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A completely solvable quantum-mechanical three-particle system that includes breakup is
discussed. The partial-wave amplitudes obtained are written in an abstract form to remove
their dependence on potential theory, and unitarity is Chen used to specify genuine production
amplitudes. The characteristic operator function is calculated for the resulting set of partial-
wave amplitudes, as a physical illustration of the harmonic-analysis approach to three-body
unitarity.

I. INTRODUCTION

In previous papers' it has been shown that
much of the structure of multiparticle partial-
wave amplitudes constrained by the unitarity equa-
tions can be understood in terms of harmonic
analysis of completely nonunitary operators. %Pith

a view toward checking and illustrating some of
the abstract results obtained previously this paper
accomplishes two purposes. First of all, it pro-
vides a simple example of a completely solved
three-body problem in which production processes
are allowed. Using a solution given elsewhere'
for the problem of three arbitrary-mass spinless
particles constrained to move along a line, inter-
acting via a single attractive two-body potential
and a superposition of separable three-body po-
tentials, we make a partial-wave expansion of the
three-dimensional generalization of the system.
Abstracting the results from their foundations in
potential theory into a form which most clearly
displays their functional structure, we find that
the unitarity equations then dictate the form for
actual production, all obtained without introducing
.the machinery of quantum field theory.

There are only a few three-body problems that

have been solved exactly, and of these we are
aware of only three that include production; also,
few can be solved as straightforwardly as this one.
Mcouire, ~ Yang, ' and others' have discussed the
problem of equal-mass particles interacting via
equal-strength two-body d-function potentials.
Only elastic and rearrangement scattering occur
in this model. Breakup can be obtained in a pro-
cess with two-body 5-function interactions only if
the masses or potential strengths are different.
The system then resembles two-dimensional
optics, a super "wedge" problem with six pie-
shaped regions, mixed boundary conditions, and
diffraction. This is a very difficult problem, as
anyone familiar with wedges knows, ' and a solu-
tion has never been given, although several tanta-
lizing possibilities exist.

Recently Calogero and Marchioro' and %olfes9
solved a linear three-body problem in which the
particles interact via inverse-square two-body
forces and an inverse-square three-body force.
No production is obtained in this model.

Mcouire and Hurst" have given an explicit solu-
tion to the linear case of three impenetrable spin-
less particles and have obtained a set of unitary
amplitudes with production allowed. However,
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because there are no forces binding the particles
they have to resort to complicated limiting pro-
cedures to obtain composite systems. Qur model
is in some respects the analog of that given by
Fuda. " Using the Faddeev equations he has shown
that amplitudes for both elastic and inelastic scat-
tering can be found for particles interacting via a
single two-body and separable three-body potential
We feel that his approach and results, however,
somewhat obscure the underlying simplicity of the
problem. The single example of a relativistic
three-body problem for which a set of amplitudes
has been obtained that includes production is the
(V- 8) sector calculation for the Lee model below
the four-body threshold. " The solution in this
case is given in terms of dispersion integrals.

As discussed by IQink in two recent papers"
(hereafter referred to as paper ff and paper Ho,
the 3-3 partial-wave amplitude generates a con-
traction operator which is defined on a Hilbert
space X in which the production (2-3 and 3-2)
partial-wave amplitudes lie as vectors. On a cer-
tain subsyace of X the contraction is completely
nonunitary, allowing the characterization of 8 and
X to be realized by certain methods from harmon-
ic analysis. In particular, the characteristic op-
erator function 08 plays an important role in this
construction.

The second purpose of this paper is to use our
solution to illustrate the structure of the charac-
teristic operator function in its simplest form for
a physical problem. Certain results will emerge;
it will be shown, for example, that the canonical
form for the characteristic operator function de-
pends on the behavior of the phase shifts below the
three-body threshold. This means, for example,
that experimental constraints may be put on 68
for realistic systems.

In Sec. II the scattering model is presented. Sec-
tion IIIA is a brief review of some of the relevant
results of paper III, and in Sec. III 8 the structure
of 6~ for the scattering model is discussed. The
meaning of partial-wave analysis for one-dimen-
sional systems is explained in Appendix A, and in
Appendix B the criterion that the 3-3 yartial-
wave amplitude be non-normal is examined.

II. THE MODEL

A. Potential-theory foundation

In this section the solution for the one-dimensional
scattering model is generalized to three dimen-
sions and evaluated in a partial-wave basis. After
the results are abstracted from their origins in

potential theory, partial-wave amplitudes, emerge
which can be interpreted as production amplitudes,
the form of which are dictated by the requirements

was solved and the complete set of scattering am-
phtudes obtamed. Here x is the relative coordi-
nate between particles 1 and 2, and y is the rela-
tive coordinate between the center of mass of the
1-2 subsystem and particle 3. Using standard
two-potential theory, the S matrix was evaluated
bebveen scattering states which satisfy the inter-
mediate Lippmann-Schwinger equations

(2.2)

where @0 is the solution to the homogeneous ver-
sion of Eq. (2.1), that is, the solution for three
free particles. The 8 matrix, which ean be shown
to be unitary by direct calculation or by operator
techniques, "was shown to be

3'.-.=(6 At)+g ~ i*(f)M '»~;(i),

3~2 g ~l (f)M»~g(i) y

l, k

.-3 =Q & ~ (f)M '» &a(i), (2.3)

~, , =(4~, 4g)+Q ~',*(f)M '» m,'(i) .

M(y= —23i(5(~ —G, q),

where 5&~ is the Kroneeker delta and

G)y= (dg 6 4Pg ~

The (d~ are generalized Fourier transforms with
respect to the complete set of solutions to Eq.
(2.2). That is,

&3;=((u*, , y') .
Notice that in none of the equations above has the
dimension of x or y been specified. Hence the
result (2.3) is as valid for three dimensions as
for one. Furthermore the inner products, Fou-

of unitarity.
In Ref. 3 the three-particle Schrodinger equation

with center-of-mass coordinates separated out,
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rier transforms, and traces may be evaluated in

a partial-wave basis as well as position or mo-
mentum basis. Equation (2.2) can therefore be
regarded as one-dimensional pax tial-wave S-ma-
trix elements labeled by v (parity) or as three-
dimensional partial-wave elements labeled by J
(angular momentum), and written with these labels
suppressed.

It was shown in Ref. 2 that (P, P') is a one-line
disconnected element in the 3-3 amplitude. As
expected, it satisfies two-body unitarity below the
three-body threshold. For partial-wave ampli-
tudes in one dimension &9~ are functions of the
total energy E and a subenergy and ru' are func-
tions of E alone. In three dimensions ~' are
functions of E and two subenergies and ~ is a
function of E alone.

(2.4c)

(2.4d)

where s has been written in terms of the phase-
shift 5 and inelasticity parameter q:

s =ye"' .
The symbol $8/~ represents an operator on X
defined by"

(ye*)f =(e,f) y,
for P, g,fe X. Consequently, from the defini-
tions, the inner product II&Il'~ for example, means,

II~II*=l„ fdic; ,r~

B. Generalization and partial-wave unitarity

In the following we consider only three-dimen-
sional partial-wave amplitudes (PWA) unless
explicitly stated and continue to suppress O'. As
in paper II, if only one two-body channel is open,
the partial-wave 8 matrix for three-body scatter-
ing is written

and the action of 8 on A is written

That S is a contraction (i e ~ II Sf II - Ilf II for any

fcX}is demonstrated in paper III.
Motivated by the results (2.8) from potential

scattering theory, choose for the partial-wave
amplitudes the following:

where s is a complex number of magnitude less
than or equal to one and S is a contraction oper-
ator defined on a Hilbert space X in which the
vectors B and A lie. The unitarity relations are
preserved if the inner product on X is defined as
integration over subenergies together with sum-
mation over spin-component indices, and S is an

integral operator on Xwhose kernel is the 3-3
P%A. That is, if the subenergies are s„ the total
energy E, and S=S'+g,~„s,*,

A+ =S~„'(E,s,),
II = S~2s ~ (E, s~),

s =S~ '(E},

where (u,}and (~,}are each a set of N vectors
in our Hilbert space X, (e,}is a set of N com-
plex numbers, and 8", generated by the discon-
nected element of the 3-3 PWA, is a unitaxy op-
erator on X. In order that these amplitudes sat-
isfy unitarity it is necessary that the following
auxiliary conditions hold:

(2.6a}

(2.6b)

reproduces the partial-wave unitarity relations

ll&ll'= II&Il'=I n', -
0 = ge ' B+SA. ,

(2.4a)

(2.4b)

(2.6c)

That they must be true can be seen by writing out
Eq. (2.4c) and forcing it to hold:
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$' @=I $~ + gy&g, *&g,* 8 + 5~A,~~SK~

gg) g+] g]+ $8 v)A.]g(3)$0'

functions below the three-body threshold. Putting
(2.6) on the energy shell and identifying

f(k, k') =6($-$')

Q Is& @~a~i (6a ~ ei) ~isa j~

f jhow

gg] A.g+j + A.]g+ A,g+g 5p y 5) A, gg QPg

kl

K] (3}A,g+g 6(+6 ) A, gg kg+
i jQ!

=A (3)A*,

where all three conditions have been used. The
other unitarity relationships, Eqs. (2.4), are also
satisfied by Eqs. (2.5) and (2.6).

- To make eonerete the correspondence between
the partial-wave amplitudes abstractly defined in
Eqs. (2.5) and those derived from the potential
model [Eq. (2.8)], set

Vg = (dg

%g = OP]

6) = (dg

and

~'(f, f) =(4j, 4~)) .
Then Eqs. (2.5) reproduce Eqs. (2.8).

The auxiliary conditions, Eqs. (2.6), also have
their analogs in the potential model and are dis-
cussed in one and three dimensions in the follow-
ing. The first condition, Eq. (2.6a), expresses
the unitarity of the disconnected element 8". In
one dimension 8" has the form

S = sy I+s~ I
where sI and s& are the forward and backward two-
body 8-matrix amplitudes below the three-body
threshold, I is the identity operator, and I' an
involution:

II' =I'
PI' =I y

and I is self-adjoint. This can be seen by writing
off the energy shell

8'(% i ') =( y (%) y'(R'))

gives Eq. (2.7).
The form for S~ in three dimensions is funda-

mentally different from what it is in one dimen-
sion. As shown in paper II, the disconnected
3-3 PWA can be written

S~„„i(E,8, s~, 8', s') =4wg F~s(8) Yq~~i(8'')
/=0

x 8 J 3 6(s~ —s~) 5sse

where 5& is the two-body phase shift below the
three-body threshold and s, is the subenergy

The angle 8 is measured between the momentum
direction of particle 3 and that of particle 1, as
seen in the 1-2 center-of-mass system. It can
be seen that the three-dimensional case offers
much richer structure than is true in one, dimen-
sion. If only the first few phase shifts below the
three-body threshold are known from experiment
to be nonzero, however, an intermediate ease is
obtained in which P' can be written as a finite sum
of operators.

It should be emphasized that in our model only
one of the three possible disconnected terms ap-
pears. This, of course, comes about because
only two of the three particles interact via a two-
body potential. Such was assumed in order to ob-
tain an easily solvable system, and resulted in 8
being unitary. If more than one disconnected term
appears, it is easily seen that 8" will no longer be
unitary.

The second auxiliary condition, Eq. (2.61), re
places the Green's function relation

G -G'=2m(E-H),
where H = —V'+ U, . In particular, from the poten-
tial model,

(A. +A. ' })~= . (G(~ —G~g)
2Tri

= (-.')'" 5(&, —&,') (4 (&.), t'(~.'))
=(-,')'~' 6(g„-0„')[s~ 6(k, —k,')+s, 6(k, +k,')]

= 6(E —E') [s~ 6(k —k')+s, 5(s —8 —$')],
where we have used the fact that Eq. (2.2) separates
into p(R, x) = t'(k„x) rj(k„, y), as explained in Ref. 8.
Because x is the relative coordinate between par-
ticles 1 and 2, $'(x) are the two-particle wave

+ ~g ~g G++

G G
Gpss

u; G+' —G
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But

+ (~g yb) (4
5 g)

—(~g ~g)

by completeness. Furthermore, time-reversal
invariance implies that ~, is real in the position
basis. Hence (X '+X 't) is a real symmetric
matrix.

The final auxiliary condition, u& =S" v&, has in-
teresting consequences for the form of the oper-
ator S. For example, it is shown in Appendix 8
that if the subspaee spanned by so& is identical to
that spanned by v„ then 8 is normal (StS =SSt)
and ean be diagonalized and described in terms
of its spectral properties. The problem for S nor-
mal has been solved in general in paper II. For
8 non-normal (the usual case), diagonalization is
no longer possible but, because S is a contraction,
certain methods from harmonic analysis can be
used to characterize S, and within this framework
the relation u

&
=S v& will still be important; The

ease of S non-normal is the concern of Sec. III.

HI. e, FOR THE SCATTERING MODEL

A. General considerations

ample, paper III or Ref. 15, page 248.} The char-
acteristic operator function itself specifies the
complete spectrum of S. For example, the zeros
of ez(z} are the point spectra (discrete eigenval-
ues). (See Ref. 15, page 259.)

%hen thought of as a function on the unit disk
[we will write ez(z) in this case] the canonical
factorization of 8z(z} gives information about 8.
For example, if Hz is inner [that is, I 8z(z) I

~ 1
and I ez(e' )I =1 almost everywhere on the unit
circle], it can be decomposed into a product of a
Blaschke factor and a singular factor':

e,(z) = zB(z) 8(z), (3.3)

where z is of modulus 1. The Blaschke factor B(z)
includes all the zeros of ez and 8(z} is a function
without zex'os which is positive at the origin. In
this case it is true that the defect syaces are one-
dimensional, that (8 )"h 0 for any heX, and
that 8

I Sz is completely nonunitary with the mod-
ulus of its eigenvalues strictly less than 1. This
case is explicitly mentioned because our 8 (in one
dimension) falls into this category.

It follows from the unitarity relations that if the
defect spaces are one-dimensional (which corre-
spond to one two-body channel open above the
three-body threshold), then as was shown in paper
III

(3.4)

The usual operator-valued analytic function for
describing the structuxe of a normal operator S
defined on a Hilbert space X is the resolvent (8
—zI), which for self-adjoint differential oper-
ators is just the usual Green's function common in

physics. If S is non-normal, howevex, the re-
solvent yields little information about S. If S is a
non-normal contraction, a more useful function
is the eharactex istic opexator function defined by

ez(z) =-8+zDzt(I zS ) 'DzI a)z- (3.1)

for all complex numbers z such that (I- zS t) is
boundedly invertible. The defect operator D~ is
defined by

Dz=(I-StS) ~' (3.2)

and the defect space S~ is the domain of D~. The
range of e~ is ~~y, a fact used in Sec. III 8.

The characteristic opex'ator function is used in
the construction of a functional model for the non-
normal contraction S. That is, the action of S on
X is realized by a unitarily equivalent operator S
acting on a particular subspace % of vector-
valued analytic functions. VYhereas S may be very
complicated on X, S is quite simple on K, es-
sentially multiplication by z. e~ is used in the
construction of the subspace 3R . (See, for ex-

(3.5)

where A H 2 ~ and BH S~t and g is the inelasticity
parameter. This follows from ez(0) = -8 and Eq.
(2.4b).

Since in our scattering model the defect spaces
are one-dimensional, it is natural to calculate the
inner product (B,ezra) in order to investigate the
structure of es as a function of z. This is the
subject of Sec. III 8.

8. stmctere of 88(z)

In this section ez(z), defined by

e (,) (B O (z)g} ( z( }&

is calculated for our one-dimensional scattering
model, first with one separable yotential because
then the structure is most transparent, and then
with a superposition of N separable potentials.

Noting that

A8A*
I I

ruw*
IIA II II' II

BS&B~
I I

vv~
li&ll II vll



1062 WILLIAM H. KLINK AND LLOYD E. JOHNSON

and that II vll = llw(l because S' is unitary allows
8s(z) to be written

and

Qq(z) = z X+s~* .
A. +

8, (z) =—[-1—~ll vll'

+ z(e( I ~l'(v, (I- zs') 'w)]. (3.6)

The operator inverse (I-zS ) ' can be expanded
in powers of S or, as will be done here, in op-
erators of the form v(3 v', where v and v' span
the range of S~~ v. Writing

S'=s, 1+8,p

and defining

v'=P v

it can be shown that the operator inverse is given
by

(I-zS~) '=—Q,I-Q,I' — ' ' vv* — ' v'Sv*

@.@4

P2 P2

(3.7)

where the polynomials P(z) and Q(z) are given by

P,(z) =z'(s,*' -sp') +2zsf —1,
P.(z) ="(s.* -sp'}(1+ II vll'*)

+ z[2sg'+ Z+sP (( v (I
'+ z+s~+(v', v)] —1,

Q, (z) =zsP —1,
Q, (z) =zs,*,
Q,(z) =z' X*(s,*' -sP') +z A~sf,

Substituting Eq. (3.V) into Eq. (3.6) and making
heavy use of the identity (2.6b) gives

8 (z) = —— (z'(s+'-s+')
Z P,(z)

+zj2sP +a[(l vl('sP —(v', v)s,*]]

-(1+&Ilvll')} (3.6)

a ratio of second-order polynomials in a. It should
be noted that it is straightforward to extract the
2-2 inelasticity parameter from this, in accord
with Eq. (3.4). Again using Eq. (2.6b) one can show

that 8s(z) can be factored into the form (3.3) where
the singular function is a constant:

The zeros a„a, of the Blaschke product (and there-
fore the eigenvalues of S) are given by

{2s~ +&[II vll's~ —(v', v) s~*]]' +WQ

IP 2(sg2 sy2)

(3.10)

where

Q=4s,*fs,*+x[s,* ((vll'-s*(v', v)])

+~'[s,*llvll'-s, *(v', v}] .

For a superposition of N separable potentials a-

similar, although more tedious, calculation shows
that

8s(z) =-(e X OX&~) ' e X (z'hI z+[2sf I+OAO '(sp-s~~O'}]-0(I+XO}0 'jX ' P, '(z) A. OX e~,

(3.11)

where A is the NxN matrix given in Eq. (2.6b),
0 is an NxN matrix whose elements are (v„v~),
0' is the matrix (vf, v~), and e is the column vector
whose components are e, . I is the unit Nx.N ma-
trix, and in this case P,(z) is a matrix polynomial:

P,(z) =z'a(I+do)

+z(2spI +sf X 0+s,*X 0') -I,
where

p =(s g2 sP2)

Because of the complicated nature of 8s(z) in
Eq. (3.11) it appears to be very difficult to factor
it into the canonical form (3.3), although general
arguments about the spectrum of S show that it
must factor into a Blaschke product with a finite

number of terms.
Although in one dimension 8s(z) is always a

Blaschke product, it is possible to show that in
three dimensions, with S" as given in Sec. IIB,
88 will have a nontrivial singular function and
possibly an outer function in its factorization. This
follows because (S~)" maps vectors from the span
of (v,j U(w, j into vectors outside this subspace,
resulting in the lack of strong convergence S"-0.
By a theorem in Ref. 15 the factorization therefore
cannot consist only of inner functions.

IV. CONCLUSION

A solution to a three-body problem has been con-
structed for which the production (partial-wave)
amplihxdes lie in a Hilbert space X, the two-body
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amplitudes are complex numbers, and the 3-3
amplitudes generate an operator on X of the form

S =S'+g v, 8 P.,&wg,

where S" is unitary, A. is a complex matrix, and

(v,}and jw,}each span a finite subspace of X.
The ampIitudes satisfy unitarity and have been
used to construct the characteristic operator func-
tion for the completely nonunitary part of S.

Several further results have emerged. First of
all, although in this model there is a large sub-
space of X on which S is unitary (that is, the space
orthogonal to the span of (v&}U(w&}), the pro-
duction amplitudes lie only in that subspace on

which S is completely nonunitary, as predicted in

paper III. The model also shows that although it
is necessary that there be more than one two-par-
ticle bound state or that spin be included in order
that the defect spaces have dimension greater than

one, it is not sufficient. Thus, if there are several
bound states in the model generated by a super-
position of separable potentials, it is possible to
have various rearrangement and production am-
plitudes. On the other hand, for a single separable
potential the production amplitudes obtained from
the various two-body bound states differ only in
norm, not "direction". That is, for the various
two-body bound states from which production can
occur, the production amplitudes vary only if the
factor e which has no vector character. Stated in

the language of the potential model, this means
that the production amplitudes vary only in their
dependence on the total energy E, and not at all
on the subenergy 8, . We have also seen that in
this very simple model it is possible that the
characteristic operator function may have a non-
trivial factorization, with possible singular and

outer functions as well as Blaschke products.
The model we have is obviously deficient in that
it allows a two-body force between only two of the
three particles. A more interesting case would be
one in which all three particles feel two-body
forces only. In this case S" would be nonunitary,
and ez would presumably be more complex. Such

a model awaits solution.
Finally, it should be emphasized that no claim

is made that we have learned more about S with
the characteristic operator function than we knew

already from the model. Quite the contrary in
fact is the case, since all information about the
2-2 phase shift is lost, as explained in detail in

paper III. This example was solely a first attempt
to illustrate the calculation and meaning of e~ for
three-body scattering. The real interest in the
harmonic-analysis approach to multiparticle uni-
tarity lies in constraints that may be placed on

e~ by other physical ideas, crossing or resonance
production, for example. Then, once a choice is
made for e~, the predictions made about the pro-
duction amplitudes and inelasticity parameters
can be checked against experiment.
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APPENDIX A: PARTIAL-WAVE EXPANSION
FOR ONE-DIMENSIONAL SYSTEMS

The analog in one dimension of a three-dimen-
sional partial-wave expansion is discussed in

this appendix. Just as the three-dimensional
partial-wave amplitudes are expansion coefficients
in the rotation group, so the one-dimensional PWA

are expansion coefficients in the parity group. For
three particles in the over-all center-of-mass
system, the one-dimensional scattering amplitudes
are functions of the total energy E and an angle k,
where 0 ~k&2m.

For 0 ~ k & m, P, is positive, where P, is the mo-
mentum direction of particle 3 in the over-all cen-
ter of mass. For m &k +2m, p, is negative. In
three dimensions a rotation A is defined which
relates the directed plane formed by the final-state
particles to that formed by the initial-state par-
ticles." The amplitude in that case is a function
of the total energy, some subenergies, and A.
Similarly, in one dimension one can define a pa-
rameter g which takes on two values, g=+ or-,
describing whether P, final is +P, initial or -p,
initial.

Then letting n be the subenergy, 0 &n&m, the
scattering amplitudes can be expanded in D func-
tions of g, just as the three-dimensional ampli-
tudes are expanded in D functions of A. That is,

S„(E,a}= Q S (q) S (E, a, q),

with inverse

S(E, a, q) = g N„K)i i (q) S„(E,a) .

The S, are the one-dimensional PWA. One can
write"

S, =S(+}+S(-}
and

S(+) =-,'(S,+8 } .

APPENDIX B: CONDITION FOR NORMAL S

Let H'( X be the subspace spanned by v&, and
S and S be defined as in the text. Then a nec-
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essary and sufficient condition that S be normal
is that H' coincide with the range of S~~. From
Eq. (2.4), if S is normal, it must be true that
A 8A*=BSB*. But

and that w~ E II', proving necessity.
Now suppose that w&E-O'. Then w = P v for some

matrix P. For

A SA+ =+ w; ihPj S sa s) A(gwg
5 f01

and

BB*= v] pEg &g&g)~g ~

f fk l

Consequently for

and

' it is true that v A. =w X~, which implies that w=av,
where @=X ' I . The auxiliary condition (2.5c),
however, states that w& =S ~v„and it therefore
follows that

S v] =

Q]yves

if'

i

one can write

IIA II' = 6'kus'ur'its*

and

II BII' = s'k' v+ v'k 6* .
13ut Eq. (2.4) requires that IIAII'= IIBII'. This im-
plies that P A.~=A. or P= A. '*A.~. Consequently
P= o., which implies A(3)A*=B(3B*, and S is nor-
mal.

In the potential model this condition is quite re-
strictive. Using the above and P~, the scattering
eigenfunctions of the complete Hamiltonian, one
can show that the condition that S is normal is
equivalent to

0=((u,*,((]' —y ))

Uz Q &g &g 4'o)

for each co;, the three-body potentials from Eq.
(2.1). The integration is over the wave-function
basis.
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