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The (4, 4*) + {4*,4) model of broken SU(4) x SU(4) as an approximate symmetry of hadrons is
investigated. Spectral-function sum rules for scalar and pseudoscalar densities are derived
in this model. Sum rules based on octet-type breaking of SU(3) at q2 = 0 and q~ = ~ are also
obtained. It is shown that the q2 = 0 sum rule rules out SU(2) x SU(2) as a good symmetry of
the Hamiltonian, when the vacuum is approximately SU(3)-invariant, in the present model.
Thus the problem of understanding SU(2) g SU(2) and SU{3) as approximate symmetries of
the Hamiltonian persists as'in the case of the popular (3, 3*)+ {3*,3}model of broken
SU(3) &( SU(3). It is shown that the q2 = ~ sum rule is consistent with the idea that SU(2) x SU(2)
is a good symmetry of the Hamiltonian. A mass formula for charmed pseudoscalar mesons
is also derived.

I. INTRODUCTION

SU(4) &&SU(4) as an approximate symmetry of
hadrons has recently been proposed by several
authors. The motivation for such an idea comes
from the recent developments in unified gauge
theories of leptons and several attempts to in-
corporate hadrons in such theories. ' In unified

gauge theories with hadrons, in order to restore
renormalizability and eliminate sizeable strange-
ness-changing neutral currents, a fourth quark
has been introduced carrying charm quantum
number in addition to the usual triplet of quarks.
It is then natural to consider SU(4) as a possible
approximate symmetry' of hadrons. This, how-

ever, poses problems because the known spectrum
of hadrons seems to fall in SU(3) multiplets. A

way out of this difficulty has been proposed by
Dittner and Eliezer. They suggest SU(4)XSU(4)
as an approximate symmetry' of the Hamiltonian
of hadrons where the symmetry is realized by
Goldstone bosons, and in the chiral limit the
vacuum is only SU(3)-invariant. In this scheme,
Dittner et a/. "have been able to obtain a solution
for the symmetry-breaking parameters which
shows that both SU(2) && SU(2) and SU(3) are good
symmetries of the Hamiltonian. Their solution
also xequires that the masses of the charmed

mesons be large (-5 GeV), explaining why such
particles, if they exist, have not yet been de-
tected.

The purpose of the present paper is to analyze
the breaking of SU(4) XSU(4) down. to the isospin
group SU(2) following a method' recently applied
to SU(3)xSU(3). The basic idea of such an ap-
proach is to obtain constraints" on the symxnetry-
breaking parameters by studying the spectral-
function sum rules for the scalar and pseudo-
scalar densities. In Sec. II of this paper, spectral-
function sum rules for the scalar and pseudoscalar
densities in the broken SU(4) &&SU(4) model are
'derived. In Sec. III sum rules based on the as-
sumption of octet-type breaking of SU(3) for the
two-point functions are derived. It is shown that
the broken-SU(3) sum rule for the pseudoscalar
density constrains the symmetry-breaking pa-
rameters in such a way that SU(2)XSU(2) cannot
be- a good symmetry of the Hamiltonian if the
vacuum is approximately SU(3)-invariant. This
is in contradiction with the result of Dittner
sf gl."who claim SU(2) &&SU(2) as well as SU(3)
as good symmetries of the Hamiltonian. In Sec.
IV sum xules are derived assuming the validity
of octet-type breaking of asymptotic SU(3) sym-
metry' for the two-point functions. It is shown
that the asymptotic sum rules are consistent
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with a solution where SU(2) &&SU(2) is a good sym-
metry of the Hamiltonian. In this case our sum
rule also yields a formula relating the masses
[in SU(3) limit] of charmed and uncharmed pseudo-
sealar mesons in terms of only one symmetry-
breaking parameter. The mass of the charmed
pseudoscalar meson can be calculated, given
the value of this parameter. It is shown, as em-
phasized by Dieus and Mathur, ' that the charmed
pseudoscalar meson can acquire mass of the
order of 5 GeV only when the value of this pa-
rameter is close to —1. Finally, in See. V we
conclude with a summary of our result.

)' (o„) 'if=o~e' (-o(o'(~'(*l~ (o'))(o),

These have the following I ehmann-Kalldn spectral
representation'

). (o*) f o ~ o.( ' ")

(qs)
.

d 8 p/s(tu ) u)

where the spectral weight

II. EXACT SUM RULES

We begin with the Hamiltonian density of had-
rons

H(x) =H, (x)+usus(x)+usus(x)+a„u"(x), (1)

where H, (x) is invariant under SU(4) &&SU(4). The
scalar densities u/(x) (j=0, 1, . . . , 15) together
with the pseudoscalar densities v/(x) (j=0, 1,
. . ., 15}transform according to the (4, 48)+ (4*,4)
representation of chiral SU(4) and satisfy the
following commutation relations

[Q ( i ), u'(x, i )] = if /8 u'(x, i ),
[Q (i), v/(x, i)] =if /sv'(x, i),

p»(m', v) = (2w}'g (0 ) v/(0) ) n) (n ( v '(0)
( 0)

x5 (P„-P),
with p'+m'=0 and po&0; similarly for the sca-
lar density. Furthermore, both p»(ms, v) and
p»(m', u) are symmetric in j,k.

If we multiply the expressions for P;8(/i') and
8»((f ) ln E(I. (8) by Eodas/+ ss(fas/+ E'is(fa»/ and
csf »+s» f„»/, respectively, and use E(ls. (5),
(6) and the commutation relations (2), then in
the limit q 0, we get the following exact sum
rules:

(~0(fas/+ ssdas/+~is(fa»/)I'/8

(daSO 0 da88 8 da815~15) I (8a)
[Qs"(t), u'(x, i)] = —id „v'(x, i),
[Q, (t), v (x, f)j =id isu'(x, i),

where a=1, 2, . . ., 15, while j,k run from 0 to 15.
The coefficients f » and d» can be calculated,
and are tabulated in Ref. 3. The charges Q'(f)
and Qs(t) are defined in terms of vector- and
axial-vector -current densities

('s fas/+ &is fa»/)S/8 = fass&s+fas»&» )

where

&/8 =&»(0) S» =- S»(0),

& -=(0iu (0)i0), )tu=0, 8, 15.

(9b)

(10)

It is convenient to define the following parameters:

0;(()=—(f o' 1;(x,().

The vector- and axial-vector-current divergences
are give& by

s„V„(x)= —i[/ (i),H(x)].

s„A"„(x)= —i[/, (t),H(x)],

From E(ls. (1) and (4), we get

u = (8)1/8 ~ b = (8)1/2~
0 0

1 ~e 1 ~A,

W3e, ' f v3

A.

&0

In terms of the symmetry-breaking parameters
defined in Eq. (11), we get from Eqs. (Qa) and
(9b) the following sum rules not related by SU(2)
symmetry:

s „y„(x)= (e,f u + ~ »f„,@)u'(x),

B„A„(x)= —(esd 0/+as/f 8/+~»d„is, }v/(x). (6)

(5)

%e define the two-point functions of scalar and
pseudoscalar densities

1+6+f
33 nl+C+e

1 85+f--
44 / 1 &++8

(12a}

(12b)
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1+—,'b -f
P99=q i

i-5—P 1$1$

&3 aP«+ &2 (1 —a) Pp, + a Po„=&3yP, (15e)

&3aP88+1I2 (1 —a)P„+aP,15=~2y(1 P-)1

(15f)

&3aPpo+ v2 (I -a+e)Pok+aPO15=&3qb, (12e)

WSaPO +8&2(1 -a+e)P 8+8aP 81542 g{l —5+f)

/3 aPO15+W2 (1 a)P815+ aP1515 ='yp 1

&68 Ppp+ a(1 +e) Pop+1/2 (1 28) P815 M6yf

(15g)

&3aP815+&2 (1 -a +e)P„,+aP„„=qb,

&6ePpo+aPok+W2 (1 —2e)P„,=&6@f,
&6 8P 58 +Pa88&+2 (1 2e )P815 gb

(12f)

(»g)
(12h)

(12 i)

(15h)

/6 ePpkia(1+e)P88+v 2 (1 —2e)P»5=yp(l+e),

(15i)

(15j)

(» j) p+ 4fl(1+f )
a+4e/{1+8) ' (15k)

b+4f
+4 (12k)

b —2f
1$1$ 0

Q —2e
(12 1)

The positivity condition in the Hilbert space
implies that the diagonal quantities P;& and 8&&

must be greater than or equal to zero. These
positivity conditions are nontrivial and rule out
the solutions proposed by Dittner and Eliezer'
where

or

a= -0.053, e = —0.943, f=0.265

a = —1.1'I, s =0.32, f= -0.99

(13)

I+e ' 1+f ' 1+e ' (14)

In terms of the parameters 0., P, and y the sum
rules in Eq. (12}take the form

The unacceptability of the solutions (13) for the
symmetry-breaking parameters has been noted
earlier by Dicus and Mathur, e who have studied
the spectral sum rules for the currents in SU(4)
x SU(4) theory.

Our expressions for P» and S» in Eq. (12)
simplify considerably if we replace a, b, and

q by a, P, and y, where

p —2f/(1+f )
a —2e/(1+e)

' (151)

Notice that there are only five relations, Eqs.
(15e)-(15i), among the six c[uantities P,o, P„,
P„„P„,P„„and P„„;therefore at this stage
there is no way to constrain the symmetry-
breaking parameters from the positivity of P«,
P„, and P»». In Sec. III we shall derive new

sum rules based on octet-type breaking of SU(3)
at q'= 0, and see how these sum rules, together
with those in Eq. (15) enable us to solve for P«,
P08& P015 & PSST PS15 y

and P 1515 ln terms Of the
symmetry-breaking parameters e, P, y, e, and

III. BROKEN SU(3) SUM RULES

In order to derive new sum rules for the two-
point functions of scalar and pseudoscalar densi-
ties at q'=0, we recall that P~~ and 8» are sym-
metric in j and 4; therefore, the most general
SU(3) decomposition of these will get contributions
only from the symmetric representations of SU(3).
In the model under consideration, where SU(4)
is broken by a term which transforms like a 15-
piet and SU(3) is broken by a term which trans-
forms like an octet, we can write the following
expansion for P» '.

1+/
Pss y y+

1-2pP =y

2p+(1-f)l(1+f )
—,'a+(1-e)/(1+e) '

(15a)

(15b)

(15c}

P — d 2P 8+1Sl

1 50 Cida jk CSdlQP+ C4~jo~ko

5{ JP kk 98 kp} ~8( Jp 815+ 69155kp)

7{ J8 k15 5915 kk} t (16)

P+ (1 -f )l(-1+f)
-a+(1-e)/(1+e} ' (15d)

and similarly for S». Note that Eg. (16) is quite
general except for the neglect of 27-piet con-
tribution on the right-hand side, and is based
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on the assumption of octet-type breaking of SU(3)
at qk = 0. From Eq. (16) the following sum rules
can be obtained:

Pss+3P88 4P44 = 0

33 44 99 P1313

2P44 ss + 9P99 —6P 1515 —0

(17a)

(17b)

(17c)

We wish to emphasize that the sum rules (17a)-
(17c) are exact to first order in the symmetry-
breaking parameter a. In view of the fact that
perturbation around SU(3) works very well, we
expect the sum rules (17a)-(17c) to be valid for
values of a which are not necessarily small. We
therefore proceed to investigate the constraints
imposed by these sum rules op the symmetry-
breaking parameters.

The sum rule (17a), together with those in
Eqs. (15e)-(15i) are sufficient to solve for P„,
Ppay Pp1sy Psst P81s~ P1s1s We get

3a -2P —aP+2
(2 —a) (1+a)
3 '" (a —P) [2(l-e)+a(l+e)]
2 (2 —a) (1+a) (1 —3e)

(P —a) [2(1+3e)+3a(l+e)]
v2 (2 —a) (1+a) (1-3e)

(18a)

(18b)

(18c)

and similar more complicated expressions for
Ppp Pp15 and P»» can be written down. The
important observation to make at this point, is
that the expressions for P33 P44 S44 and P„
in Eqs. (15a)-(15b), (15j), and (18a) depend on

a, P, and y alone. Thus the SU(3)&SU(3) sub-
domain has essentially decoupled" itself from
SU(4) &&SU(4). This simplification enables us to
examine directly the constraints imposed on

a, p, and y due tO the pOSitiVity Of Pss, P 4, Pss,
and $44. This is in direct analogy with the in-
vestigation of Ref. 5. The allowed domains for
a, P, and y are shown in Fig. 1. For a solution
where the vacuum is almost SU(3)-invariant, and
the Hamiltonian is close to [SU(2) &&SU(2)]-invari-
ant, the value of P must be close to zero and that
of a close to —1. We see from Fig. 1 that for
P=O, the smallest possible value of a is a~-O. V.

Thus, in this scheme SU(2) XSU(2) cannot be a
good symmetry of the Hamiltonian. " This is in
contradiction to the result of Dittner, Eliezer,
and Kuo, ' who impose lepton-hadron symmetry
to get a solution where both SU(2}&&SU(2) and SU(3)
are good symmetries of the Hamiltonian. The
fact that SU(2) &&SU(2) cannot be a good symmetry
of the Hamiltonian in the framework discussed
in this section is simply because the sum rule

-4 -5 -2 -I P"()0 I 2 3 4
P%% w

FIG. 1. The allowed domains of the parameters 0. and

p are indicated by the shaded regions.

(18a) is inconsistent with the Gell-Mann, Oakes,
and Renner" type of solution for the symmetry-
breaking parameters. This can be easily checked,
as shown in Ref. 5, by neglecting q-X mixing and
using pole dominance for the spectral weights in
(18a}. We also note in passing that the sum rule
(18a) is consistent with the type of solution ad-
vocated by Brandt and Preparata. " Thus we
conclude that in SU(4) xSU(4) theory, as in the
case of SU(3}XSU(3)theory, the problem of under-
standing SU(2) &&SU(2) and SU(3) as approximate
symmetries of the Hamiltonian with the vacuum
almost SU(3)-invariant remains.

+ e,'(5„5„,+ 5„,5„},
where R» = 1dm'p»(m', v}. Equation (19) gives
the following sum rules:

(19)

Rss+SR88 4R44 = 0,
Rss R44 Rgg +R 1313 0

2R44 —5Rss+ 9Rgg 6R lsls 0 .

("Oa)

(20b)

(20c)

Since R~~ is not directly related to a, P, y, e,

IV. BROKEN ASYMPTOTIC SU(3) SUM RULES

We now turn to an examination of the breaking
of SU(4) &&SU(4) on the basis of sum rules that
follow from the octet-type breaking of asymptotic
SU(3). The assumption of octet-broken SU(3} at
q'=~ for the two-point functions gives, instead
of Eq. (16), the following:

lim q'P»(q') -=R»
+2~

= C', 6g~+ C, d, g~+ C,' d1sf y+ C4'bgpb~p

+ek(5i05ks+ 5fs5ko)

8( J lk Ok5f15 ko)
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and f, there is no straightforward way to con-
strain these parameters from the positivity of
B». However, if we dominate the spectral weights
by single particle states, then we can constrain
the parameters in terms of masses and decay
constants. If we neglect q-X mixing, we can
easily verify' that the sum rule (20a) on using
pole dominance is consistent with the Gell-Mann,
Oakes, and Renner" type of solution:

m~'= (1+a)m, ',
m»'=(I —2a)m, ',
m„'= (1 —a)m, ',

(21a)

(2 11)

(21c)

and P = 0, E„=F» =F„,where m, is the mass
of the uncharmed pseudoscalar-meson octet in
SU(3) limit; F, = 94 MeV, E», and E„are pion,
kaon, and q decay constants. Thus within the
framework of octet-type broken SU(3) at q' =~,
there exists a solution for the symmetry-breaking
parameters where SU(2)XSU(2} is a good symme-
try of the Hamiltonian.

We next investigate the consequence of the sum
rule (20b). For this purpose we define the fol-
lowing matrix elements:

&ol v'(o)l v'(p)& =
2

&olv'(o) Iz'(p)& =
2

(o I
v'(o) IP'(p)& =

2

2 1 + m 2 (23a)

1+81- (z 1-e (23b)

where m, is the mass of the charmed pseudo-
scalar-meson triplet in the SU(3) limit. If we
dominate the spectral weights in Egs. (15a)-(15d}
and (20b) by single particle states and use the
mass formulas (21a), (21b), (23a), and (23b),
we get

1-e
2@3 me ~1+8 (24)

&ol v"(o)lp"(p)& =
2 13

where the pseudoscalar mesons P' and P" belong
to an SU(3) triplet of charmed particles con-
sisting of isospin doublet (P', P' )an0d the iso-
singlet P". In analogy with the mass formulas
(21a)-(21c), we may relate the masses of charmed
pseudoscalar mesons in terms of the symmetry-
breaking parameters e and e. %e get

In the model of Gell-Mann, Oakes, and Renner",
one has, further, ms'=3(m„'+2m»'); we therefore
get

(1-e) m, '+ 2m»'
(1+e} 3

(25)

It is clear from Eg. (25) that m, can be large
(- 5 GeV) only when e is very close to —1. If
we take m, =5 GeV, we get e = -0.987. This value
of e is similar to the value obtained by Dittner,
Eliezer, and Kuo. ' On the other hand, Dicus
and Mathur, who have studied' the g-X mixing
problem within the framework of the SU(4) &&SU(4)

model, claim that the allowed value of e closest
to —1 is -0.58. Using 8 =-0.58, we getm, =800
MeV, which is rather small. Thus the viability
of the SU(4) x SU(4) model with m, as large as
5 GeV crucially depends on the value of the pa-
rameter e. In order to determine this parameter
independently we shall have to study the q-X or
q-X-E mixing problem, which we have avoided
in this paper.

V. SUMMARY AND CONCLUSION

The basic aim of this investigation has been to
analyze the SU(4)&SU(4) model of strongly inter-
acting particles. The approach towards this anal-
ysis begins with a study of the spectral-function
sum rules for the scalar and pseudoscalar den-
sities. These sum rules impose useful constrainte
on the symmetry-breaking parameters in the
theory via the positivity requirement of the spec-
tral weights. We find that the assumption of
octet-type breaking of SU(3) at q'=0 provides
additional sum rules whose consequences are
far reaching. It is shown that these sum rules
constrain the symmetry-breaking parameters
in such a way that SU(2) X SU(2) cannot be a good
symmetry of the Hamiltonian if the vacuum is
approximately SU(3)-invariant. This contradicts
the result of Dittner et al. ,

"who claim that SU(2)
xSU(2) as well as SU(3) are good symmetries of
the Hamiltonian in the SU(4) && SU(4) model. Their
conclusion is unacceptable within the framework
of broken SU(3) at q' =0 because if SU(3) is a good
symmetry, we expect the sum rule in Eg. (IVa)
to be valid to an excellent approximation. How-

ever, the sum rule (IVa) together with the sum
rules in Eq. (15) rule out a solution where SU(2)
&SU(2} is a good symmetry of the Hamiltonian.

When we turn to octet-broken SU(3) at q' =~,
we find that the sum rules obtained under this
assumption are consistent with a solution for
the symmetry-breaking parameters where SU(2)
XSU(2) is a good symmetry of the Hamiltonian.
In particular, we find that the solution of Gell-
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Mann, Oakes, and Renner" is consistent with
the asymptotic sum rules. In this case we also .

obtain a mass formula for charmed pseudoscalar
mesons in terms of the parameter e alone. We
find that the mass of charmed pseudoscalar me-
son can be large (- 5 GeV) only when e = —0.99.
This result is consistent with the work of Dittner,
Eliezer, and Kuo. ' Dicus and Mathur, who as-
sume exact SU(3) for certain matrix elements,
show that the smallest value of e close to —1
which is acceptable is e = —0.6. This value of
e yields m, —800 MeV, implying that charmed

pseudoscalar mesons are not heavy. Thus an
independent evaluation of e is needed to verify
whether the value of this parameter can indeed
be close to —i. For this purpose, the g-X or
g-X-E mixing problem has to be studied. In
this paper we do not attempt such an investigation.
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