{* are invariant under finite
boosts along Z, and that they are almost certainly’
good operators just as the F{* are. At the present
time, however, these & do not seem to be partic-
ularly useful, so we shall not consider them fur-
ther.
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V. PROPERTIES OF THE TRANSFORMATION

We have now amassed a great deal of informa-
tion about the properties of V from the study and
comparison of the properties of the W§' and the
F{. We do not, unfortunately, have a definition of
V which will allow it to be unambiguously computed
at the present time. What we have discovered will,
however, be found to be very helpful in construct-
ing such a transformation in models.

In order to summarize our deductions about the
structure of V, we present here a list of the prop-
erties V can be expected to possess:

(a) V transforms states lying in irreducible rep-
resentations of U(6)y, curents into states with definite
energy and spin:

IH(R cum-.nu)) = VIchnenu> .

(b) V is unitary.

(c) V transforms the F{ in such a way that when
acting on single-hadron states the VF{V ™! are con-
served in some sensible limit not “too” far re-
moved from reality. In other words, hadrons fall
into roughly degenerate U(6)y o, multiplets.

(d) v transforms the F{ in such a way that the
VF{V~! are parts of vectors with respect to the
particle spin operators J. Thisis guaranteed if
and only if

[g,, vFiv-]=0,
(8,[8, vF3v1]]=VFiv-t.

[This ensures that U(6)y, suon multiplets can con-
tain particles with definite spin.]

(e) V contains only good operators or, at least,
takes good operators only into good operators.
This ensures that finite-mass states decouple from
infinite-mass states.

(f) v is an SU(3) singlet, [ F;, V] =0, in the limit
where all physical processes are SU(3)-invariant.

(g) Vhas C =+, ®=+ and is invariant under O(2),
[J4 V]=0, and boosts along 2z, [ A4, V]=0.

In order to get further insight into the structure
of V, it seems necessary to resort to explicitly
constructing it in a simple model.

VI. EXPLICIT CONSTRUCTION OF V
IN THE FREE - QUARK MODEL

In the lightlike version of the free-quark model,”
the fundamental operator of the theory is ¢,(x), a
local relativistic field obeying equal-x* commuta-
tion relations given by (5). Good local current
densities can be constructed from bilinear products
of these fields, being of the form q!(x)T'i);q, (x),
where T is any 4 X4 Dirac matrix which commutes
with a®. The generators F{ of U(6)y, cuenis C2N be
defined in this model by means of such bilinear
products. Thus, for the free-quark model we

|©

write
F:*=(1/mj d*6(x)g (T Ng,(x),  (21)

where the I'*=(2, o, Bo?, 0%) sequentially. The
U(6)y, swong generators are defined as

Wiitree = Viree Fi'Viree ™« (22)

Finally, the analog of the Hamiltonian in this theo-
ry is

Pr. - ﬁ [atestatwis_q()

i, ﬁ J' dxded(x)e(x - £)gl(x)

x(@.2-m?q, (&, £). (23)

From (23) we easily see that [ F¢, P}, ]=0, so that
the motivation for condition (c) on V vanishes. Al-
though several authors'® have taken this to mean
that there is no way to determine V in the free-
quark model, we shall see that condition (d) now
comes into full play, and actually determines Vi,
uniquely. .

Since we are going to discuss spin, it will be ad-
vantageous to work in the rest frame of the parti-
cle states, where spin becomes simple. Only—
what do we mean by “particle states” in the free-
quark model? Certainly the “rest frame” is not
the rest frame of an individual quark.

What we mean by a “particle” in this model is a
wave packet, one containing either a quark and
antiquark (to represent mesons) or three quarks
(to represent baryons). The quantum numbers
(charge, parity, spin, momentum) of the wave
packet are arranged to match those of some physi-
cal hadron. Thus, the state has the same U(6)
XU(6) X O(3) strong, ree Classification as does the cor-
responding hadron under U(6)XU(6)XO(3) yone- In
this way we make the algebraic aspects of the
free-quark model as similar to those of the real
world as possible. Hence, when we talk of the
rest frame of a particle, we mean that frame in
which the sum of the individual quark momenta is
zero. This frame does not coincide with the rest
frame of individual quarks except for states with
only one quark—which are of no phenomenological
interest.

For the time being, let us assume that we are in
such a rest system. Then §=J and we must im-
pose the requirement that the W¢ ;.. have |AJ|<1.
It is easily checked that the F§' do not have this
property. Thus,

[J,, F1] =—%fd‘xd£6(x*)€(x' -y7)

qu(x)'ylal(h(iu y7), (24)
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which is certainly not zero. The structure of the
F{ is even more clearly revealed in Fock space:

——Z fE/m

T(r) (s)XT( r)s-lraSX(s)

- b;’(s)b(,r)XT(r) S-lr:aSX(s)] ,

(25)
where we have used the usual spin basis for the
a and b’s, the X”’s are 2-component Pauli
spmors, and the notation is otherwise standard:

Y =(A,0'8%,0%3%,0%),) and T{%=(7;, —0'3),,
—0%3X;,0%5);). The unitary matrix S is the impor-
tant part:
S=(ﬁp++m)+i(ﬁ><6)3 (26)
[2V2 p*(E+m)]V2 ~

As a result of S, the F{* are clearly not simple un-

der rotations. For example,
3 -
~1p3go P \9:P i,
N o) I:E p30’ +<1 E+m>E+P3}2A“
(27

Terms like 1/(E +p%)=(1/E) 7 -o(=p°/E)" carry
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unlimited orbital angular momentum. It is worth
noting that, e.g., (27) has appeared before in phys-
ics—it is nothing less than the solution of the an-
gular condition which Dashen and Gell -Mann!®-2°
obtained for the free-quark model. It would seem
that we are on the right track with these lightlike
charges. The Vg which we shall obtain will thus
turn out to be the free-quark solution to the angu-
lar condition, but in operator form.

It is clear that the Fock space form we require
for the W . is simply

@ = Z f a L[] 10 pex®

— b;’(s)b(pr)XT(r) I",'aX(S)] .
(28)

These expressions clearly have |AJ|<1 and, in
fact, are exactly what one expects the U(6)y, yon,
generators to be like in naive quark models. It is
now simple to construct the transformation V..
which takes us from (25) to (28). Writing

V tree = e free (29)

then in Fock space

s - .
Yiw= Y fg/rﬁ [a;rma(:mxr(r) tan“(—%%)ﬂ” — b0 Xt tan"<‘/%pp ozam )X(s)] , (30)
r,s

which becomes

- e

=v2 Jd"xé(x (x)tan"<y*’:al

) q,(x)

free

(31)

in configuration space. In this expression
k=V2 |o_|+m, where |o_| stands for

m[l (1+ fn—:ﬂ v

whose power-series expansion in (1+8_%/m?2) con-
verges rapidly when the quark’s momentum is
much smaller than its mass. All functions of der-
ivatives are to be understood in terms of power-
series expansions. The configuration space forms
of the W{ ;.. and Qf .. may be found in Appendix
A.

We see that Y, hence Ve, is a complicated
nonlocal operator. It is, however, good. Further-
more, [ Y free P'f}ee] =0, hence Y free '0> =0. Y is
simple algebraically: It belongs to a 35 of
U(S)W,cuuents,free: or to a (3, 3)®(3;3), Lz(F)=i 1 of
the subgroup U(3) XU(3) currents, ree [we here use
Ly(F)=dJ;~F3} to define current quark orbital an-
gular momentum]. Yy, cancels the |AJ|>1 terms

i, free

in F{ only at the expense of itself containing all an-
gular momenta. Note that Yge (thus the W) does
not commute with transverse boost-rotations E 1
The U(6)y, suong, ree Classification of states will thus
depend upon their transverse momenta, being sim-
ple only for §, =0.

In one respect, however, Vg, is not a good mod-
el of the transformation V used in nature. Young?
has demonstrated that exotic representations of
U(6)y, currents (€.8., representations which cannot be
written as ¢g for mesons) must be present in the
solution of the angular condition when a potential
is acting between the quarks. Ve does not gener-
ate any such representations—it makes no pairs.
As has been clearly pointed out by Eichten et al.,'®
V tree 1S nothing more than a change of spin basis in
the free-quark model. The reason for this defect
is clearly that the quarks, being free, cannot ex-
change momentum and create pairs. We thus ex-
pect that V will produce exotic representations as
soon as some sort of interaction is turned on. For
this reason, one must be somewhat skeptical of
abstracting properties from V. and applying them
to V. Although this procedure does seem to work
in some cases, it also fails badly in relating the
deep-inelastic structure function of the proton to
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that of the neutron. It is in precisely such circum-
stances that pairs would be expected to play an
important role.

The final property of Y4, we must note is that it
is not invariant under boosts along 2, contrary to
our condition (g). This fact should come as no
surprise—after all, Y. was constructed in the
rest frame. Furthermore, since Y, was con-
structed to satisfy a spin requirement, and since
the J are not invariant under boosts unless spe-
cially supplemented to form B’s, it is practically
certain that the Yge Will have to be similarly sup-
plemented. This is easy to do. We can simply de-
fine the value of a matrix element of W{* between
states with p®+0 to be precisely the same as the
value of the matrix element between p®=0 states.
This, of course, automatically ensures invariance
under boosts along Z. This condition may also be
put into operator language exactly as was done for
the boost-invariant §’s. Thus we expand (31) as a
power series in [8_|. Each term with a given
power of |d_| is multiplied by a similar power of
Mg /P, Where M2, =2P*Pf,—P,-P,. Inthe
rest frame M, /Pt =1, whereas the ratio [8_|/
P}, is invariant under boosts along z. Since
M. /Pt commutes with Y., there is no ambigu-
ity in the order of factors.

In order to avoid long, ugly expressions, we
write the invariant Y. formally as

Yie=VZ [d% a(x+)q1‘(x)tan-1(7; ‘5, >q+ ),

(32)

where
Kiny =(ﬁMfree|a-l/P;rec)+m’

and we always mean that the M, /P%. Will appear
outside the integral when the power-series expan-
sion is performed. Thus, we see that Y. (hence
the W{') can be made explicitly invariant under
boosts along 2z, although the result is somewhat
cumbersome. Fortunately, we can always elimi-
nate the M g, /P}.. factors by going to the rest
frame when we take matrix elements.

In summary, we have seen that a transformation
Viee may be defined in the free-quark model. Vg,
explicitly satisfies all constraints (a)-(g) of Sec.
V. The operators W{ . form a group U(6)y song, free
which classifies particles having definite spin and
P, =0 into small irreducible representations,
whereas the irreducible representations of the F{
contain large spin mixtures. Ve is a nonlocal op-
erator, as are the W ¢ and Q§ .. In spite of the
defect of not producing exotic states, Vg, may
thus serve as a useful model for the transformation
V used by nature.

Note that this is not the first time that a nonlocal
operator has been proposed as the generator of a
U(6) hadron classification group. Several authors?®
have suggested that the Foldy-Wouthuysen trans-
formation might be useful for creating conserved
charges. The trouble with the Foldy-Wouthuysen
transformation is that it is not a good operator,
and cannot be meaningfully restricted to the x*=0
plane. It also leads to infinite-mass states. This
undesirable property has caused us to reject it as
a candidate for V [furthermore, Vgy does not sat-
isfy condition (d) for lightlike charges F{].

VII. CONSTRUCTION OF V IN INTERACTING
QUARK MODELS

Having constructed V in the free-quark model,
the next logical step would be to construct it in in-
teracting models. This step, however, proves to
be a formidable one. The main difficulty seems to
be our complete ignorance of any interacting field
theoretical model which exhibits degenerate (or
nearly degenerate) multiplets of particles of differ-
ent spin. The models thus lack the very feature
which motivated us to study U(6)y, son; in nature.

In the absence of such models, the only approach
left open to us is a perturbative one. We start with
the free-quark model, where Vg is known, and
then turn on some sort of interaction. The effect
of the interaction on the U(6)y curents Classification
of states can be examined in various orders of the
coupling constant for individual matrix elements,
and we may hope to draw some conclusions about
the way the classifications change and thus learn
something about the structure of V. As was spec-
ulated upon in the author’s dissertation,?® vV may
take the form

V=UVtee , (33)

where V. Solves the spin criterion (d), serving
only to rotate the spin basis of the quarks in an
underlying Fock space, while U is a scalar which
commutes with 5, and which contains all the pair
states and exotic representations resulting from
interactions.

Unfortunately, this very form allows U to escape
our most powerful constraints on V, with the re-
sult that we can say very little about 4. Can one
find additional constraints, constraints powerful
enough to determine U as well? We do not know
at present.

The effects of interactions have been very little
explored at the present time, although the apparent
(and unexplained) phenomenological success of
Viee in roughly predicting the U(6)y, cyrens Classifi-
cation of states would make such a study very in-
teresting. It seems unlikely that simple theories
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like the vector-gluon model can account for the
preservation of the free-quark U(6)y cypens Struc-
ture when interactions become strong. Is there
any theory which can? This question remains to
be answered.

VIII. APPLICATION TO CURRENT MATRIX ELEMENTS

We have now come to the end of our theoretical
discussion of the transformation V. As we have
seen, we can deduce very little about the structure
of V in nature. We do, however, have an example
of V in the free-quark model, and we have seen
that Ve satisfies many of the requirements which
the V used in nature must satisfy. For phenome-
nological purposes, then, it may make sense to
abstract the algebraic properties of V. from the
free-quark model, and apply them to the algebraic
structure of matrix elements in nature. The only
justification for such a procedure can be in the
success of its predictions.

The type of matrix element we shall attempt to

J

<A= =0 I f dx 6(x" )F(x)eH PL -0 "(Fu+ED

where we have defined

PR [t stmet Rt (ae)
The matrix element (35) obviously depends only
upon p; -P,, as required. The operators F(H,)
have many nice properties—for example, they
commute with the transverse momentum operator
i, so that moments of F{(x) can be expressed in
terms of forward matrix elements. This is a use-
ful property for U(6)y, on; Calculations, since we
only know how to classify states with p, =0.

We can now use V to make the algebraic struc-
ture of these matrix elements evident. We remem-
ber that V is defined so that [A,D, =0)
=V|R cunents (A)), Where R quents(A) is defined by the
association (R, p, @ ) currents ~—= (R, p, @ ) swong. Thus,
the U(6)y, currents Classification of the state
| R currents (A ) ) Will be precisely the same as the
U(B)y, swong Classification of |A, D, =0).

Using this trick, we can throw all of the com-
plexity of mixing onto the operators. Thus, the
matrix element

(A, B.=0[F(®.)|B,b.=0)

=<Rcurrents(A)' V-lFia(ﬁJ.)Vchunems(B)) . (37)

The problem now reduces to the U{6)y cyrenss Clas-
sification of V-'F{(p,)V. We shall abstract this

structure (but not the numerical values of matrix
elements, of course) from the free-quark model.
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evaluate is that of a current and its various mo-
ments [classified by U(6)y . curents] Sandwiched be-
tween two hadron states [classified by

U(6)y . suong |- Allowing the hadrons to have arbi-
trary transverse momenta, the matrix element
will be of the form

<A, bl ! f d*x6(x* )fFf‘(x)e‘( PL-PO %L

B,5.),
(34)

where the states are normalized as (A, D’|B,D)
=6,50°p'D. If the transverse momenta of [A, D))
and |B,D,) are generated by E boosts, then the
matrix element (34) will depend only upon the dif-
ference (B, —p.) of the transverse momenta (there
is no dependence, of course, upon the longitudinal
momentum—the difference p’3 - p® is fixed by the
requirement that p* is the same for both states).
This property is easily demonstrated: If the
transverse momenta are generated by E boosts,
we can write (34) as

(35)

Before going on to the matrix elements of the
electromagnetic and axial currents, we must add
an element to our classification of states. Since
J, commutes with both the W{* and Fy, the helicity
of a P, =0 state is compatible with both classifica-
tions. We shall, however, define a quark ‘“orbital
angular momentum” component, L,(W)=J, - W}
for a U(6), XO(2)one classification, and L,(F)=J,
—F}3 for a U(6)y XO(2) currents classification. Thus,
for example, a proton would be classified as a
member of a 56, Ly(W)=0, while the low-lying
negative-parity baryons would be in a 70, L,(W)
=-1,0, 1 under U(6)y XO(2) syong. In the corre-
sponding U(6), XO(2) currents Classification, the axial
charge would belong to a 35, L,(F)=0, while Y.
(say) would be in a 35, Ly(F)=x1. This classifica-
tion will make it easy to see at « glance which ma-
trix elements vanish and which do not. Further-
more, since the U(6)y, curents Classification 35 is
not particularly enlightening (a/! our transformed
currents will be members of 35’s), we shall in-
stead use the subgroup U(3) X U(3)XO(2) ,yrents Clas-
sification to note the structure of the operator in
more detail. Thus, a (3, 3)®(3, 3) curents Operator
can flip “current quark spin” F 3, while (1, 8)

@(8, 1) currents cannot. Nevertheless, we shall use
the full U(6)y XO(2) currents group to evaluate
Clebsch-Gordan coefficients. The subgroup nota-
tion is only employed to make the character of the
operators involved more explicit.

The truly remarkable thing about the transforma-
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tion properties derived from the free quark is their
simplicity: Since Y. is bilinear in quark fields
(in the rest frame), bilinear operators are trans-
formed only into bilinear operators. Thus, the
resulting transformed current can contain the ir-
reducible representations (1, 8)®(8, 1) and (3, 3)
@®(3, 3) and nothing else. This property of rapid
termination is unique to the free-quark model, and
unless we have some special reason to think that
the free-quark algebra should be preserved, we
would not expect it to show up in an interacting
model. In general, interactions should introduce
products of these simple irreducible representa-
tions, invalidating the free-quark results. We
must thus expect some deviations of the following
predictions from the experimental values, since
the validity of the V. structure can only be ap-
proximate.

A. The axial -vector current

The axial-vector charge F3 =F} (p, =0) yields
the first interesting results. Referring to Appen-
dix B, where the form of V™'F3V is explicitly
written out for the free-quark model, we see that
the structure of the transformed operator is

VIRV ~(1,8)®(8,1), Ly(F)=0
+(3,3)0(3, 3), Ly(F)=+1. (38)

The first term transforms like (0°;);), and the
second term like [($x3),5);]. The first term
transforms like the original charge F$ (although
there is no reason whatsoever to think that it is
F?; it is not equal to F? even in the free-quark
model). The second term is new and can lead from
L4(W)=0 representations [like the baryon 56,
Ly(W) =0] to higher ones [like 70, Ly(W)=%1, or
56, Ly(W)=21]. This is the kind of behavior we ex-
pect of the physical F? —such behavior is actually
seen in, for example, the Adler-Weisberger sum
rule, where we find many resonances contributing
to the empirical sum over states.

More detailed results are obtained by sandwich-
ing the transformed charge (38) between well-
known states, like the baryons, classified as 56,
Ly(W)=0 under U(6),, XO(2)suong. We see that only
the first Ly(F)=0 term can contribute to the ma-
trix element. [Remember that V"'F?V is taken
between L4(F)=0 states, which correspond to the
L,(W)=0 classification of the physical states.
This jumping back and forth between L,(F) and
L,(W) may seem confusing at first, but, by en-
abling us to put V on the operator, it actually re-
sults in a great simplification.] Since the first
term of (38) has precisely the same U(6),

X O(2) currents Structure as F? itself, we see that we
simply get back all the old U(6), results for these
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matrix elements—with one important proviso. The
difference is that the first term of (38) is not a
generator of U(6), XO(2)curents. The values of its
matrix elements are not determined by the algebra;
there is always some reduced matrix element 7,
which is in general different from 1 (we have de-
fined 7 so that =1 if there is no transformation).
Thus, we find the traditional U(6), results modi-
fied by factors

G
Gy

The D/F ratio is the same as before, since 7 can-
cels out. Whether or not n=1/¥2 is a question of
dynamics, which the present work cannot decide.

The structure (38) which we have proposed for
the transformed axial-vector charge has been ap-
plied to the decays of meson and baryon reso-
nances by several groups,?* who use partial con-
servation of axial-vector current (PCAC) to relate
matrix elements of the axial-vector current F} to
pion emission amplitudes. The predictions seem
generally satisfactory (although there are some
unresolved difficulties with the signs of the ampli-
tudes) and tend to indicate the dominance of the
(3,3)®(3, 3), Ly(F)=%1 term for the baryonic de-
cays of 70, L=1 to the 56, L =0 and for the me-
sonic decays 35, L=1to 35, L=0.

The dominance of this term raises some inter-
esting problems for the original suggestion that
U(6)y, swong might be an approximate vertex symme-
try. Such a symmetry would require the (1, 8)
®(8,1), L,(F)=0 term to dominate the pion decay
amplitudes, so that the apparent dominance of
(3,3)®(3, 3), Ly(F)=%1 in the decay amplitudes
mentioned above would seem to rule out any ves-
tige of U(6)y, swong SYmmetry even for vertices.
U(6)y, swong Can thus probably be looked upon as a
classification group for single particles and reso-
nances only, and some new prescription must be
adopted for the discussion of strong-interaction
vertices.?®

There are also some deep (and unresolved) theo-
retical questions about the consistency of using
PCAC and the U(6)y, cyrrents algebra of lightlike
charges. As it is normally understood, PCAC in-
volves the idea that matrix elements behave
smoothly as the pion mass is taken to zero. How-
ever, if there is a massless pion, then we have no
guarantee that W$|0) =0, so that the utility of the
W for classifying states becomes questionable.
Moreover, the limit in which [ P&, W] =0 should
be very singular (since it would involve the degen-
eracy of the vector mesons with the pseudoscalar
mesons). The problem of discovering how PCAC
and U(6)y, swong mesh together is thus a very impor-
tant one.?®

=—TI§, G*=-'ﬂ%, (D/F)axinl=%' (39)



9 QUARKS:

Theoretical difficulties aside, however, the al-
gebraic structure of the transformed F} seems to
give adequate results for forward matrix elements.
The area where the old U(6), schemes first broke
down, however, was in the first moments of the
electromagnetic current. We must therefore turn
to these to see that the proposed algebraic struc-
ture really does make the corrections we intended
it to make.

B. Moments of the electric current

The matrix elements of the electromagnetic
charge F.,=@Q are, of course, trivial since [V, Fey]
=0. The moments are more interesting, however.
In particular, the first moment, (5/9%,)

X Fem (By) l"x -0 1s nothing less than the anomalous-
magnetic-moment operator. T .r spin-} particles,
the anomalous magnetic moment p , is given by
Ba 9

30 " ok, (Ajrest; =z |Fen(ky)| Ajrest; +3) |

(40)

This identification can be readily checked by ex-
panding out the matrix element in terms of the
traditional invariants, being careful to remember
the spin rotations induced by the E boosts. One
then sees that only the Pauli form factor F,(0) is
projected out.

We can also differentiate F., (k,) directly, finding

é“TT/I=i<A;rest;—§

[ atoex 5200

=i < Rcurrents(A ); rest; - %
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Zﬁl“‘?=i<A;rest;—% [fd“xé(x*)x Fem(x)

+QE1:| ‘A;rest+§>

(41)

The second term is just kinematic: @ is the net
charge of the state | A), while E,=(J,+A,)/P*. But
(rest |E,| rest) =(1/MX rest|J,|rest). A, has nega-
tive parity, and therefore has no diagonal matrix
elements between states at rest. Since

(rest, —3|J, |rest, +3) =3¢, we find

23;—4=i <A;rest; -3 fd“xb(x*)x Fin(x)
x| A;rest; +§> - E%
(42)

The second term is just the Dirac moment. Note
that this identification is a bit more subtle than it
seems, since E, and fd“x 5(x%) x Fim(x) individual-
ly can change p,, and their forward matrix ele-
ments may not be well defined. However, if the
evaluations are done in terms of symmetric wave
packets, rather than plane-wave states, no ambi-
guities arise and the matrix elements are perfectly
well defined. The upshot of this argument is that
we can write

A;rest; +§>

V"fd4x6(x*)x Szm(x)Vi R currents (A ); Test; +%>, (43)

where p , is the total magnetic moment of the particle. The algebraic structure of this operator is

readily determined (see Appendix B):

v [ dtxo(x) x Fin(V ~ (L, B)@(8, 1), Ly(F) = £1
+(3,3)8(3, 3), Ly(F) =0, 22,

where the (3,3)®(3, 3), L,(F)=0 term transforms
like (y'i);). With the assignment of the nucleon,
spin-up to (6, 3)L,(W)=0 and the nucleon, spin-
down to (3, 6)L,(W)=0, we find that the (1, 8)&(8, 1)
parts give no contribution, the (3, 3)®(3, 3), L,(F)
=0 term alone connecting the two states. It is easy
to verify that this yields

prlproton) 5
up(neutron) 2 ° (45)

(44)

We have thus recovered this famous ratio. The
fact that one obtains the result ., =0 when the
transformation V-1 is, alone, a striking proof of
how badly such a transformation is needed, since
2 U(6)y, currents hadron classification would predict
that (rest; — 3 |E,|rest; +3) =0—in clear contradic-
tion to the Lorentz algebra. It is again clear that
states belonging to irreducible representations of
U(6)y, cuments Cannot have definite spin.

We can also compute p*, the M1 transition mo-
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ment for p—~ A*, assigning the A*, spin +3 to Again, only the (3,3)®(3, 3), Ly(F)=0 term con-
(6,3), Ly(W)=0. As before, we can verify that tributes, yielding the traditional
298 [a+ 1
“'*'zak,, <A , 5, rest| Fo.(k,) u*= S5= us(proton), (47)
N m Az -m 2
X|p,=3,p°= _Zm_p> . which is within about 30% of the measured value.
4 ky=or Finally, we can work out the E2 transition moment
(46) for p—-A*:
1 -1 + 1 1 a_mAz'mg2>
Ez_zak,[ﬂ<A 72,rest Fem(kx) P,Z,P - 2mA
1(2\1/2 + 3 1 ,3_ M 2. m,?
+§(§) ! <A 32 rest Fem(kx) b, E:p = _AE__L_>] (48)
ma B, =0

With the assignment of A*, spin+3, to (10,1), Ly(W)

=0, this yields £E2=0 in good agreement with ex-
periment. This moment has a very special impor-
tance for our work, since neither (1, 8)®(8, 1)
terms nor (3, 3)®(3, 3) can give any contributions
to E2. Products of these representations, how-
ever, can contribute, so that the vanishing of E2
provides a test for the absence of such terms. Ex-
perimentally,?” E2/M1=0.02 +0.02, which seems
to indicate that any terms transforming like prod-
ucts of currents (i.e., terms not bilinear in quark
fields) are absent, or at least contribute very little
to AL,(F)=0 transitions.

The free-quark structure (44) of the first mo-
ment of the electromagnetic current has been ap-
plied?® to electromagnetic decays of higher reso-
nances and to photoproduction, with generally sat-
isfactory results. There thus seems to be a fair
amount of evidence that the free-quark algebraic
structure (44) is roughly like that of the current in
nature.

This is actually something of a surprise, even in
the free-quark model, for since [P}, Fon (k)] #0,
we would expect the M, /Pt factors in Vg, to
produce terms in (44) transforming like products
of the simple (3, 3)®(3, 3) and (1, 8)$(8, 1) repre-
sentations. As long as matrix elements of F.n(%,)
are taken between states that would be degenerate
in the free-quark model (like the baryon 56), the
M g /Pt can consistently be set equal to one.
However, when we consider matrix elements like

<R currents (A ) I Vl‘ree -t Fem (kx)Vfree 'R cunents(B )> ’

where A and B have different values of M,../P}.. ,
we find the presence of multilinear products of
quark fields with coefficients proportional to
Mtee(A)/Plee =M. (B)/Pte.. This problem does
not arise for F? since [ Pfe, F;]'=0, although it
does make the abstraction of the transformation

x

properties (38) from the free-quark model seem a
bit unrealistic where transitions between states
with very different masses are involved.

C. Bilocal currents

Finally, we come to a matrix element in which
the free-quark model algebraic structure does not
seem to be like that of the algebraic structure used
by nature. Deep-inelastic structure functions can
be related'® to forward matrix elements of the vec-
tor bilocal operator & (x,y). Thus, in the Bjorken
scaling limit, we are interested in matrix elements
like

<A, rest

fd“x 8(xt)et t¢T =D
XF(X, x50, y"),A, rest> .

(49)
Now, from Appendix B we find

V"fd‘x 8(x e T T F R, xR, )V

~(17 8)63(8y 1), Ls(F) =0
+(3,3)8(3, 3), Ly(F) =1, (50)

where the AL,(F)=0 piece transforms like the
charge (1;). Thus, the free-quark model prediction
is that the octet portion of the bilocal currents is
purely F-coupled within the 3* octet. This implies
that the ratio of the neutron to proton structure
function F2(t)/F2(£) should be =%, independent of &.
Inasmuch as this is in violent disagreement with
the data, we must regard this case as a failure of
the abstraction of the bilocal operator algebraic
structure from the free-quark model. The bilocal
operators thus seem to be quite sensitive to the
absence of pairs in V. —something we might have
expected on the basis of the parton model.
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IX. CONCLUSION

We have seen that a clear distinction must be
made between current quarks and constituent
quarks; that is, between the group which classifies
currents into simple irreducible representations
and the group which similarly classifies hadrons.
Assuming that the two groups are related by a uni-
tary transformation V, we have outlined the prop-
erties we expect V to possess. In order to show
how such a set of requirements might be satisfied,
we have constructed a simple example of V in the
free-quark model. Although this example does not
possess all the properties that V probably has in
nature, it may nevertheless be useful as the only
model for V we know of at present.

There remain many important problems for fu-
ture study. Perhaps the most straightforward
problem is that of SU(3) breaking. This problem
can be studied in the free-quark model, where we
can explicitly see how Vg, must be modified in or-
der to ensure that the SU(3) generators, the W;,
do not change particle spin. Then there is the
problem of models with interactions—can these be
simply treated? An interesting approach to inter-
actions has been taken by Eichten et al.’® who study
the Bardakci-Halpern scheme?® (although in a
slightly different context from the one we used to
construct Vg, in this paper). Although pairs are
not produced in the Bardakci-Halpern scheme, it
would be instructive to see how a potential modi-
fies Viee. Another very important problem is the
relation of the approach taken in this paper to the
U(6)y, curents Saturation schemes via the angular
condition. We have seen that V. is the operator
solution to the angular condition for free quarks.
The angular condition can be formulated without
restrictions on the masses of states—can the an-
gular condition thus be used to provide an unam-
biguous equation for V? All these questions, and
many others, have yet to be answered.

The most difficult question is, as always, why
does the free-quark structure abstracted from

Wi .freezﬁf d4x6(x+)q1(x)%xi q+(x) ’

2i31[ Kinv o® +iﬁaj. : 51.]
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Viee WOrk so well for matrix elements of F$ and
Fem(k,)? There seems to be no doubt that known
models with interactions will add extra terms to
the classifications of V., ~'F} V,,, and

Viree " Fem(K ) Vireee Only, to a good approximation,
such terms do not seem to be there phenomenolog-
ically. What suppresses these extra terms? We
do know that this mechanism is not universal,
since the bilocal current structure in nature is
quite different from that found in the free-quark
model.

We have thus raised more questions than one
can pretend to answer. Nevertheless, we believe
that we have shed some light on the relation be-
tween the two kinds of quark, and shown how the
paradoxes arising from confounding the two may
be resolved. We have shown how to recover the
successes of the “naive quark model” schemes
and how to temper the failures.
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APPENDIX A: U(6) X U(6) s4;0ny GENERATORS
IN THE FREE - QUARK MODEL

Note that k,,=(V2 My, |2_| /P;..)+m (see Sec.

free
VI on the free-quark model for discussion). The
M. /Pf‘;ee is to be interpreted as always appearing
outside the integral in the power-series expansion

of an integrated operator containing «,, :

inv.

W =75 J 420620l {po'-

K v2_ alz

Ziazl Kiny 0° +iﬁ6.].'-51..]

} %A{ q+(x) ’

W =75 [ 50620100 {0 -

inv

2_3L2

2[8L203+iKinvﬁaL.-5.L]

Wis.ﬁee =7%fd“x6(x*)q1(x){a3 +

) 2
Kiny = 9
2]

2 g ==iVE[ a4x0(x g 1) 75 30, 4. (),

} %Ai q+(x)’

}%A,q+(x),
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l©

—i 200, ki, 03 +ip5,-3,]| 8.

Q‘} .free ="/=2fd4x6(x*)qﬂ(x){ﬁo‘— 1 ::‘,2 - 3J_2 - + j( le q+(x)
-i 2i0,[ Kkiny 0°+iB0 -3,]) o

ngm ‘/_fd“xb(x*)q,,(X){ 0%- _mvz_alzL }_lé 19.(x),

2[8,203% +ik;y BT _
Q3 free= fd“x() x*)qs (x){c + (2, sz’:ma!jzl }T%M(h(x)-

One can check directly that the above forms for W“’ffree satisfy the equations

[81’W:_freel=0, [31,[31’ .ﬁu]]=W::.ﬁ'ee ’

where we have used the rest frame commutator
[Juf dx6(x")gl(x)0(3,, o )q+(x)]

= 4%fd“xd&t‘)(x‘“)f(x' - £)gl(x) {i(2 82%-29.2 +m2)§f:)z - 21'323-2?0 -[0,B0%(7,"3, +im)]}‘1+(iu £).

r

All derivatives act to the right. The expressions

- 1 .
¥ =77 ] atratole Re (2 Y alsonsy,

00(5,0) , 4 00(5,9.) R
68, 60_ xq (X, ¥£),
are formal derivatives of O( 3,,9_), with respect —i 1
to its arguments (treated as variables). These L oo = T fd“xd&é(x*)Re(m> ql(x)o3
terms arise from partial integrations on the x2

and x~ moments in J,.
The operators &
by

xq+(§u £,

= Voo 1 Q5 Vi, are given

i, free — i,free ' free

where we have used

- \/” 1 L
b= T [ dtxass(x ’Re(m)ﬂ"‘)ﬂf [ atxot)gln o= 5 T2

xq+(iu £),

- N 1
<I>§’ free = F—f dixdtd(x )Re<m) qI(x)ﬁolé)\,
m The presence of suitable damping factors as

xq,(%,,¢), £ - x"—~ ig assumed.

= %jd4xd§6(x+)Rev(_—{*_—&>q1(x)rq+(§“ £).

X

APPENDIX B: TRANSFORMATION PROPERTIES OF LIGHTLIKE CHARGES AND MOMENTS
IN THE FREE -QUARK MODEL

Note that k;, = (V2 My, |8_| /Phee)+m and k=V2 |0_| +m.

1. The axial charge

Kiny + 9,2 —sz -5
inv _32 YL *)03%)&iq+(x).

ViewF3 Viwe= 75 [ "4"5(’”"“")(

Kiny
2. The electromagnetic current -magnetic moment

Viee™ [ d450(x*) % Fim(0) Voo = [d456(x*) x Ftm () = w/2fd"x6(x*)q+(x) P

. 2kd(k+iv, B
X'[KB(12+18203 + KRV R f{x;z; s )]%Aem q.(x).
=09,
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This expression is to be evaluated in the rest frame of the external states (which must be of equal mass in

the free-quark model).

3. The bilocal vector current

K-—a —l(-K""‘K-);J.

me_lﬁjdzx;‘h(xux )27\ q+(xn3’ YWeree = \/_fdle_q (xJ_,x ){ [(x*-o ) (%% - 2)]1/2 }I}é)\a ‘L(iuy-);

where the expression is to be evaluated in the rest frame of the external states, as for 2. The derivatives
in k act to the right, those in i act to the left. All other derivatives act to the right.

*This paper is an updated and corrected version of the
author’s 1973 Ph.D. dissertation.
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