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The knowledge of the wave function of a relativistic composite system constitutes a com-
plete description of its intrinsic properties such as mass spectrum, elastic and inelastic form
factors, and structure functions. The wave functions of the proton obtained from the 0(4, 2)
infinite-multiplet model, which were used previously to calculate mass spectra and form
factors, are applied to reevaluate in a more complete manner the structure functions in
closed form. The resultant scaling functions obey the Drell-Yan relation E~($)- (1 —$)3 and,
under certain conditions, the Callan-Cross relation E2g) ~ 2$E~($).

I. INTRODUCTION

A good model of the nucleon as a relativistic
composite object must account for all its proper-
ties which are usually associated with the internal
structure of the nucleon. It must give a good de-
scription of processes which are determined by
the nucleon structure alone. Only then can we say
that we have a good over-all picture of the nucleon.
These properties are the elastic form factors, the
spectrum of the excited states, the inelastic
transition form factors, the decay rates of the
excited states, and the structure functions. In
ordinary quantum theory these properties are all
determined by the wave function of the system.
Hence the exact knowledge of the wave function
constitutes a complete description of the system.
Experimentally the intrinsic properties of the
system are measured by probes which are them-
selves structureless. For the nucleons, the above-
mentioned properties have been and are being
analyzed from yN, eN, and vN scattering pro-
cesses, and considerable information has been ob-
tained, in particular through the inelastic electron-
nucleon scattering. '

The purpose of this paper is to apply the explicit
wave function of the proton and its excited states

obtained from an infinite-component wave equation
to evaluate the structure functions in inelastic
electron-proton scattering. The wave function has
previously been used to predict the elastic form
factors, ' the mass spectrum, "the inelastic form
factors, 4 and the partial decay rates. ' Some as-
pects of the structure functions have also been
reported. ' ' %e present here the details of a more
complete calculation, briefly reported earlier, '
in particular the explicit form of the so-called
scaling functions F,($) and F,(g).

There is an underlying physical picture of the
description of the proton by a wave equation. It
corresponds to an atomic-type composite system. "
The relativistic H atom itself, conversely, can
be described completely by an infinite-component
wave equation. " This picture and all the calcula-
tions indicated taken together lead to the conclu-
sion that, as far as electromagnetic probes are
concerned, the proton, in a very wide range of
energy and momentum transfer, behaves like an
"atom, " the inelastic process proceeding via the
excitation of the "atom" (including continuum) and
its subsequent decay. The limitations of the pic-
ture will come when particle production without
the excitation of the proton will be a dominant pro-
cess.
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Of course, the H-atom concept will also be lost
in processes where production of other particles,
becomes dominant. This, however, does not
diminish the information in the H-atom concept
about the constituents of the atom. Similarly, if
we have a convincing picture of the proton and
a reliable wave function, we can make more defi-
nite statements about the true constituents of the
proton, which is perhaps one of the most funda-
mental questions of particle physics at the present
time.

Note that although we discuss mainly the scaling
region the model is in principle applicable every-
where, including the resonance region.

II. PRELIMINARIES

Ju aI'u+nPu+nP S+nq L (2)

The parameters a& are functions of the masses
of the constituents of the system and the strength
of their interaction, while I „, S, and LuU are the
O(4, 2) generators. In Eq. (2) we have P„=(p+p')„
and q~ = (P —P)~ ~

Explicit representations of the generators L,~

and the basis states on which they act are given
in the Appendix. The basis vectors of the Hilbert
space are related to the physical state vectors by
a tilt operation,

in/ 0) =- —exp(-i 8T) lnt 0) 1

1
(3a)

We consider the nucleon as a composite system,
with its ground and excited states, whose wave
function obeys a dynamical wave equation. In a
relativistic description it is convenient to use an
algebraic formalism for the dynamics. The inter-
particle relative coordinates and the interparticle
interactions are replaced by the global quantum
numbers of the system. One then writes an infi-
nite-component wave equation, treating the system
as though it were an elementary particle and cou-
pling it minimally to the electromagnetic field.
From the theory of the H atom one knows how to
pass to the internal dynamics, if necessary.

In our model the nucleon and its excited states
are assigned to an irreducible unitary representa-
tion of the dynamical group O(4, 2}. The states
in the rest frame are labeled by lnjm), which we
shall often write simply as ln). Physical states
with momentum P, to be defined below, are labeled
by lnP). There is a current operator J„satisfying
the current conservation equation

&nP'I( j ' -P)"&„lnp) =0,

which determines a mass spectrum for the system.
The conserved current of the model is given by

whereas the moving states are obtained from the
rest-frame states by a boost operation,

ln, p) = exp(-fM f) ln, 0) . (3b)

Because the last term in Eq. (2} is conserved
separately, we see from (1) that it does not con-
tribute to the mass spectrum. The latter is also
obtainable from the solution of the following in-
finite-component wave equation:

(~„P"+ PS+ r)4(P) = o, (4)

where P and y are parameters similar to a& and

P(P}=—lnp) C.onsequently, the propagator in the
forward Compton scattering amplitude, which we
are going to use as a starting point of our calcu-
lations, can be written as

Q(P) = [a,I'„P"+ a,P„P"+ (a,P„P"+P)S+y] '.

In Sec. III we give a derivation of the matrix
elements corresponding to the transition of the
nucleon from the ground state to its excited states
by the action of the electromagnetic current. In
Sec. IV we compute the explicit forms of these
matrix elements and the nucleon structure func-
tions W, and W„which are of interest in deep-
inelastic scattering. Finally, we shall show in
Sec. V the behavior 11IIW,(q2, v)- F,(g) and vW (q2, v)
—F,($) in the limit (-q', v) - ~ at fixed (, where
the scaling variable is defined by I/$ —= I/x —= &o

= -(2Mv+M')/q'.

III. DERIVATION OF THE MATRIX ELEMENTS

We start by writing down the explicit form of the
forward Compton scattering amplitude on a proton,
as follows:

T = TAUE'

l, (1ply„e "Q(p+q)Z„e" lip).
1

(6)

The propagator can be diagonalized by the follow-
ing inverse tilt operation:

Q = exp(-i AT)Q exp(i 8„T), (7)

where the tilting angle e~ is chosen in such a way-

that the coefficient of S in the propagator vanishes.
If we work in the center-of-mass frame and call
the total energy squared s =W', so that Pp W,
then we obtain from (5} and (7)

Q(w) =(r,[a,'w'-(a, w'+P)'J" + a,W'+y}-'.

(8)

The next step we are going to take is to insert
the complete set of group basis states behind Q(W},
operate Q(W) on ln), and take the f axis along p.
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Then Eq. (6) can be written as

T= II (W)(l~e' «e'«'"3J e«'e ««s'
~n)

1

section for inelastic scattering of an electron of
energy E from a proton into the angle 8 and ener-
gy E' is

@( (
«J -««H «-« ~l) (9)

1 2 1

d&&&, =4&,si 4, .8} [W,cos'(a8)+ 2W,sin (~8)J.Sln g2

Because J„e"is a Lorentz invariant, we can move
this expression to pass the booster. The compo-
nents of the tensor T„„are then

T„„=~N, QO„(W)M„(n)M, (n),

where the matrix element M&, (n} is given by

My(n) =(n~e«e~' e ««Ns J e «& ~I).

(10)

If the total center-of-mass energy W is such that
0„'(W)=0, we obtain the intermediate states n

of total mass M„, which form the timelike solu-
tions of the wave equation (4). These are the final
hadronic states in the inelastic process, where
the proton is raised to its excited states by the
energetic electrons, Therefore, the imaginary
part of the amplitude (10), i.e. ,

because p~=(Mcoshf, O, O, Msinhg), and the mo
mentum transferred (P„-P}„orq„equals
(M„-M cosh), 0, 0, -Msinhg). We use the metric
g„„=(+ ---). The second structure function is
given by

with

M ' 1+M 'sinh'f/q'
M'sinh'P (1+Mv/q')'

1

(1+Mv/q')2 (15b}

(14}

We can express W, and W, in terms of W„„by
using Eq. (13). Clearly,

(15a}

W«««1:
~

~z QM«t(n)Mp(n)& (12} Mv=P q=M„Mcoshf-M2

is related in the usual manner to the inclusive
differential cross section of deep-inelastic scatter-
ing. To see this, we write the standard decompo-
sition

qII qv—g~„+ 2 W~

q'=M„'+M'- 2M„M cosh/ =M„'- 2Mv -M'.

From Eqs. (12) and (15) we see that we only need
to compute W» and W33 to obtain the functions Wy

and W„where

p„- q„p„- — q„W, 13 W«
i

i g iM«(n)i 5(W M ) (i:1 3) (16)

where W, and W, are the well-known structure
functions, and recall that the differential cross

Using Eqs. (11}and (2) and the definitions of P„
and q„given above, we have

M, =(n~envre «~"&[a,L„+ a( M„- Mc os') »La+~MsinhfL»]e 'e«r~l),

while

M, =(n~e' & e '~ "&[a,L,+(a, + a,L„)Msinhf+ a,(M„-Mcosht')L»je «e«r~l).

If we pull the tilt operation on the ground state to the left, we obtain

M, =(n~G(f)[a, L„+a,(M„-Mcoshg)(L»cosh8, —L„sinh8, )+ a,Msinh&L»j~l),

M, = (n~G(f)[a, L„+a/if sinhg+ a M sinht(L«cosh 8, —L»sinh8, )

+ a, (M„—Mcoshg)(L»cosh8, —L„sinh8, )]~1),

(17)

(18)

(19}

(20)

where

G(g) = exp(i AT) exp(-i)M, ) exp(-i 8,T) . (21)

Because of Eq. (Al) we have ~1) -=~000). Further-
more, because according to the relations (A6),
(A8), and (A9) the operators L„, L», and L»

start with the destruction of the vacuum, they do
not contribute to the matrix elements M;. We can
also easily see from (AS), (A4), (A7), and (A10)
that the operators L» and L, have the same effect
on ~000) as L„and L„, respectively, except for
the multiple imaginary unit. By this observation



the calculation of M& becomes much simpler, for
we have only to evaluate the contributions coming
from L», L,», L4„and L„. Vfe have the following
results (see Appendix}:

Now we can proceed to compute the matrix ele-
ments explicitly.

IU. EXPLICIT FORMS OF N,

r„,F000& = oooo&,

L„,oooo& = —.'[010& —,'F100&,

I„[000&= --'F010& ——,'[100& .

(22a)

(22b)

(22c)

(22d)

The techniques for calculating matrix elements
of the type (19) and (20) have been used in many
applications. ' ' In what follows we indicate all
the steps in a concise form.

Inserting Eqs. (22a)-(22d) into Eqs. (19) and (20},
we obtain firstly

Mg(s) = k[&slG(L)[fa, + a,(M. -M cosh'') cosh8 J )001& -&s[G(f)bo, + a,(M„-M cosh'') cosh8, ](11, I&j. (23)

Because ~001& and
~
ll, -1) have different m values, while G(f) does not change m, the s& states must have

either m =+1 or m = -1. So the two parts of Eq. (23) do not interfere when we take ~M, '. Secondly, we have

M, (n) = &s~G(f)(a, —a,sinh 8,)M sinhf ~000&

—g~&n~G(f)[a4(M„-Mcoshg) cosh8, +ia, —a,Msinhl cosh8, J)010&

+ &s ~G(g) [a4(M„-M cosh&) c ohs8, i+a, + a,M sinhl' cosh 8,]~ 100&] . (24)

cosh 8~sinhf
sinhP

cosh 8~sinh 8,cosh'' —sinh &~cosh 8,
sinhP

(26c}

In this case, all three parts will interfere with each
other when we take ~M, ~', because all ~n& have
m =O.

In order to obtain &s~G(1') ~s'&, we apply the Euler
angle transformation. Using the basis of the
O(2, 1) O(2, 1) subgroup and writing ~n&=- ~s„s„m&
as ~N„N, &, where we have suppressed the quantum
number m, which must be equal for the initial and
final states, we have

&N I&i 8grre-Ic H&s-is&r ~st&

=&N,N, ~e '~&4e ' 4&e '" &~(N,'N', &. (25)

In Eq. (25) the angles a, p, and y are related to
8„g, and

gaby

sinh'(~P) = ,'(cos—h8N, cosh 8,cosh/ —sinh 8w, sinh 8, —1),
(26a)

cosh'(2p) = &(coshgcosh8, cosh' —sinh8N, sinh8, +1),

(26b)

Acting on the states ~N» N,) the operator 5 4 obeys
the following eigenvalue equation:

(27}f,„(N„N,) = (N, N, ) [N„Ng,

with N, ,=s, ,+0, where h =-,'(~m~+ I). The re-
duced matrix element can then be factorixed as
follows:

W'„„.(P) = &N N, ~exp(-I/I. ,)(N,'N,'&

where

1 (N, —n}!(N,+0-1}!"'
(N( —N(')! (¹(—0)!(N(' + h —1)!

x [cosh(-,'p)] "~ "&[sinh(-.'P}]N& "&

x I"(g, X, v; -x), j = 1, 2 (29}

for ¹

N'. In Eq. (29} the hypergeometric function
has the expansion

g p+ I)A.(X+1)
E(!J. X v s) =1+ x+1!v 2!v(v+ 1}

+

(30)

cosh 6},sin
sin cx i hp

cosh H~sinh 8, —sinh 8N, cosh 8,cosh'
cos Qf ~ ~p

(26e}
where p. =k-¹„X=1-N,'-k, and v=1+K&-¹&,
while x = -sinh'(2P).

The resulting contributions to M, in Eqs. (22} and

(23) clearly come from

&sp20IG(t)1000& =(-I)"'e "'"' ""[«nh(-'P) J" '[c»h(2P) J

&n,w, l(G(t')(001&=(-I}"2e '~'"& "2![sinh(2P)J" '[cosh(-,'P)J " '[(s,+I)(s,+ 1)J'~~,

(3la)

(31b)
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(nn» -I~G(g))11, -1)=(-I)"&e '"~"& "&~[sinh(&p)J" '[cosh( —,'p)] " '[(n, + 1)(n, + I) J'~'

x [n, —2 sinh'(2p) J[n, —2 sinh'( —,'p)],

(n,n,O~G(i)~010) =(-I)"&e '"~"& "2~''&[sinh(&p)j" '[cosh(&p)] " '[n, —sinh'( p)J,

(n,n,O~G(g)~100) =(-I)"&e ' ~"& "2' '&[sinh(&p)]" '[cosh(&p)j " '[n, —sinh~(ap)].

(31c)

(31d)

(31e)

Inserting these relations into ~M, ~', using Eq. (23) and recalling that intermediate states ~n) with m =+I
do not mix, we obtain

~M, ~'=-,'(n, +1)(n,+1)[sinh'(;P)J" '[cosh'(-, P)] " '[a, '+ a, '(M„-Mcoshg)'cosh'8, ]

x([sinh'(2p)cosh'(2p)]'+ —,'[n, —2 sinh2(&p) J'[n, —2 sinh'(-,'p)]'), (32)

where later we must sum over n, and n, restricted by n, +n, +2=n Fr.om Eqs. (31a)-(31e) and (24) we get
for the other matrix element

~M, ~'= (a, —a,sinh8, )'M'sinh'I'[sinh'(2P)J" '[cosh'(-,'P)] " '

+ ,'[n, ——sinh2(~P) J'[sinh'(~P) J
" '[cosh'(2P) J

" '[a, '+ (a,M„- a,M cosh& —~sinh&)'cosh'8, ]

+ -,'[n, —sinh~(2P) J'[sinh'( —,'P) J" '[cosh'(&P) J
" ~[a,'+ (a,M„- a~M cosh/+ a,M sinhf)'cosh'8, ]

—[n, —sinh'(-,'P)]tanh(&P}[sinh'(~P)]" '[cosh'(~P)j " '(a, —a,sinh8, )

xM stubby[ a, stny+(a~„-a4M cosh& —asM sinhf) cosh8, cosy]

—(a, —a, sinh8, )M sinhg~[a, sony+ (a,M„—a,M, cosh' + a,M sinhI') cosh8, cosy]

x [n, —sinh'( p)]tanh(2p}[sinh'(&~p)J" '[cosh'(ap)J " '

+ —,'[n, —sinh'(-,'P) J[n, —sinh'(IP) J

x [sinh'(-', p)]" '[cosh'(-,'p) J
" '{([(a,M„- a,M cosh'')' —(a,M sinh&)'J cosh'8, + a, ')

x (cos2y —4a, asM sinhf siny cosy cosh8, )}, (33)

where later we must sum over n, and n, such that
n, +n, + 1 =n, because both final and intermediate
states have m =0. The sums over n in Eq. (16)
are clearly convergent, because the terms are of
the form n'(tanh &P)", where c is some integer,
while tanh(-,'p) & 1 for definite values of the squared
center-of-mass energy W'= s.

V. THE SCALING LIMIT OF THE STRUCTURE
FUNCTIONS

We are going to investigate the behavior of W,
and W, in the scaling region (-q', v- ~), and thus
we shall have to deal with scattering states.
Where the quantum number n of the intermediate
states assumes continuous values, we shall not
sum the discrete series, but instead use the
Sommerfeld-Watson transform to replace the
summations and continue the amplitude analytically
to the right-hand cut.

First we write down the diagonalized form of the
propagator in the center-of-mass frame, as
follows:

It looks as if the ratio (a,w'+y)/Qv would become
constant if 8"-~. In fact, its behavior depends
on the values of the parameters e„o.„e„P,and

y. If we choose their values equal to those we have
used previously" for the hydrogen atom, then the
vanishing of II„'(W) will force n to behave like
(1/M„') in the scaling region, because Q„-M„'.
Hence, for Q„- ~ we must have n-0. Other
choices of the values of the parameters may yield
a similar behavior, although not exactly like that
mentioned above.

Applying the Sommerfeld-Watson transform to
T „ofEq. (10), we obtain

t
dn )M„(n)('Qv '(n)

c ~N, ~' [n+ (a,W '+ y)/Q„(n) J sinvn '

(35)

where we must take the appropriate contour C,
avoiding the poles of the propagator. Now if we
evaluate the integral by using the residue of these
poles, then we obtain on the right-hand cut for
Q„- ~ (so n-0 continuously}

II„(W)= fq, [n+ (a,W '+ y)/q, j)-&,

where

Q [a 2WR (~W2/P)2]1/2

(34)

The limiting values which interest us here are

(36)
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those associated with -q2, v- ~ at fixed $. They
can easily be calculated by inserting the following
quantities:

M 2 1 2M) 4$($ —1)
Ps~ (1+Mv/q2)' v (2$ —1)~ (39b)

so that the limiting scaling functions defined as
sinh ( P)- ——,'(I+iA),
cosh'(-,'P) - —,'(1 —iA),

where

A= ' (1 —$) ' —sinhg,
2e,q,

tanh8( =
eM;

(37a)

(37b)
F,($) = lim MW, (q', v),

«q2 ~ Ij~ ao

F,($) = lim vW, (q', v)
«q2

~
'p ~ On

are, apart from the factor C/~N, ~', given by

F,($) = —,
' Ma, 'cosh'8, f,($)(1 —$)4,

P

F,($) = 2M) —,'a, 'cosh'8, f,($)(1 —$)4

5(1 - ()'
+4f.(&) (2( 1). .

(40)

(41a)

(41b)

cosy- coshg, — '(1 —$} 'sinhay y 1

(38a)

(38b}

The constant C, which we omitted, is equal to the
parameter y if we assign to the parameters n„o.„
n„P, and y values equal to those we have used
for the hydrogen atom. "

From Eq. (41b) we see that near threshold

($ =1) we have

M ~ (1 + P,2/q') 2M)

P,' (1+Mv/q')' v
(39a)

It can be seen by inspection that the terms in
the infinite sum over n in Eqs. (16) have at least
a factor n of the first power, so that the conver-
gent sums go at least like n. In the scaling limit
we have only to retain terms containing nP, ', nP, qo,
or nq, 2, since they remain finite for n-0 and

P„q,- . Other terms containing n only or n'p3',
etc. will vanish.

The scaling limits of the factors in front of W»
and W» in Eq. (15) are

F,(() (1 —h)',

satisfying the Drell- Yan relation. '4 Furthermore,
for f,« f, we have

F,(h) = NF, (5),

which is the Callan-Gross relation. "'" We also
note here that F,($) is proportional to a4, which

is the coefficient of the nonminimal current in J„,
the term which is essential for the anomalous
magn tic moment of the proton. "

The functions f,($) and fm($) are not difficult to
calculate, but are rather long expressions, viz. ,

, Q [sinh 8,(1 —$) —(a,'/2a, Q, ) ] —~~, [sinh 8,(1 —$) —a,'/2a, Q, J'(1 —$)'+,',~4 (1 —()'
[cosh'8, (1 —()' —(a,'/ a,Q,) sinh 8,(1 —t') + (a,'/4 a, 'Q, ') J'

Q = [a 'M '-(a~ '+P)]' ' tanhg„=
u M„2+P

1I

(42)

In the limit when $ = 1 we have f,($) = —4~(a, '/2a, Q,)4.

4[A+ 8+ C + D]
[cosh'8, (1 —(8)' —(a,'/a, Q,) sinh8, (1 —$) + (a,'/4a, 'Q, ')J' ' (43)

where the functions A, B, C, and D are the following:

2 0. 4

A($) =(am —a~sinhg, )' cosh'8, (1 —()' — ' sinhg, (1 —t')+
nsQ~ 4&3'Qx'- '

1 hg,l, sinhg, ' [sinhg, (1- f P —a, '/2a, g, l'

(44a)

(44b)

C(8)= o,'cosh'8. . .~ cocos,(1 —8) — ' sico8, (1 —()—1 sinhe, 2 . a2
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2 2

D($) = 2 a, cosh 8,(n, —n, sinh 8,) cosh'8, (1 —$)'- ' sinh 8,(1 —$) +
o'3@& 4o's Qi

x sinh 8,(1 —$) — ' cosh 8,(1 —5)—Q~ sinh e,
2(y3Q~

~ 2 @3M
(44d)

VI. CONCLUDING REMARKS

We have used, for simplicity, the boson repre-
sentation of SO(4, 2). The fermion representation
will change the coefficients of the structure func-
tions, but not the general qualitative behavior.

Also, we have used only the physical timelike
solutions of the wave equation. Because we are
not interpreting the current (2) as a second-quan-
tized local current operator, the spacelike solu-
tions do not enter into the present calculations.
Rather, our wave equation describes composite
relativistic wave functions (first-quantized only)
and we sum over all physical timelike excited
states of the proton in the unitarity relation (9}.
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L„-=I;= ', i(—a-o,Cb +aCo, b}

i(a, b, +atbt a,b, -a,b,),
L„=S= —,'(—a Cb +aCb)

L„=-A,=--,'(a o,a —b o,b)

L»=M, = — (a o,Cb —aCo, b)

(a, b, +a, b, +a,b, +a,b,),
L» ——L, = ~(a o2a+bto b}

= —;i(a,a, —a, a, + b, b, —b~b, ),
L„=A,= --,'(a o,a- b~o, b)

L»=M, =- (a o,Cb —aCo, b}

(A4)

(A6)

(A6)

(AI)

(A8)

(A9)

(A10)

APPENDIX

The basis ~n) is defined as follows:

~n) = )n,n, m)

= 1(n, + m)!n !(n, + m)! n !J
' '

x (a )n2+ (a )n (b )ng+ m(b ) /~0} (Al)

= —,'(a,a, + a,a, + b, b, + b~b, + 2),

L,6
=—I', = —

~ i(a o,Cb ~ + aCo,b)

= 2i(a~b, —a, b, -a,b, +a b,),

(A2)

(A3)

for m ~0, where a; and b; are boson operators.
The generators which are involved have the

following explicit forms:

L„-=I', = —,'(a a + b b + 2)

The formulas used for calculating the sums
over n, and n, are

n

Q n' = ,' n(n + 1},—
1

P n' = &n(n+ 1)(2m + 1),
1
n

Q n'= —,'n'(n+ 1)',
I
n

g n4 = ~on(n+ 1)(2n+ 1)(3n'+ Sn —1),
1

g n' = —,', n'(n+ I)'(2n'+ 2n —1),
1

n

g ne = 4'2n(n+ 1)(2n+ 1)(Sn4+ 6n' —Sn+ 1) .
I
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is guaranteed.
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Relativistic center-of -mass variables and relativistic corrections
to phenomenological Hamiltonianse

M. K. Liou
DePartment of Physics and Institute for Nuclear Theory,

Brooklyn College of the City University of Nero York, Brooklyn, Nese York 11210
(Received 1 August 1973)

A new method for obtaining the relativistic internal center-of-mass variables without
using the singular Gartenhaus-Schwartz transformation is proposed. We have shown that
the relativistic c.m. dynamical variables can be obtained from the nonrelativistic ones by
a unitary transformation. A general method for determining the relativistic interaction in
terms of a given nonrelativistic phenomenological potential is developed. Many different
results obtained previously by various approaches have been reproduced.

The relativistic center-of-mass variables for a
two-particle system have been discussed recently
by Osborn. ' He has defined the total momentum,
position, and spin operators for the system in
terms of the generators of the Lorentz group, and
has obtained the internal c.m. dynamical variables
of the system by applying the singular transform-
ation by Gartenhaus and Schwartz' to the single-
particle variables. Although exact forms for
these variables have been obtained by this method,
the use of a singular transformation has been
criticized. Here, we present a new method to
obtain the internal c.m. variables without using
the singular Gartenhaus-Schwartz transformation.
We define the total position operator in the same
way as Osborn, and we use it to find a unitary
transformation (i.e., to construct a unitary op-

erator e'"}which relates the nonrelativistic
(lowest-order} total position operator' to the rel-
ativistic total position operator. The relativistic
internal c.m. variables are then obtained by ap-
plying this unitary transformation to the non-

relativistic internal c.m. variables. The total
momentum and the angular momentum are left
invariant by the unitary transformation. One of
the main advantages of this approach is that the
expressions for the c.m. variables can be written
in a compact and useful form. When they are
used in actual computation, many complicated
manipulations can be simplified. We have repro
duced Osborn's results and have also obtained, to
order (mass} ', Foldy's operator. "Thus, our
results serve to generalize the approach of
Krajcik and Foldy' to higher order and to clarify


