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A field-theoretic model of xV scattering is constructed in order to obtain and compare the

high-energy behavior of helicity amplitudes for the processes my-ny, ny np, xp wp and

hence to arrive at conclusions with regard to the occurrence of fixed J-plane poles. The
model is based on the Wick-Cutkosky scalar theory, in which the dynamics is due to exchange
of massless scalar mesons. Full use is made of the fact that the integral equations of the
three-point and four-point functions of this theory may be solved explicitly in the ladder
approximation. The solutions of the inhomogeneous equations are investigated in detail —in

particular their asymptotic behavior when one of the particles is far off the mass shell.
They are then inserted into our model diagrams and the asymptotic behavior of amplitudes
of the processes mentioned above is derived on the assumption that the p meson is a com-
posite state which lies on a Regge trajectory, whereas the photon is not. This definition of
compositeness is seen to be equivalent to the condition of vanishing of the appropriate
vertex renormalization constant. The occurence of significant fixed-pole contributions in
Compton scattering is reaffirmed. Finally some remarks are made with regard to the
vector-meson-dominance hypothesis.

I. INTRODUCTION

In a recent paper ' we carried out a detailed in-
vestigation of the kinematics and Reggeization of
the process mV-wV and its crossed reactions. In
particular we considered the limiting case of
Compton scattering off pions and affirmed that a
finite nonzero asymptotic value of the total photo-
absorption cross section as well as s-channel
helicity conservation require the introduction of a
singularity in the appropriate residue function
such as is provided by a fixed J-plane pole at the
nonsense wrong-signature point J= i. The question
as to what is the fundamental difference between a
photon and a p meson remained untouched in our
previous investigation. This question is related to
the occurrence of fixed J-plane poles at right-
signature points and is the central theme of the
present note. We confine our discussion to a field-
theoretic model of n'V scattering.

Fixed J-plane poles have for a long time been
known to be related to the compositeness or non-
compositeness of subnuclear particles. The cen-
tral underlying idea of the vanishing of a right-
signature fixed-pole residue on account of a super-
convergence relation resulting from an appropriate
asymptotic behavior of the amplitude may be
traced back to Mandelstam's early investiga-
tions' ~—particularly to the first Appendix of Ref.
3. Although various aspects of this idea have
been discussed from time to time —see, e.g., Refs.
5-7—there was widespread belief that Regge-pole

phenomenology could ultimately be done without
fixed poles or that Regge phenomenology may not
really be suited for photon-induced interactions. '
The extensive investigations of photoproduction
and electroproduction processes carried out re-
cently —both theoretically and experimentally —do
not seem to confirm this belief. The existence of
fixed J = 0, 1 poles in Compton scattering off pro-
tons seems to be firmly established. ' In fact
Brandt et al.' even found arguments suggesting
that there is a fixed J=0 pole in p-meson photo-
production. The compositeness of the nucleon—
probed in electroproduction experiments —has
again led tp investigatipns ax, r2 intp the relatipn
between fixed poles and compositeness. The im-
portant point —emphasized particularly by Mueller
and Trueman" —is that fixed poles" can occur
in weak (photonic) amplitudes of both the right sig-
nature and the wrong signature in contrast with
strong-interaction amplitudes, where fixed poles
occur only for the wrong signature. Mueller and
Trueman also discuss simple models for my and
sp scattering in order to illustrate this point (Sec.
V of Ref. 5). These models are based on analytic-
ity and unitarity. However, the fundamental dif-
ference between the two types of processes —the
different asymptotic behavior of the relevant ver-
tex functions —is not clear from these models.
The purpose of this note is to clarify this point by
discussing a model of mV scattering which incor-
porates both types of processes simultaneously.
Such a model is provided by a field-theoretic La-
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grangian involving spinless and vector fields. It
is well known that the vanishing of the vertex re-
normalization constant'4 "of the interaction of
the two kinds of fields implies the removal of this
interaction from the Lagrangian —the appropriate
particle (in our case the vector meson) then arises
as a true composite state of the fields remaining
in the Lagrangian. In our model the usual mathe-
matical difficulties associated with many-particle
intermediate states compel us to resort to the
Bethe-Salpeter ladder approximation. In Sec. III
we will even go one step further and confine our-
selves to external mesons of mass zero. With
these approximations the evaluation of the mV-wV
scattering amplitude in our model is made partic-
ularly simple because it reduces to the calcula-
tion of the amplitude or vertex function of the
Bethe-Salpeter equation of the Wick-Cutkosky
model'""; it is well known that this model may
be solved exactly in the ladder approximation. "'

A further motivation of our investigation is the
vague manner in which fixed poles are frequently
associated with the Born approximation (see, for

instance, Refs. 21 and 22}. Here we demonstrate
that the Born terms —when present —ensure that
the fixed-pole residues of right-signature ampli-
tudes do not vanish, so that the insertion of a
fixed J-plane pole can indeed be effected by the
use of the bare Born terms.

Finally we give a brief discussion of the rela-
tion between fixed J-plane poles and the vector-
meson-dominance hypothes is.

II. THE MODEL

We consider the t-channel process mw —V V with
helicity indices as shown in Fig. 1; single lines
indicate pions, double lines vector particles. The
t-channel amplitude

t) (I z)lP-q'lj'(I +z)l "+" I
2

u2u4Iuyu3

xF„„„„(s,t), z =cos8,

can be shown' to possess signatured partial-wave
amplitudes F~' which have the following form
near fixed J-plane poles at Jp n -1,n —2, . . .,
where n =max ()p], (p'(j, g=y. , —u„

F„'„» (t) —(s, u Born contributions)

c~ „(0, 'u, )d1
dz[ImE~, „„,„(z+is, t) + (-1)"ImF„„„„(-z+js,t)]P„z,(z). (2.1)

p gp

The amplitudes F are as usual defined to be free
of kinematic singularities in s and so are assumed
to be analytic in s for fixed t. C~ „are known'
coefficients involving Clebsch-Qordan coefficients.
In the process under discussion n may be as large
as 2=a, +o', . Now, considering J Jp Jp&n, we
have

P„~,(z)E„,„,&,„,( tz) z" ~0 ' ' for ~z~

if E z '. Thus for ~z~-~, this product falls off
faster than 1/z provided n -J', —7 & 0. In this case
we have by Cauchy's theorem, the superconver-
gence relation

0 = dz P„ i, , (z) E„„„,„,(z, t),

r oo

0 = dz[ImE„„„„(z+is, t)
gp

+(-1)" ~ 'ImOE„„„,„(-z+is, t)]

x P„.. .(z)

+ (s, u Born contributions). (2.2)

since the integrand is analytic (and, excepting
Born terms, free of poles) in the upper half z
plane. Reexpressed in terms of integrals over
positive z this. relation becomes

FIG. 1. The t-channel process ~z VV.

We now observe that the residues of the fixed
poles at J=J„ i.e., the coefficient of I/(J —j,) in
(2.1}, may vanish as a result of the superconver-
gence relation (2.2), i.e., if the amplitude
Fu u u u

has the appropriate asymptotic behavior.u2u4~ugu3
Thus, in order to understand when the residue of
a fixed pole vanishes, it is necessary to study the
asymptotic behavior of the appropriate amplitude.
In our case this means that we have to examine the
asymptotic behavior in s of the amplitude illus-
trated in Fig. 2, where the small circles denote
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V

FIG. 2. Amplitude for the t-channel process
xx V'V.

mmV vertex functions. Our method of procedure
will be to consider this diagram as known if the
production amplitude represented by the six-point
diagram in Fig. 3 is known. Such a procedure is
plausible if the vector particles are composite,
that is, if they correspond to (moving} Regge poles,
because compositeness implies a relation between
the particle and a two-particle amplitude with the
same quantum numbers, and so any result which

makes use of this fact must include processes in
which the particle reacts through the virtual two-
particle state. If both vector particles are ele-
mentary in the sense that pole terms correspond-
ing to them have to be introduced ab initio, the
diagram of Fig. 2 is supplemented by the diagram
of Fig. 4. In photoproduction, of course, the sea-
gull does not arise.

The complexity of the above diagrams in general
compels us to reduce them to a tractable model.
This model which we shall consider is defined by
the customary Bethe-Salpeter ladder diagrams or
elastic unitarity approximation and may be rep-
resented by the diagram in Fig. 5. We observe
that the contribution derived from P-wave poles in
both ladders may be represented in terms of ver-
tex functions as shown in Fig. 6. Since we con-
sider the s-channel process mV -mV for high en-
ergies vs it is clear that the asymptotic behavior
of our model amplitude is determined by that of
four- or three-point functions having one leg far

FIG. 4. The additional, diagram necessary for Compton
scattering.

off the mass sheD. For this reason we consider
now the asymptotic behavior of these functions
when one of the masses becomes infinite. For
motivations different from ours the calculation of
the vertex or three-point function has also been
considered by Furlan and Mahoux "; in the case of
the four-point function we refer to some work of
Seto." But here we are using mainly the general
results of Ref. 20.

III. THE VERTEX FUNCTION

Our interaction Lagrangian contains parts 2 jest".
Here

represents the interaction of two pion fields P, ,
of masses m» (which we shall occasionally as-
sume to be equal, i.e., m» = m} and a gluon scalar
field $ of mass p. which we take to be zero for cal-
culational simplicity. " The other part, 2'~„rep-
resents the interaction between the pion fields Q, ~,
and a field g„„... of spin Lz. In the following we

are particularly interested in the case L~ =1. In
this case 8",' may be written

'g~& sp&* —-(sp4 N&*l4 +8'0 eA'V p+H c ~

(3.1}

g, and g are the relevant coupling constants of
J~;", respectively.

We now consider the formation of a bound state
of spin L~ in the two-particle amplitude describing
the scattering of the mesons Q» by exchange of

+ crossed form

FIG. 3. The six-point amplitude. FIG. 5. The model of our six-point function.



FIXED POLES AND COMPOSITENESS 1077

P=P+ q
I

2 I

V,

~~ p, =-p+ —,
'

q =p,' + crossed form' p. s. t.
j N

P =p. —,q

V„

FIG. 6. The model of our four-point function. FIG. 7. Diagrammatic form of the vertex equation.

scalar mesons $. For convenience we set

P 2 (Pl Pm), q P, +P. , ~ = g,g,le', (3.2)

pg p2 being the four-momenta of the two mesons
of mass m», respectively. The diagrammatic
form of the vertex equation in ladder approxima-
tion is shown in Fig. 7. Here the double line de-
notes the particle of spin L~. The point vertex Z
denotes the derivative coupling of the field g„„...
to the pair of massive mesons. The second dia-
gram on the right of Fig. 7 describes the produc-
tion of the particle of spin L~ as the bound state
of a pair of massive mesons interacting by ex-
change of a massless scalar meson denoted by a
dashed line. The vertex function I'„„... is there-
fore a tensor of rank L~. The point vertex, de-
noting the bare derivative coupling, is given by
the factor"

that defined by 2",' is renormalizable if the field

g„ is massless (the renormalizability of theories
of charged spin-zero bosons interacting with the
electromagnetic field has been proved by Salam").
The renormalizability of the theory defined by S",'
is, however, of no importance here. Thus, inter-
preting F and Z now as the physical, renormalized
quantities, the condition Z =0 implies the removal
of the renormalized interaction 2~, from the
(renormalized) Lagrangian without implying g =0.
The particle of spin L~, if it exists, must then be
contained in the theory as a composite structure
of the remaining fields in the Lagrangian.

We note that the Bethe-Salpeter amplitude 4»
for the binding of the two pions to a bound state of
four-momentum q, i.e.,

~..=(0I~, (P,)~.(P, )lq&

is related to the vertex function 1 by the equation
g(Pi -P.}„ if Ls =1

and in general

(3.3)
I'ss(Px P2}

(P '+m ')(P '+m ') (3.6)

and

I'(P, q) =a~""' I'„„...

~ =&""'-g[(Pi -Pa), (Pi -P2)."'1=Pl p p~. -

(3.4)

The vertex equation multiplied by the polarization
vector then becomes (using the metric g~ = -1,
g« =+1 for i =1, 2, 3)

I'(p, q) =Z +4, .

I'(P'q)d'P'
[(p'+-,'q)'+m'][(P'--,'q)'+m'](p -P')' '

(3.5}

We now recall that the theory defined by the La-
grangian 8 ". ,' is superrenormalizable, whereas

z[(P, -P.)„(P,-P.)." ]

(totally symmetrized). If e„„... is the polarization
vector of the outgoing particle of spin L~, we write

Here 1» satisfies the homogeneous part of the
above vertex equation.

As usual it is convenient to make the Wick rota-
tion which moves the integration contour of the
relative energy variable to the imaginary axis and
also continues the external relative energy to
imaginary values (we assume the validity of this
step, "i.e., analyticity of F in the lower p' plane
and nondiverging behavior at infinity for Z =0; for
Z WO we are interested only in the asymptotic be-
havior of I', and we assume that this may be de-
termined in either metric). We therefore work in
terms of a Euclidean metric.

For q =0, Eq. (3.5) is seen to possess complete
four-dimensional rotational symmetry in the p
space; its solutions then transform like the basis
vector of an irreducible representation of the four-
dimensional rotation group O(4}, i.e., like the
four-dimensional spherical harmonics. It is con-
venient and instructive to deal with this case first.
It will also provide us with the zero-order terms
of the perturbation method discussed in the last
part of this section.
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The solutions 1 (p, 0) of (3.5) may then be written

&...(p) = &.(I pl)H. ..(e, 8, ~), (S.V)

where

H~, (&, 8, y) =&z, (si~}'C~ ', (cos)))) F, (8, p)
(3.3)

and since L +~ 0»

»m I pl"'&, (I pl) =C.,
l&l

Z~ if g~x0,
»m I'z{lpl)/lpl'-

i2~+2 UZI -0»
IPt

(3.14)

so that

sin')I) d)I) sin8d8 ) dplHI'=1.
M 0 0 "0

Iml &f&l,

C„C„being constants. We note that (3.13}is in-
variant under the interchange L- -I -2. Thus if
a solution I'~ is known, we also know another
solution, i.e., 1" ~ 2. A solution of this equation
satisfying the first of the boundary conditions
(3.14) is

2

)'~{)p))=A)p) 5' (u, ) -a; I +R;, ,),
Here ()l), 8, rp) are the polar angles of p in the four-
dimensional Euclidean space, and C~ denotes a
Gegenbauer polynomial. Similarly we have where

(3.15)

(3.9)zi). =
I pI'ZiH~i. ,

where the factor
I ply [see (3.4}]has been ex-

tracted for later convenience. Using the expan-
sions

{p-p'}' ~ ' lpllp'I

ft (lpl lp'I&=
Ip I

- 8(lp'I-lpl&

+
I

z+a 8(IPI IP'I&I
p'I'

p I+2

p'p 2% Z s,r.{))»&)
l=o ra= -f

(3.10)

"(pl2 ~m2)2 ~ (3.12)

&&Hg) (P', 8', ))))'),

(3.11)

we see that Eq. {3.5) leads to the following integral
equation for the partial-wave vertex function
I;(Ipl):

1.(lpl) =Ipl'z.

+~(~,~ f &In'll)'I'a, )lpl, )p'I)

Zz AE(a, 1 - a; I, +2; 1)

r(I. +2)r(I, +1)
I'(I, +2 —a)F(I, +1+a} ' (3.1V)

The constant A may be determined by the usual
condition" 1'(p' = -m') =1. Then, introducing the
(infrared) cutoff" e defined by e = p'+ m', one
finds

(m'/e)' 1 (a)F(I, +1)
(-m'/e) I' F{2a—1)I'(I, +2-a) '

Of course the normalization should not affect the
physical content of Z~. That this is the case may
be seen by choosing A = 1 in (3.1V), i.e., the nor-
malization (I'z/I pp)~~~, =1. The zeros of Zz in
this case, i.e.,

and A is a normalization constant. Using the ap-
propriate expansion of the hypergeometric func-
tion E, it can be shown that (3.15}satisfies also
the second of the boundary conditions (3.14). [Note
that for m, e m the solution cannot be expressed in
the simple form of (3.15); instead a perturbation
expansion such as that described in Ref. 20 would
have to be derived. ] From the second of the rela-
tions (3.14) and Gauss's formula we obtain

This integral equation is equivalent to a differen-
tial equation supplemented by two boundary condi-
tions. By differentiation of (3.12) these are found
to be

I +1+0.=-g
n, n'=0, 1, 2, . . .1+2- a=-pg'

(3.19)

(
d' 3 d I,(I, +2) A.

dipl' lpl dipl lpl' (lp1'+m'}'

(3.13)

are also the zeros of (3.18), i.e.,
I +2- e=-g'»
2o'-1 =-(s -n'),
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provided n ~ n'. The eigenvalue conditions (3.19)
may be written

are described in Ref. 20. For q&e0 and masses
m, and m, for the fields p, and y„we can write"

, =(L+n+l)(L+n+2). (3.20} r(p, q) =K(s, , s,)I'(p)

(3.22)
Defining s = -p, ' and considering the particle of
mass m, to be on the mass shell, i.e., p, ' = -m, ',
it is not possible to derive the large s (i.e., m
off-shell) behavior of the vertex function I' from
the relations (3.7) and (3.15). The reason is that,
since

p' = =2q' -2 (s -pI')1 2 1

(3.21)

p'q =-(s+p, '),

Z ~K(sI t s2)Z,

where I'(p) is the solution of the equation

d2p'r(p')
4I/' (p -$')2[(1 +a)'+p" ][(I-Z }'+p"] '

(3.23)

with

SI pI'+m/' (i =1, 2), A, =
as is easily shown, the limit q„=0 implies s = -p, '
=m, 2. Thus, if each component q„ is zero, s has
a fixed, finite value. It is essential therefore, in
order to obtain the large-s asymptotic behavior of
I', to consider the case q„eO. The calculations and

q„= 2iI&„-, $'= l(l'=-'(m, '+m, '-2I&'),
(3.24}

2 4 2
~2 I W 1 ~ I(m2 m2)

(m, + m, )' —4I&2'

M =2~'/[(m, +m, )+(m, -m)~],
4$'(a' —I}'$2)'"M'{j-'(m +m )]' -gQ

I t 2 (S [(62 —$2]2)l/2 6 + (2] +S [(62 —Y&2]2)I/2 —4 —]2])

)2 s [(b2 —$2)2)1 2 +S —]2] +s [(42 $2)2)1 2 +6 + ]2]
p M2 s [(g2 I}2]2)1/2 ~ + ]2]~s [(~2 I&2)2)1/2 ~ )2] (3.25)

We now observe that Eq. (3.23) is O(4)-symmetric in the p space. Its solutions may therefore be written

r(p)-r „(p)=r, (lpl)ff„. (ItI, e, qI},

where ltl, 8, qt are the polar angles of p in the four-dimensional Euclidean space. Similarly we writr

z -z, =
I p I z H, (y, 8, qt) .

Proceeding as before we have

(3.26)

(3.27)

and

(
d' 3 d L(L+ 2)

Ipl dipl Ipl' [Ipl'+(I+&}'1[I&I'+(I -&)']

iim lpl"Ir, (lpl) =c„
)P) ~0

Z if Z e0,
lim r (Ipl)l'Ipl'-
/pg ~m if z =0

I pl
1+22I, t

(3.28)

(3.29)

C„d„being constants. In Ref. 20 Eq. (3.28) is solved by a perturbation method. '0 We obtain the solution

(3.30)

where



1080 G. E. HITE AND H. J. W. MULLER-KIRSTEN

2 2

F~ a, , = F a+54', 1 —a-5~'; L+2;

g2k

k=1

and n =0, 1, 2, 3, . . . . A is a
coefficients which are given
Jointly with (3.31) we obtain

(3.31)
2k

p P» (nj }Fa +5p +j, 1-a —5n -j; L+2;
f= -2k Pp2 ~i
f ss 0

normalization constant, F is again the hypergeometric function, and P» are
in Ref. 20. The expansion (3.31) has a circle of convergence around 5, =0.
an eigenvalue expansion which may be solved for the Toiler poles, L = a„:

A62[(n+1}(2a n —1-)(2a —3)+n(2a n —2-)(2a+1)]
tl 4(25-3)(25 —I)'(25+1) (3.32)

where, according to Ref. 20,

4x X/2-

a=2 i+ 1+
(m, + m, )' —4n')

The relation between the Toiler poles and the Regge poles a„„is

a„„(g')= a„(rP) —g; n, p, = 0, 1, 2, . . . .
Knowing r~, i.e., (3.30), we may derive Zz by (3.29):

Z~ =23'~(a, 1}

(3.33)

r(L+2}I'(L+1) "
. I'(L+2 —a —5b2)r(L+I + a+5gm)

I'(L+2 —a —52)2)r(L+I +d)+56 ), - + ~ » ' I'(L+2 -j —a —527)r(L+I -j +a+522) .
f00

(3.34)

by Gauss's formula. We observe that

Z =0 for
L+2 —a —562 = -n

n, n'=0, 1, 2, . . . .
L+1+a+6g2 = -n'

(3.35)

Substituting (3.30} into (3.22) and with (3.34) we
have an expansion of the vertex function for q„0.
We may therefore proceed to investigate its large-
s asymptotic behavior.

IV. OFF-MASS SHELL BEHAVIOR OF THE
VERTEX FUNCTION

In this section we consider the behavior of the
vertex function I'(p, q) when one of the ingoing legs
is off the mass shell.

We consider first the case Z =0. In this case we
have the eigensolutions

(4.1)

where L and a are related to each other via the
eigenvalue relation (3.32) and so are restricted to
certain values characterized by an integer
n =0, 1, 2, . . . . Substituting

r- r„(p)
=r (Ipll .(0, e, q)

into (3.22), we obtain

2

)'(), e)=&( „*Al))l'& ( p2+1

(4.2)

In general the normalization constant 3 may be a
function of s, and s, . Thus

A =A(s, , s,).
Normalizing I'(p, q) to 1 on the mass shell of the
mesons, we may fix the value of A(0, 0}. Due to
the s, dependence of E in (4.2) this constant de-
pends strongly on the infrared cutoff E. In order
to be able to determine the s, deyendence of A,
we require additional information on the behavior
of r(p, q). In the second paper of Ref. 20, it is
shown that the four-point function T behaves at
most like I/p' when the particle of mass m, is off
the mass shell and Is, I

-~. In going to the pole of
mass q' = -m~2 in the Lth O(4) partial wave of the
four-point amplitude T as described by Fig. 8, T
is related to I'„by the relation

T„l i i 7- „r.(p}r.(p')c.'
p2 ' ~ q2+ mV

At the pole the entire p dependence of T is con-
tained in I', which may therefore have the same
asymptotic behavior, i.e., 1jp'. Hence, in the
limit

I s, I
-~

A=A, ,
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p)
=P'+&0

I) P2
1

P+2 0 I'z, (P, q)=Z~, hz+yz/s for s-~,

where h~ and y~ are independent of s.

(4.6)

Combining the results for the ease where g =0,
Eq. (4.3), with those when Z e0, we may write

ii p&
1= P+-0
2

"P2
=-P+-9

2

V. FIXED POLES; DISCUSSION

FIG. 8. The integral equation of the four-point function.

where A, is an infrared cutoff-dependent constant.
Hence

I'(p q) =O(1/p'), (4 3)

where p'= =,s for s-~.
Next we consider the case Z w0. In this case we

may again use the solution (3.30), provided n is
now regarded as a parameter n (L, 5, 3,), which is
found by solving the eigenvalue equation (3.32) for
n "Th.en from (3.34)

A =Zi/Fz(a, 1)

We now return to our original problem and con-
sider the contribution of Fig. 6. We denote by V~,
V~ the outgoing vector particles, which are char-
acterized by the quantum numbers L, l, m and L',
l', m', respectively. If we take the axis of quan-
tization for V~, z to be opposite to the direction
of particle V~ as seen in the rest frame of V~ and
z' to be opposite to the direction of particle V~ as
seen in the rest frame-of V~, , then m = p, and
m'= p4. In this case the contributions of Fig. 6 to
the transition amplitude for the t-channel process
mm- V~ V~. amount to

so that

0 (a 1)
(4.4)

+)q-S')) ~ )possib)e sergei)terms),

(5.1)
With the use of Eqs. (3.22),. (3.26), and (3.27), we
find that the vertex function can be written for
ZwO as

(4.5)

where I'z, „(p, q) is the vvVz vertex function, and
s = -(p, -q)', the square of the total energy of the
s channel, is assumed to be large and positive.
Using (3.4) and (4.6), the helicity amplitude F,', ~
for vector fields is given by

F,', ~= (v2Gp'sin8, +y/IpI'), (v2G'p'sin8, +y'/IpI')+(q q')

(v 2 Gp' sin8, + yx/I pl ) (~2G'p' sin8, + Yx/I p I') ~ +

where 0= h~g~, p" + m, ' =4t, and 8, is the scat-
tering angle in the t-channel center-of-mass sys-
tem. It should be noted that a gauge-invariant
theory demands that both the s- and u-exchange
diagrams as well as the seagull diagram shown in
Fig. 9 be included and that the coupling constant
for the seagull term be the square of the vertex
coupling constant in the s- and u-exchange dia-
grams. It is clear from the invariant amplitude
decomposition' that the seagull diagram, which
is present only in one invariant amplitude, i.e.,
D of Ref. 1, does not contribute to either F,', 00
or Fg0 00 which are the only helicity amplitudes
that can have a fixed pole at J=0. Of course, the
fact that gauge invariance relates the invariant

amplitude containing the seagull contribution to
those invariant amplitudes containing the exchange
diagrams, i.e., their coupling constants are re-
lated, makes it somewhat ambiguous to say, that .
these t-channel helicity amplitudes are indepen-
dent of the seagull diagram. This is more clearly
illustrated by the fact that the s-channel helicity
amplitude F;0 g0 which is equal to Fy y 00 for Comp-
ton scattering is given solely by the invariant am-
plitude containing the seagull diagram when t is
zero (see Ref. 1). The situation here is analogous
to the problem of the pion pole in yN- wN, where
the pion-exchange diagram contributes due to
gauge invariance only to s-channel but not t -chan-
nel helicity amplitudes.
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FIG. 9. Born diagrams and the "seagull" diagram.

It should also be noted that our model as shown
in Fig. 2 (apart from possible seagull contribu-
tions) contains the exchange diagrams of Fig. 9
and thus should not be compared directly with

Fig. 2 of Landshoff and Polkinghorne of Ref. 9. In
particular, when the vector particles are elemen-
tary, i.e., Compton scattering, our model (apart
from possible seagull contributions) is just the re-
normalized Born diagrams responsible for the so-
called current-algebra fixed pole.

We now distinguish three cases:

(a) Ff, «-constant if both Z, , Z, t0,
i.e., in mw yy

(b) F,', «-1/s' if only one Z, e0,
i.e., in mm yp,

and

(c) Ff, «-1/s4 ifboth Z, =0, i.e.,

inset-pp.

Case (a) implies that the vector particle y is ele-
mentary in the sense that it does not lie on a
Regge trajectory and that its field is contained in
the Lagrangian of the theory, like the photon field
in quantum electrodynamics. Case (b), however,
implies that the vector particle p, i.e., the p
meson, is composite in the sense that it lies on a
Regge trajectory —determined by (3.32) and
(3.33)—and that its field is not contained in the
(renormalized) Lagrangian. In case (c) neither
vector particle is elementary —the Lagrangian re-
duces to that of the Wick-Cutkosky model.

We now return to our- earlier discussion of fixed
poles and consider the amplitude E,', «. We have

o.(, ) =,' ...(, )/

Thus, if n =2 (as in the case under discussion) we
may have fixed poles at Jo I, 0, . . . and n —Jo is
I, 2, . . . . Because the initial state consists of two
identical spinless mesons, the amplitudes of nega-
tive spin-parity are zero.

If the vector particles are elementary, i.e., pho-
tons, so that Py0, irrespective of our model, the
amplitudes of interest, i.e., F,', ~ and Fyo 00,
possess contributions coming from the Born ex-
change diagrams shown in Fig. 9. Thus when

4 0 fixed poles are possible at J= 1, 0, . . . in am-
plitudes of the right signature as well as in those
of the wrong signature.

The situation is different, however, when 2, =0.
In this case the Born diagrams of Fig. 9 do not
contribute or, expressed more precisely, these
diagrams are now sums of ladder diagrams be-
cause only these imply a relation between the out-
going vector particles and two-particle amplitudes
with the same quantum numbers, i.e., only these
diagrams imply that the vector particles are com-
posite and lie on Regge trajectories. In this case
the asymptotic behavior of the amplitude dis-
cussed above is such as to ensure the vanishing of
the integral in (2.1) for amplitudes of the right
signature (i.e., even signature for the fixed pole
at g =0, odd signature for the fixed pole at g = 1).

For simplicity we assumed the meson fields in
our model to be elementary. Since the pion is
known to possess structure and to be a strongly
interacting particle, it is essential to remove this
assumption in a more realistic theory. This can
in fact be done, e.g., in the framework of the
quark model or a (nonrenormalizable) nonlinear
spinor theory. "" In this case the diagrams of
Fig. 6 would be replaced by those of Fig. 10 (Q
meaning quark). Here each of the vertices rep-
resents a vertex function which can be calculated
in ladder approximation so that the asymptotic be-
havior can (in principle} be derived explicitly.
Such a model would be related to models discussed
recently by Drell and T. D. Lee,"S. Y. Lee," and
Brodsky et tel.

We conclude with some remarks on the vector-
meson-dominance (VMD} hypothesis. The question
is: Are fixed poles in conflict with the VMD
model'P We recall that the VMD hypothesis con-
nects the hadronic electromagnetic current with

+X-X,OO/+

As noted before, the superconvergence relation
(2.2) holds provided

E-s '

iJ a
+ crossed form

and

~&n-J„J,=n —i, n —2, . . . . FIG. 10. Our model amplitude in a spinor theory.
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the fields of the vector mesons p (isospin I =1) and

~, Q (I =0) which have the same quantum numbers
as this current and the photon. Photonic pro-
cesses —such as photoproduction and Compton
scattering —are therefore related to vector-meson-
induced strong interactions. Thus the VMD model
takes into account only purely hadronic parts of
the photon's interaction with a hadron; it leaves
unaccounted the interaction between a bare photon
and the hadron. Since all solely strongly interact-
ing particles are believed to be composite and so
to lie on (moving) Regge trajectories, those con-
tributions to a scattering amplitude which result
from fixed J-plane poles must be interpreted as
due to interactions with noncomposite, i.e., ele-
mentary particles. One may picture the interac-
tion in the manner of suri and Yennie. " According

to this picture, the incoming photon in Compton
scattering is composed of hadrons for a fraction
of the time. At sufficiently high energies the
points at which the photon changes from a bare
elementary particle to a system of hadrons will
lie within the target hadron, so that in this case
the hadron-hadron interaction will be supple-
mented by an interaction between the target hadron
and the bare photon. Clearly this latter interac-
tion is not taken into account by the VMD hypothe-
sis and so there are non-VMD contributions in
Compton scattering, as has also been conjectured
by Brodsky et al."and Ezawa. ~ These bare pho-
ton contributions are, of course, directly related
to the Born terms or fixed poles. Their contribu-
tions may again be subdivided into fixed-pole
(pure Born term) and Regge-pole contributions.
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The knowledge of the wave function of a relativistic composite system constitutes a com-
plete description of its intrinsic properties such as mass spectrum, elastic and inelastic form
factors, and structure functions. The wave functions of the proton obtained from the 0(4, 2)
infinite-multiplet model, which were used previously to calculate mass spectra and form
factors, are applied to reevaluate in a more complete manner the structure functions in
closed form. The resultant scaling functions obey the Drell-Yan relation E~($)- (1 —$)3 and,
under certain conditions, the Callan-Cross relation E2g) ~ 2$E~($).

I. INTRODUCTION

A good model of the nucleon as a relativistic
composite object must account for all its proper-
ties which are usually associated with the internal
structure of the nucleon. It must give a good de-
scription of processes which are determined by
the nucleon structure alone. Only then can we say
that we have a good over-all picture of the nucleon.
These properties are the elastic form factors, the
spectrum of the excited states, the inelastic
transition form factors, the decay rates of the
excited states, and the structure functions. In
ordinary quantum theory these properties are all
determined by the wave function of the system.
Hence the exact knowledge of the wave function
constitutes a complete description of the system.
Experimentally the intrinsic properties of the
system are measured by probes which are them-
selves structureless. For the nucleons, the above-
mentioned properties have been and are being
analyzed from yN, eN, and vN scattering pro-
cesses, and considerable information has been ob-
tained, in particular through the inelastic electron-
nucleon scattering. '

The purpose of this paper is to apply the explicit
wave function of the proton and its excited states

obtained from an infinite-component wave equation
to evaluate the structure functions in inelastic
electron-proton scattering. The wave function has
previously been used to predict the elastic form
factors, ' the mass spectrum, "the inelastic form
factors, 4 and the partial decay rates. ' Some as-
pects of the structure functions have also been
reported. ' ' %e present here the details of a more
complete calculation, briefly reported earlier, '
in particular the explicit form of the so-called
scaling functions F,($) and F,(g).

There is an underlying physical picture of the
description of the proton by a wave equation. It
corresponds to an atomic-type composite system. "
The relativistic H atom itself, conversely, can
be described completely by an infinite-component
wave equation. " This picture and all the calcula-
tions indicated taken together lead to the conclu-
sion that, as far as electromagnetic probes are
concerned, the proton, in a very wide range of
energy and momentum transfer, behaves like an
"atom, " the inelastic process proceeding via the
excitation of the "atom" (including continuum) and
its subsequent decay. The limitations of the pic-
ture will come when particle production without
the excitation of the proton will be a dominant pro-
cess.


