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Starting with chiral SU(4)SSU(4) invariance realized in the Nambu-Goldstone manner, with
the vacuum invariant under SU(3), we discuss in this paper the various implications of explicit
symmetry-breaking terms that transform as the (4, 4*) (4*,4) representation. The motivation
for this work comes from recent investigations in connection with the unified gauge theories,
which suggest the relevance of SU(4) @SU{4)symmetry of strong interactions with {4,4*)$ (4~, 4)
breaking. The domain structure for the allowed values of the symmetry-breaking parameters
is dis~ussed in analogy with a similar investigation for the SU(3) @SU{3)theory, and the ratio
of charmed- to uncharmed-particle masses is derived in terms of these parameters. Solutions
are sought for these parameters through an analysis of the g-y and g-g-E mixing problems, as
well as g, g 2y decays. Within the framework of our assumptions, we are unable to obtain a
solution that agrees with the recent results discussed by Dittner et al. on the basis of a hadron-
lepton analogy.

I. INTRODUCTION

Recently there has been a great deal of interest
in the problem of how to incorporate hadrons into
a unified gauge theory. Although no credible mod-
el has yet emerged, many general features of such
a theory have been isolated and emphasized. %'ith-
in the framework of a quaxk model, it is well

known that the usual triplet of quarks runs into dif-
ficulties. In the %einberg-type theories, ' for in-
stance, the three-quark model leads to strange-
ness-changing neutral currents in contradiction
with the experimental analysis. A way out of this
difficulty was suggested by Glashow et al. who in-
troduced a fourth quark carrying a quantum num-
ber referred to as charm, and constructed the
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charged currents in analogy with the corresponding
leptonic currents.

In terms of the four quarks, it is natural to con-
sider the SU(4) symmetry of strong interactions.
Extended to chiral symmetry, this suggests con-
sideration of the SU(4) SSU(4) symmetry. The
fact that the particle spectra seem to follow rec-
ognizable patterns on the basis of SU(3) classi-
fication, rather than SU(4) or SU(4)@SU(4),
strongly suggests that the SU(4) SU(4) symmetry
of the Hamiltonian should be realized as a Nambu-
Goldstone symmetry with the vacuum invariant
under the SU(3) group. Thus not only do the pseu-
doscalar mesons r, K, q, and X' (or q') appear as
Goldstone particles, there are several "charmed"
mesons that also appear as zero-mass particles
in the theory. Additional explicit symmetry-break-
ing terms must also be considered so that the
eventual symmetries of the Hamiltonian and the
vacuum state are appropriately reduced to the
usual isospin group SU(2), and the Goldstone par-
ticles acquire suitable masses.

Dittner eta/. ' have recently considered such a
scheme and have invoked4 a lepton-hadron analogy
to obtain some interesting results. Using this
analogy, they have obtained a solution for the
symmetry-breaking parameters which shows that
the Hamiltonian is, to an excellent approximation,
almost SU(3) SSU(3)-invariant [so that both chiral
SU(2) SSU(2) and SU(3) are very good symmetries],
and the charmed (would be} Goldstone mesons
acquire rather large masses compared with the
masses generated for the usual pseudoscalar me-
sons. The large masses of the charmed particles
(-5 GeV) could explain why these objects may have
escaped detection. Furthermore the pair produc-
tion of such particles may well account for the up-
turn in the total p-p cross section at high energies.

The purpose of this paper is to study chiral
SU(4) theory in some detail but using more con-
ventional ideas, rather than the somewhat illusive
lepton-hadron symmetry. The main thrust of this
investigation is to see if the conventional methods
ean lead to a solution having features claimed by
Dittner ctrl. 4 Throughout this work we. follow the
SU(3) SSU(3) analysis of Gell-Mann, Oakes, and
Renner' (GMOR} and of Okubo and Mathur" with
appropriate generalization.

The payer is planned as follows. In Sec. II the
allowed domains for the symmetry-breaking pa-
rameters are discussed, These allowed values
follow from the requirements of yositivity of the
two-point spectral functions. It is shown that the
SU(3) SSU(3) subdomain structure essentially de-
couples from the theory and leads to the conven-
tional solution which is reproduced in Sec. III.
Section IV is devoted to obtaining the ratio of

charmed- to uncharmed-particle masses. Since
we do not assume approximate SU(4) symmetry of
the vacuum, a generalization of the method of
GMOR to obtain this mass ratio is inadequate. In-
stead, we use techniques based on asymptotic
symmetries. It is clear that in the limit the Ham-
iltonian is SU(3) SSU(3)-invariant with the vacuum
SU(3)-invariant, the conventional uncharmed me-
sons 3, K, and g would be massless, whereas the
charmed particles would generally acquire finite
masses, so that the ratio of charmed- to un-
charmed-particle masses would go to infinity.
The departure of the solution from exact SU(3)
@SU(3) invariance is studied in Secs. V and VI.
To this end, we study in See. V the q-X mixing
problem. By enlarging the original symmetry
group to U(4) U(4), we also investigate the three-
particle mixing problem (g -2C-8 mixing). In Sec.
VI we use the triangle anomaly to compute the
rates for m, q, X-2y decays, and use some of this
information to study the symmetry-breaking solu-
tion. Finally, in Sec. VII we summarize our re-
sults and conclusions.

II. SVE(4) SPECTRAL CONDITIONS

We take the strong-interaction Hamiltonian den-
sity to be of the form

H =Ho+ CO@ + &8Q +&ps' (2.1)

E'(i)= ' d'x V'(x)
~XO=t

(2 2)
E,'(i) =

i

d'x A,'(x) .
&xg=t

We shall refer to E"as the charm generator.
We assume that in the limit the explicit sym-

where we assume H, is invariant under the chiral
group SW(4) =SU~'&(4) SSU~ (4). The symmetry-
breaking terms in H depend on real constants r,-
and scalar densities u', where i =0, 8, 15. We
shall assume that the 16 scalar densities
u ' (i = 0, 1, . . . , 15) together with the corresponding
pseudoscalar densities v' (i = 0, 1, . . . , 15) trans-
form according to the (4, 4*)(4*, 4) representa-
tion of SW(4). This is a direct generalization of
the GMOR model for the SW(3) theory. ' Further-
more, in terms of the quark model the (4, 4*)

(4*, 4)-breaking terms can be interpreted as the
quark-mass terms, which arise naturally in uni-
fied gauge theories when the weak gauge group is
broken spontaneously. Thus it seems appropriate
to confine our attention to the (4, 4*} (4*, 4)
symmetry-breaking model.

The SW(4) generators E' and E', (i =1, . . . , 15) are
defined in terms of the vector and the axial-vector
current densities as
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metry-breaking terms are turned off (e,. -0), the
SW(4) symmetry of the Hamiltonian is realized in
the Nambu-Goldstone manner with the vacuum
state invariant only under the usual SU(3) sub-
group. The spectra of ordinary particles then fol-
low the well-recognized pattern of SU(3) classifi-
cation. In the limit e, 0, however, there appea, r
zero-mass Goldstone bosons. For the ps udo-
scalar mesons, these are the usual octet m; K,
and q„an SU(3) triplet of charmed particles con-
sisting of the isospin doublet (P„P„)and the iso-
singlet P», a corresponding charge-conjugate
SU(3) triplet consisting of the I= —,

' mesons (P», P»)
and the isosinglet P,», and finally an SU(3) singlet
I15 For the scalar mesons, these are a charm-
carrying SU(8) triplet containing the I= —,

' mesons
(S„S„)and the I=0 particle S», the corresponding
conjugate SU(8) triplet (S», S») and S„, and the
SU(3) singlet S». Note that if we further assume
that the vacuum is also invariant under charm, so
that E»~0& =0, the invariance group of the vacuum
is enlarged to SU(3) 8 U(1), and the SU(3) singlet
Sj5 would not appear as a Goldstone boson.

The fact that the u' and v' form a (4, 4*)Q3 (4*, 4)
representation of SW(4) gives the equal-time com-
mutators of the densities with the generators

Our purpose in this section is to derive restric-
tions on the parameters which give the symmetry
breaking. To do this we relate the parameters to
the spectral function using exactly the method of
Mathur and Okubo. ' We write the usual syectral-
function representation for the commutator:

Oi P

1——,pro'(m, A)e„e„d(x-y, m) .

(2.8)

Taking the divergence of both sides with respect
to x, setting x =y', and integrating over x, we
relate the integral of the scalar spectral function
pI/~(m, A) to the vacuum expectation value of the
scalar densities that appear in H. Performing the
same procedure for the commutator of two vector
currents, we obtain

+40

dm'pI', &(m, Z)

OdiOA e8 f82 e15 1158)

[E"'(I),u'(x)]„,= if,.„u'(x),
[E'(I), v'(x)], , =8f...v'(x),

[E,'(t}, u '(x}]„,=id;,,v'(x), (2.3)

[E5(I), v '(x)]„,= -id...u'(x),

where i = 1, . . . , 15, while j and k run from 0 to 15.
The f,,„and d, » can be calculated by using

(~ 0 i50 ~8di88+ t15di815) 1

Z, , =- dm'p&;&(m, V)
Q P

where we have defined

g,. =(oiu'(0) io&, 1 =o, 8, 15 .

(2.9)

(2.11)

Tr(~, [Z, , Z, ])=42f,„,
Tr(%{X;8,X/}.) = 4di18,

(2.4)

Now, because the integrals of the spectral weight
functions are positive definite for i =j, we have
restrictions onthe symmetry-breaking parameters.
It is convenient to define the ratios

Tr(/, x,)=2S,,. . . (2.5)

The divergences of the currents follow from the
local generalization of the usual equations of mo-
tion

s"Z'„=i[E*,II] .
We find the partial conservation laws

P i k kl'5 =&2185 + 15fi158"

~pdi pk~ + SdiSk~ + ~15di 15k~
jf i k k k

(2.6)

(2.7a)

(2.Vb)

Note that the vector currents for i =1, 2, 3, 8, and
15 are conserved.

where the A, are the 4 & 4 matrices. These have
been calculated in Ref. 3, and for completeness,
we reproduce them in Table I. Notice that d;,,
= (1/W)6, , because the X matrices are normalized

I5, = y (1+a+ e)(1 + b+f),
I„=y(l ——,'a+ e)(l —,'b+f), —

I„=y[(l —a+ e)(1 —b+f) + 2ab],
I» =y(l+ 2a —e)(1+ 2b -f),
I12 12 =y(1 a e)(1 b -f) ~

I15 15 y(l 2e 2f + Vef + 2ab)

%44 =
4 &06

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.18e)

(2.1M)

(2.13g)

a —(2)1/2 ~ b (2)1/2 ~
&O

' '
&O

'

(2.12)
f= ~, y= -2eA. . --1 e 1

&O' &O'

The following quantities are independent and
greater than or equal to zero:
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TABLE I. Nonvanishing values off;» and d&».

1
1
1
1
1
2
2
2
2

3
3
3
3
4
4
4
5
5
6
6
6
7
7
8
8
8
9

11
13

2
4
5
9

10
4
5
9

10
4
6
9

11
5
9

10
9

10
7

11
12
11
12

9
11
13
10
12
14

1
1
4
5
9

10
2
2

4
5
9

3
7
6

12
11

6
7

11
12

5
7

10
12

8
14
13
13
14

8
14
13
13
14
10
12
14
15
15
15

0

8
15

6
7

11
12

8
15

7
6

12

1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

—,'W3
1
2
1
2
1
2
1

—,'v 3
1
2
1
2
1
2
1
2

1/(2~3)
1/(2~3)
-1/W3
(2) i/2

(2) i/2

(2) i/2

0

1/ 3
1/W6

2
1
2

2
1
2
1/W3

1/v 6
1
2
1
2
1

2
3
3
3
3
3
3
3
3
3
3
4
4
4

5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
8
8
8
8
9

10
11
12
13
14
15

10
3
3
4
5
6
7
9

10
11
12
4
4
9

10
5
5
9

10
6
6

11
12

7
7

ll
12

8
8
9

10
11
12
13
14

9
10
11
12
13
14
15
j

11
8

15
4
5
6
7
9

10
11
12

8
15
13
14

8
15
14
13

8
15
13
14

8
15
14
13

8
15

9
10
11
12
13
14
15
15
15
15
15
15
15

0

1/W3

1/ 6
1
2
1
2
1
2
1
2
1
2
1
2
1

1
2

-1/(2v 3)
1/v 6
1
2
1
2

-1/(2&3)
1/~6
1

1
2

-1/(2&3)
1/W6
1

1
2

-1/(2&3)
1/v 6
1
2
1
2

-1/W3
1/~6
1/(2v 3)
1/(2v 3)
1/(2W3)
1/(2&3)

—1/W3
-1/vY
-1/v 6
-1/W6
-1/ 6
-1/ 6
-1/W6
-1/ 6

(s) i/2

fj
vY

K» = —,
' y(a+4e)(b+4f),

K»»=y(a —2e)(b —2f) .
(2.13h)

(2.1.3i)

positive gives restrictions which are definitely
nontrivial. It is easy to see, for example, that
the two solutions proposed in Ref. 3,

There is one nondiagonal I;,. which is not zero
(although this one is not positive definite we will
need it in later sections): or

a=-0.053, e=-0.943, f=0.265 (2.15a)

1Is» = ~ y(a+ b —ab + af + be) . (2.14)

This can be combined with I, , and I» gs into posi-
tive-definite combinations, for example, Is

Requiring all of the quantities in (2.13) to be

a=-1.17, e=0.32, f=-0.99 (2.15b)

do not satisfy the restrictions given by (2.13).
Solving for the general restrictions given by

(2.13) is obviously very complicated because one
must work in a four-dimensional space whose
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a=- a(l+e),
5 =- p(1+f),
5 -=y(l + e)(1+f) .

(2.16)

The usual SW(3) quantities scale such that all of
the dependence on e and f can be lumped into 5:

I„=5(I+a)(1+P),
= 5(I ——,'a)(1 ——,'p),

I8~ = 5(1 —a —p+ 3ap),
K44= +4 GAP,

1 g 1

(2.17a)

(2.17b)

(2.17c)

(2.17d)

(2.17e)

axes are labeled by the values of a, 5, e, and f
The form of I,z and K;,. simplify a great deal, how-
ever, if we replace a, b, and y, by a, P, and 5,
where

tional assumptions, for specific values of 5, a, P.
This is also clearly done in Ref. 'l; homever, to be
specific about what is being assumed we will repeat
that discussion.

Define

(0(x„(o}/{a))= f &u„,

(0 j V'„(0)[S(k)) = f ' 'k„,
(3.1)

where P or 8 is a pseudoscalar or scalar meson.
Where no confusion can result, me will drop the
SU{4) label from the decay constant, for example,

f'-f. fr=fr f: =f. .
For other particles, however, where mixing is in-
volved, we will need the notation of (3.1}.

The equations for I,s I44, and K«, when saturated
with mesons, become

(1+3ef)
f15,15 5 &np 2 (I + e)(1 +f)

K„=-.'5 ~
"

P
'

1
fs, xs

= ~ 5{a+p- ap} ~

{2.17f)

(2.17g)

(2.17h)

(2.17i)

(2.18)

f,'m, ' = 25(I+ n)(1+ P),

f,'m, ' =25(I - -', n)(1 = -,'P),
f„'m„' = $5aP .

(3.2a)

(3.2b)

(3.2c)

(3.3)

Equation (3.3) gives a value for a. This together
with (3.2a) and (3.2b) gives values for P and 5 if
we assume a value for fz/f, . The value fi/f,
=1.13, for instance, implies

We also assume the QMOR mass relation holds;
in our notation

In Sec. III we mill solve I,3 I44, and K44 for 0, and
P. Given regions of allowed values of a and P, it is
then possible to find the regions of allowed values
of e and f. This procedure yields considerable
simplification in discussing the allowed domains.

a = -0.89, P = -0.15, 5 = 5.3f,'m „~,
while fz/f„=1.07 gives

n = -0.89, P = -0.09, 5 = 5.0f„'m „' .

III. SOLUTION OF J33, I~, K~

The equations for I„, I«, and K«have a form,
when mritten interms of e, P, and 5, which is
identical to the form they had in the SW(3) theory
written in terms of the SW(3) parameters a, b,
and y (which are different from the a, 5, y used
in Sec. II.) The aHowed regions for the parameters
5, a, P are therefore exactly the same as the al-
lowed regions of y, a, b given in Ref. 6 and the
same discussions of the subgroup structure of the
group SW(3) can be given. There is no reason for
us to repeat that material here.

If we saturate the integrals in (2.17) with the low-
est-lying singularities, we can express the left-
hand sides of (2.17) [as shown in (2.9) and (2.10)]
in terms of masses and decay constants and the re-
sulting equations can be solved, with some addi-

Alternatively, me could proceed as in Ref. 7 by
writing spectral representations for the Fourier
transform of vacuum expectation values of scalar
and pseudoscalar densities. If me then assume
asymptotic SW(2) symmetry [where the SW(2)
group is generated by E4, +', and —,'+'
+(/3/2)E'] in the form,

lim q'[n. ~,(q) —n.',(q)] = 0, (3 4)

me have the sum rule

+0
dm'p„(m, P) = dm'p„(m, S) . (3.5)

(1 ——,'a) pm„' = a(1 - -,'p)m, ' . (3.8)

The one-meson saturation of this equation together
with the vacuum one-meson matrix element of the
divergence conditions (2.7) gives a new equation
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f,'(me' —m, ')
K 2 f 2 (3.7)

If we choose to make the additional assumptions of
(3.4) and of the one-meson saturation of (3.5) then
we can avoid the need of assuming a value for
f~/f, to determine o and P. Instead, we can as-
sume a value for m, and use (3.7). The value

fz/f, =1.13 corresponds to m„=1020 MeV. In the
following sections, whenever we need explicit val-
ues for n and Pwe shall use e=-0.89, P=-0.15.

Given that a and P lie within certain ranges, we
can then solve the remaining I„and K, z for the al-
lowed regions of e and f. The boundaries of the
allowed e and f regions will be functions of a and

P. Figure 1 shows such a plot for the range of a
and P that corresponds to the physical SW(3) do-
main, -1&a&0, -1&p&0.

In the next sections we will try to further re-
strict e and f by studying those I,&

in (2.1'l) which
have explicit e, f dependence. Section IV will dis-
cuss the relation of e and f to the masses of

This result, together with the equations for o, and

P from (3.3), (3.2a), and (3.2b), gives a relation be
tween m„and f~/f, ,

1 1+3ef
R (1+e)(1+f) (3.8)

Thus it is not possible, without having information
about charmed particles, to determine e and f
separately. What we will find are values for R.
Figures 2 and 3 show the lines on the e-f graph for
various values of R. In order that the combination
in (3.8) cross allowed values of e and f, it is nec-
essary for Rto lie in the region

4
2+ l~l+ IPI- Iollpl

' (3.9)

In Fig. 1 the value e=-1 is of special interest.
It is easy to check that the Hamiltonian density
(2.1) will be SU(3) SU(3)-invariant if a = 0 and

e = -1, or equivalently [see Eq. (2.16)j for arbi-
trary n as long as e=-1. Following arguments

charmed particles. In Secs. V and VI we will dis-
cuss the restriction on e and f which comes from
the I,.~ which we can saturate with known particles
I», I, „, I„»and, in the second half of Sec. V,
Ip p Ip 8 Ip y5 We have not yet written down the
I, , but the e,f dependence in all six of these 1,~

comes only in one combination which we name 1/R:

FIG. 1. The allowed values of the parameters e and f when G. and P are between -1 and 0. The boundaries are given
by

-In/ lal Z--,'lal t+ lal —IPI Ipl 1-2lpl &+ Ipl
&+ lal' " 4 —lal' " &+-'lal ' " t —Ial

' ' 2+ IPI
' ' 4- IPI

' ' t+-'IPI ' '
& —IPI

'

For the GMOR value G. = -0.89, one gets e&= -0.31, e2= 0.29, e&= 0.38, and e4= 17.2.
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(a)

!
t

!
!
!
!
!
!

——/-- —5
(b)

i

X&O ~js 8

!

!

&0 and (b) g & where 1/g=(1+Sef)/(1+e)(1+ f). WhenFIG. 2. The curves show typical values of e and f for (a) B& and ~~)

true for ~~+ —' while for -1~f~31 the values o e areff ~ -1 the values of e are between -1 and + &. The same xs rue or,
e ~ -1 or e ~ 3. Thus, for these values of B, the curve for 1/8 only intersects the allowed regions in the cross- a c
ar««reg» 1&»d it »iy in«»«t»is ar«when -'. —& —4/2+

I
o

I
+

I P I
—

I o I I PI &t i»»um~ m this fir r«h«
-1~ a ~ 0 and -1~ P ~0 and the boundaries of the allowed regions are shown in Fig. 1.

similar to those in Ref. 6, one can show that the
SU(8) SSU(3}subsymmetry would be realized as a
Goldstone symmetry if fe -1. In such a case it
would be natural to assume that at e= -j. the vacu-
um is only SU(3}symmetric and the pseudoscalar
mesons n, K, and g are massless. The charmed
particles on the other hand, would be massive.

~ CC ~ fSThese considerations suggest that the physical
solution for e must be close to -1 (with fx-1)
since then (1) SU(8) SSU(8) would be an approxi-
mate symmetry of the Hamiltonian with low-lying
g, K, and g, which is consistent with the usual
ideas, and (3) the ratio of the charmed-particle
mass to the uncharmed-particle mass will be
large, which is consistent with the fact that the
charmed particles have not yet been observed.
Note that if the Hamiltonian is exactly SU(3)

SU(3}-invariant with the vacuum SU(3)-invariant,
this ratio would be infinite. We shall discuss this
mass ratio in detail in Sec. Iv.

It may be remarked parenthetica'. ly that when
SU(3) @SU(3) symmetry is realized in a Goldstone
fashion, as e is varied continuously across the
point e = -1, the value off will jump discontinuously

between the regions I and II of Fig. 1. This is a
general feature of Goldstone symmetries as em-
hasized in Ref. 6. In concluding this section we

would also like to mention that just as in Ref.
the boundaries of the other allowed domains in
Fig. 1 correspond to the realization of various
other subgroups of SW(4). This discussion is rel-
egated to the Appendix.

IV. MASS FORMULA WS

%'e may use the method' of GMOR to relate the
masses of the would-be Goldsto»e pseudoscalar
and scalar bosons in terms of the symmetry-
breaking parameters e and e. However, in the
limit of no explicit symmetry breaking, we have
assumed that the vacuum state is only SU(3)-in-
variant, so without further assumptions, the
masses of the particles belonging to different
SU(3) representations are unrelated. In particular,
for the pseudoscalar octet, the pseudoscalar trip-
let (isospin doublet P, and P„, and isoscalar P»),
and the analogous scalar triplet (Sg Syp Syp) we

get
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(c)

I/ .
3

FIG. 3. The curves show typical values of e and f for 0 «R«j. The curve (a} is for 0 & R &a' (h} for R= ~ and
1 4

~ $y 31

(c) for 3 &R & ~. The lines e = -1, f = -1 are the R = 0 lines and the e = 3, f= 3 lines are the limiting curves as R
approaches &~. The boundaries of the allowed regions are shown in Fig. 1.

m, ' = (1+o.)m,',
m»' = (1 ——,'u)m, ',
«,'(I'}= ((+-,'n ) m, '(P},

m„(P}= 1 —n m, '(P),2 1+e
1-e

«,*(g= ((+n m, '(s),
4e

m„'(s) = (( —a m, '(s),
2e

(4.1}

where m, and m, are the triplet and octet masses
in the SU(3) limit. Note with reference to Fig. 1
that at e= e„m,(P) vanishes as discussed in the
Appendix. Similarly, m»(P) vanishes at e = e„
m, (S) at e=e„and m»(S) at e= e, .

If one assumes that in the limit of no explicit
symmeiry breaking, the vacuum state is SU(4)-in-
variant (generators: E ', . . . , E") instead of being
SU(3)-symmetric, the scalar mesons would not be
Goldstone particles, and the masses of m, (P) and

m»(P) can be related to m„and m». However, in
this case we shall have m, (P}=m„and the posi-
tivity of mv'(P) and m»'(P) requires!c. '(1+ e)l(1- e)l
to be smaller than unity, so that one would expect

the charmed-particle masses to be of the same or-
der of magnitude as the uncharmed-pseudoscalar
me sons.

It should be pointed out that in general the posi-
tivity requirement on the squared masses for the
charmed particles in Eq. (4.1) considerably re-
stricts the allowed domain of the parameters e
and e in much the same fashion as a similar' re-
quirement on m, ' and mE' restricts -1 + n ~ 2.
For the GMOR solution n = -0.89, the allowed re-
gion of e is bounded by -1 & e & e, = -0.31. Note
that for e& e„m»'(S) becomes negative. What
this means is that one cannot use the perturbation
formula like the one for m»'(S) in Eq. (4.1) beyond
the point e =e,. This is an exceptional point where
a subsymmetry is realized (see Appendix) with S,3
as a Goldstone particle, so that as we move across
e„ there is a discontinuity in the solution. How-
ever, as discussed in Sec. III, we do expect the
physical solution for e to lie in the region near e
= -1.

In the rest of this section, we do not pursue Eqs.
(4.1) anymore, but instead obtain relations between
charmed and uncharmed particles based on the
idea of asymptotic symmetries. This is an exten-
sion of the asymptotic SW(2)-symmetry discussion
in Ref. 7 and in Sec. III, which leads to the relation
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(3.6) between the masses of K and»c1 If we define

Qg F4 F5 1F3+ FS F 9 F10 F13

cussed above, this would lead to a relation between
m, '(P) and m, '(S) or equivalently between m, '(P)
and m»' if we use Eq. (4.6a). We obtain

F18 P3 1 P8+ 2 ~F151
3

m92(P) (1 —2p)[2a+ (1-e)/(Iy e)]
m»' (1 —2a)[2'p+i(1-f }/(I+f}] (4.Va}

(0 Iv'(0) ~p(k)& ~g,',
(o la'(0)IS(k)& =g» ,

I(4.2)

we obtain in the one-meson saturation approxima-
tion, the sum rules (g~'=—g»)

2 (g 9)2 Q 13)2 (4.3)

The divergence relations (2.V) together with the
definitions (3.1) and (4.2) imply

»9(1 ——,'a+ e)g» =f»m»',

2e9(a+ 4e}g3'—=f»'m 9'(S),

e9(a —2e)g," f,"m„'(S}.
(4.4)

thenthe Q' generate an SU(3) group, and together
with the corresponding axial-charge octet Q,', gen-
erates a chiral SU(3) 8 SU(3) group. This chiral
group does not contain isospin SU(2) as a subgroup
and is physically distinct from the usual chiral
symmetry group. Note that the asymptotic SW(2)
group discussed before [see Eq. (3.4)] is a sub-
group of this group. If we now assume asymptotic
symmetry under this chiral SU(3) 8 SU(3) group,
we get a sum rule similar to Eq. (3.5}. Defining
the matrix elements

m„'(P) (1 ——,'p)[(1 -e}/(1+e}—a]
m, ' (1-—,'a)[(1-f}/(1+f) —p]

(4.Vb)

It should be remarked that we have avoided using
asymptotic SU(4) symmetry, since already in the
W(3) or SW(3) theory of Ref. V we know that an ex-
act asymptotic SU(3) symmetry for pseudoscalar
densities (with pole dominance) leads to inconsis-
tencies. We have also not discussed here the 8th
and 15th components of the scalar or pseudoscalar
meson multiplets, since this is complicated by the
mixing problem, discussed in Sec. V.

It is clear from Eqs. (4.6) and (4.V) that for val-
ues of n and P discussed in Sec. III, the ratio of
charmed-. to uncharmed-particle masses will be
large, if the physical solution for e and f lies in
the domain II of Fig. 1, with e rather close to -1
and f away from -1.

V. MASS MIXING

Finally, assuming another asymptotic SU(2}8SU(2)
symmetry generated by charges F', F', and
-(I/~}F8+ (lX/vY }F15and the corresponding
axial charges, we can relate m» (P) to m»'(S)
and hence to m»' if we use Eq. (4.6b). We get

Substituting Eq. (4.3) into Eq. (4.4), we get

m9'(S)(f, ')', (a+4e)'
m» f» (1 —2a+ e)

m»'(S}(f3"}' (a —2e}'
m» f» (1 2a+ e}

(4.5)

We now turn to the I8 8 I8 1g I15 15 equations to
try to further restrict e and f. Following (3.1) we
define

(o~A'„(0) ~3)(k)& =
7Y ik„f,',1'

(0iA„'(0) iX(k)& = 3k„f',
if we use Eqs. (2.13b), (2.13h), and (2.13i) in the
pole-dominated form I« = —,'m»'f»', K„

9 (S)(f» ), K,3 13 2m»'(S)(f3")', we may
eliminate the decay constants to obtain the mass
relations

(0)A„"(0))2)(k)& = ~ ik„f'„',

(0~A'„5(0) (X(k)& = ~ 3k„f»,

(5.1)

m9'(S) (1 —2P)[n+4e/(1+e)]
m ' (1 - ,'a)[P+4f/(1+ f)]- (4.6a) where the states g and Xare the physical mixtures

m»'(S) (1 —2P)[n —2e/(1+ e)]
m„' (1 ——,'n}[P —2f/(1+ f)] (4.6b)

j3)& = cos8[P8&+sin8[P»&,

]X& =-sin8]P8&+cos8(P»& . (5.2)

expressed in terms of the parameters n, P, e,
and f defined in Eq. (2.16).

Similar considerations may be made for the va-
lidity of asymptotic SU(2) 8SU(2) symmetry gen-
erated by Q' s Q5 (i = 1, 2, 3), where Q' =F ', E"
and ,F +(3/2I/S)F (8v +2—/W)F15, with the cor-
responding axial charges Q,'. In the manner dis-

Using (5.1) in saturating I, 8, I8», and I„»we
have

(f'„)'m„'+(f')'m '=26(1 —a —P+3aP), (5.3a)

f„'f'„'m„'+f'f"m '=&6(a+P-nP), (5.3b)

(f„")'m„'+(f» )'m»' = 26(-2'nP —2+ 3/R), (5.3c)
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(Ola„'(0) IP„)=0,
(ol~'„'(0)lp, ) =o . (5 4)

We are thus assuming that SU(3)-breaking effects
appear only through the mixing angle, a hypothesis
which has frequently been adopted in the literature.
We can now solve for the unknowns and in partic-
ular for I/R. Equations (5.4) give

f15 f15tane

f» = f„'tane .-
(5.5)

The mixing angle 8 is known from the SU(3} mass
relation

4m~' + m ~ = 3m8

=3(m „'cos'8+ m»'sin'8) . (5.6)

Using (5.5) in (5.3) we find, after some algebra,
the value for I/R:1, , (n+p-o. p)' 4m»'-m„'

R 1 —a —P+ 3mP 6 sin26)

m 'tan'6l+m '
(m»' —m „')' (5.7}

Substituting a=-0.89, P=-0.15, 8=10' (Ref. 8},
m~=960 MeV, we find

R=0.35 . (5.8)

This value for R gives a curve which is almost the
curve (b) in Fig. 3. Thus the allowed value of e is
never close to -1. The nearest points to e=-1
that the curve R =0.35 crosses in the regions
shown in Figs. 1 or 3 are e = -2.14, f=1.35 in Re-
gion VIII and a curve from e =-0.58, f= -0.07 to
e = -0.31, f = -0.34 through Region II. Thus the
closest we get to e = -1 corresponds to the point
e=-0.58, f=-0.07. With the GMOR solution a
= -0.89, P = -0.15, we may compute from Eqs.
(4.6) and (4.7) the following mass values of the
charmed particles: m, (P) = 750 MeV, m»(P)= 800
MeV, m, (S)=1600 MeV, and m»(S)-~. ' The ~
value for m»(S} arises because the denominator in
Eq. (4.6b) vanishes at f f, = -0.07. The other
mass values are rather low and thus unlikely.

We have up till now considered the mixing be-
tween the pseudoscalar mesons P8 and Py5 to gen-
erate the physical states of g and X. We would now
'like to enlarge our original symmetry group from

where, in the last equation, we have used the def-
inition (3.8).

We thus have five unknowns: f„', f„",f»', f»', and
I/R. We have only the three equations in (5.3); to
solve for the urCnowns we need two more equa-
tions. We generate these by assuming exact SU(3}
symmetry for the matrix elements of A'„and A'„',
l.e.)

SW(4} to W(4) =-U(4) U(4) to see whether or not
this enlargement leads to a possible solution of e
closer to -1. The enlarged symmetry group, with
vacuum still invariant under SU(3) (in the limit of
no explicit symmetry breaking), is motivated by
the following two considerations:

(a) For some time now there has been another
possible candidate for a pseudoscalar SU(3) sin-
glet meson referred to as the E meson whose mass
is approximately 1422 MeV." Enlarging the sym-
metry group to W(4) can provide a natural place
for the E meson, since we now have a 3-particle
mixing of Pp, Ps, and P~5 to generate the physical
states E, g, and X

(b) In the context of renormalizable gauge the-
ories, if the hadrons are incorporated through
quarks, SW(4} symmetry of strong interactions
seems to require invariance under the larger
group W(4)." Since our original motivation for
considerations of the SW(4) symmetry itself is
derived from the hadronic structure of unified
gauge theories, it is of considerable interest to
investigate the enlarged W(4) theory

For our purposes, the larger group adds three
equations:

1+3ef
(1+e)(1+f)

S„,= (-,')"'5(n+ p —u p),

2 (1+e)(1+f),

(5.9a)

(5.9b)

(5.9c)

(ola„'(0)lg(k)) = ~ik„f'„,

&o l&~(0) I@k}&= ~ikpf »

(Ol~„'(0) IZ(k)) =
7sy ik„f», (5.10)

(oIA~(0) I&(k)& = ~ i4fs ~

(OIA'„'(0)IE(k)) = ~ik„f" .

As mentioned before, e and f only enter in the
combination (3.8). These expressions are also
symmetric under n —P.

It is provocative to note that if we only mix g and
Xwith Ip p Ip 8 and I8 8 we get R=0.05, a value
much more to our liking. Of course this has mean-
ing only if for some reason P» does not mix with

Ps and Pp.
We now discuss the general mixing problem in-

volving the unmixed states Pp Ps and Pjs that re-
sult in the physical states E, g, and X. For this
purpose, in addition to Eq. (5.1), we need the def-
initions:
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The states q, X, and E require three mixing angles which we take to be a standard set of Euler angles
by performing the rotations

r I
o io i i)(' o o)(o 0 sine) (P,&)

Jq} = 0 1 0 0 cos@ sin@ 0 1 0 JP, )

l~~) 0-" -/(, --'- &0--"-"]0'l
(5.11)

Saturating I, I, „ I, „, I, , I, „, I„„,respec-
tively, with g, X, and E and using the definition
(3.8), we have

(f '„)'m„'+ (fx)'mx'+ (fzPmx' = 25|(—,'aP+1/R),

(5.12a}

2
m8

B11
2 yl

12

(5.16a)

(5.16b)

be written in terms of the elements of the matrix
B:

fqfqmn +fxfxmx +fxfzmz =&~(n+P

(5.12b)

B3
2

23
(5.16c)

f„f„"m„'+fxf»"mx +fzf~"mz ——~5(2+aP —2/R),

(5.12c)

B13
B

where

(5.16d)

= (m„'cos'p +mx'sin'icos'g

+ ms'sin'/sin*/) . (5.13}

We can get the additional six equations we need by
again assuming exact SU(3) symmetry for the ma-
trix elements

(0~A„'p, & =o, a~f (5.14)

for a, b=0, 8, and 15.
After eliminating all the decay constants we are

left with four complicated equations for 8,
and 1/R. These four equations can be most easily
solved for 1/R if we construct a matrix B, where

(f„')'m„'+(f')'m '+(f')nm, '=25(1 —a —p+3np),
(5.12d)

f„f'„'m„+fxfx'm» +fxfx mx =W6(n+ p —ap),
(5.12e)

(f„")'m„'+(fx'}'mx'+ (fz')'mz' = 25(—,'aP - 2+ 3/R) .
(5.12f}

We have 13 unknowns: the nine decay constants
f~, the three mixing angles, and 1/R. We have
the six equations of (5.12) and the SU(3) mass re-
lation

4m~ —m = 3m

y, = c(3aP+ 2/R),

yl = c(3nP —12+ 18/R),

y, = c(3aP+ 6 —6/R),

1 —o. —P+3~P 1
(n+ p —n p)' 3m, '

(5.17a)

(5.17b)

(5.17c)

(5.17d)

The six matrix elements of the symmetric ma-
trix B depend upon only the three unknown angles
so there must exist three additional conditions.
These are given by

detB = m „'mx'm~',

TrB = m „'+m~'+m~',

TrB'=m„+m~ +m~

(5.18a)

(5.18b)

(5.18c)

D = K'(m „'+mx'+m-z' —m, ')'

-4Ky, y2m „m~ m~,2 2 2

where

K™8(rir2 r&') -ri r.-+2r&-

(5.19)

Thus we must require D to be positive. D, how-
ever, is only positive for

The seven equations (5.16) and (5.18) can now be
solved for 1/R. But this involves solving quad-
ratic equations and the final equation, in which
the only unknown in 1/R, involves the square root
of the quantity

B=A'A (5.15) R) 14.3 (5.20a)
and the matrix A is the diagonal matrix
(m~ m „,mx) times the total rotation matrix in
(5.11). The four complicated equations can then

or
4 (R(s (5.20b)
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Except for R =& these regions of R are completely
outside the allowed values for e and f as given in
Fig. 1 and E(l. (3.9).

The final equation has a solution for R in the re-
gion (5.20b) at R=1.55. This is clearly outside all
of the allowed regions of e and f as shown in Fig.
1. Thus the three-particle mixing of g, X, and E
has no solution for any of the allowed values of e
and f.

VI. ~~ AND X~y DECAYS

The solution of the Is 8 Is is Iis i5 equ
preformed in Sec. V, requires the additional as-
sumption, beyond one-meson saturation, of exact
SU(3) symmetry for the matrix element. This as-
sumption is expressed by (5.4) or (5.14). We can
avoid this assumption if we put in more experi-
mental information. In this section we will try to
solve the 8, 15 equations by assuming the experi-
mental width for the g yy decay and assuming it
makes sense to calculate this decay and X-yy in

the soft-meson limit. "
Consider PCAC including the triangle anomaly

c
4„e2

(6.5)

The 2y decay widths are given by

3 2I'„yy =m„g Q,
3 2F„y~=mq g„G,
3 2

X )y XgX

(6.6a)

(6.6b)

S(3)
&5= f

f15S(8) f~S(15)
k lj fSf15 fSf15

(6.7a)

(6.Vb)

f8$(15) f15S(8)
g» fSf15 fSf15 (6.'lc}

Again we will assume the one-meson saturation
of I, „ l«„and I»» as given by (5.3). Using
these three equations and taking the ratio

where G is a common (dimensionless) factor and,
from (6.3) and (6.5),

() &s = f„ms @8+ fxmx @»
1 8 2 1

+ ~ S E~pE(8) -Pv

() &8 = ~f„m„@'„+~f» m» 4»1,5 2 1

(6.1b)

(6.1c)

~s-vv/~ -vv

as known, we have four equations for the unknown

f„', f„",f», f», and 1/R For an.additional rela-
tion among the decay constants we will use the
formula first given by Glashow et al.":

4f»'-f'=3Hf8}'+(fx}'] . (6.8)

This can be easily derived' by assuming the SU(3)
breaking of the decay constants is of the octet
type.

where S ' is given by the charge matrix Q as
~l O

, p(85)(mS}
dna ", = C,5,~+ g2d8, ~+ C35, »5»,

S(() -Trqs —')(2 $ (6.2)

1 2 8 (3) PPm" @" 16' S Fs„E (6.3}

In calculating the decays we will make the low-
energy approximation of assuming that the diver-
gence term in (6.1) does not contribute. Then,
effectively,

C4(6o, 15 5,8 6o.865,15)

5 i5eb (6.9)

Solving first for the decay constants we have

26(1 - a - P+3aP) - t~„(4sf »sf, )8
X

(6.10a)

Sm» (4f» -fs }—26(1 —a —P+3aP)

(6.4)

Multiplying (6.4) by the inverse of the matrix we
have

(6.10b)

with more complicated' expressions for f„"and f»5.
Then, in terms off„' and f»', the value of 1/R is
given by the expression
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1, ~ ~ (a+P-aP)'
R ' ' ' 1 —a —p+3ap

m„'mx'(f }' (1/W)(a+ p- ap)S '/S ' -(1-a —p+3ap)$(")/$(')
3(1 —a- p+3ap) 26(1-a —p+3ap)(m„/m„)* ~(1/f„}(r/r„)' ' f„'m„'S '/S«' (6.11)

where by r„/r„we mean the experimental 2y
rates. Taking"

1„2y=1000+ 250 eV,
(6.12)

y
='7.3+ 1.5 eU,

we have (r„/r„P'=11.V+2.5. The decay con-
stants are given by (6.10), but because only the
square of f„' can be found, the relative sign of the
two terms in the denominator of (6.11) is not
fixed. Substituting the values e = -0.89, P = -0.15,
fr/f, =1.13, and 6=5.3 f,'m, ', we have

S "/S "+0 34$ '/S '
(1.53 to 2.36)+ S('&/$('&

(6.13)

where the range of numbers in the denominator
corresponds to the values of (r„/r„)'~~ allowed by
the experimental errors.

To determine S ', S ', and S " it is necessary
to have a model for the quarks. For example, in
the four-quark model p, e, A., p', with a charge
matrix

Again f„' and f„' are given by (6.10}and again we
cannot determine the signs of f„' and fza. Using
(6.12) and (6.15) we can predict

1.50x10'& ~ ~2.84x10', (6.18a}

or

I

that using S ') with the experimental value of g
-yy requires e to be far from -1. Probably all
we should conclude is that SW(4} with e =-1 does
not solve the g yy problem that existed in the
SW(3) theory. One would suspect the fault is with
the low-energy approximation.

So far we have not discussed the decay X yy.
Since we know all of the decay constants which
enter (6.Vc) in terms of the &) -yy decay rate we
can immediately write a sum rule relating the two

decays,

f' (~m)~' ~F)'~' f~ (I„)
'

(~F)
'~* s~'~

(6.1V)

2.0V x 10' ~ ~ ~ 8.37 x 10', (6.18b)
(q q-1

q

we have

S(8) 1
$(3)

S(zs)

$(,) =-(s)"',

(6.14)

(6.15)

where the range of values within (6.18a) or (6.18b)
is caused by the error in I'„/r„and the two solu-
tions (6.18a) or (6.18b) correspond to the uncer-
tainty in the signs off„' andf,' .

Qur sum rule is very different from that of
Glashow et al."who found

independent of q. Using these values in (6.13)
gives

1.23 ~ R ~ 1.33 . (6.16)

For R values in this range the curve of allowed e,
f values would pass through Region III of Fig. 1.
This gives e values very far from -1. To get val-
ues of e closer to -1 we need a value for R closer
to zero, that is, we need the denominator of (6.13)
to be small. " Unfortunately this does not seem
possible since $(~&/$(3& is rather model-indepen-
dent. The charge scheme of Ref. 4, where the
quark charges are choosen by analogy to the lep-
tons, also gives (6.15).

Of course it is well known that the value for S ')
given in (6.15) does not give the correct &) yy de-
cay rate' so we probably should not be sur-~r-ised

which in turn implies r, /r„~ 9 x 10' for all of the
usual SU(3) quark models. '

VII. SUMMARY

The very general conditions of positivity of the
spectral functions give bounds on the symmetry-
breaking parameters a, P, e, and f which are
definitely nontrivial. In particular the allowed do-
main structure rules out the solutions of Ref. 3.
The additional assumption of meson dominance for
IS„ I~, and K~ leads to the GMOR solution for e
and P; a=-1, P=0. Further, the experimental
condition that the masses of the charmed particles
be much larger than the masses of the known par-
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ticles requires that the parameter e be close to
-1 which is also the point where SU(3) S SU(3) is
an approximate symmetry of the Hamiltonian.
These results require only rather weak assump-
tions.

Unfortunately, meson dominance of I, „I», with
the g and X mesons does not lead to values of e
very close to -1. The closest value is on the up-
per edge of Region II in Fig. 1, where e=-0.58.
If we enlarge the basic group to U(4) 8 U(4), me-
son dominance of Ipp, Ip„ I„, Ip „, I, „, and I„„
with the g, X,

'

and E mesons, yields no solution
for the allowed values of e. Similarly, the experi-
mental value for the two-photon decay of g is in-
consistent with e =-1.

Of course these calculations require stronger
assumptions than were required by the results
mentioned in the first paragraph; either the mass
mixing assumption or, in the case of g yy, the
low-energy approximation. It should be mentioned,
however, that in seeking a solution close to e = -1
[SU(3)SU(3) limit and therefore SU(3) limit], one
might expect that the SU(3) assumption (5.4) or
(5.14) would not be unreasonable, and a similar
comment may be made about the low-energy ap-
proximation for the q yy decay. Whereas our
calculation of g -X mixing does show that a solu-
tion exists in the allowed domain II of Fig. 1, this
does not get close enough to the SU(3) SSU(3) sym-
metric point, which seems to be crucial for gen-
erating large mass values for the charmed par-
ticles.

APPENDIX

Using Eqs. (2. I), it is easy to show that the
boundaries of the allowed domains in Fig. 1 are
related to various subgroups of SW(4) as follows:

(1}e = e, =- —(c (/(2+ (c () implies &p V„"' = 0 and
together with isospin, hypercharge (F') and charm
(E")conservation corresponds to the validity of
the subgroup SUz (2) SSU(2) U(1), where SU& (2)

is the usual isospin group generated by I' "',
U(1) is the hypercharge group generated by E' and

SU(2) is generated by F"'". If the vacuum is in-
variant under isospin, hypercharge and charm,
then at e = e„ the scalar isosinglets Sz3 and Szg are
zero-mass Goldstone particles.

(2) e = em = I&I/(4-lul) leads to Sy V„"'""=0 and

corresponds to the validity of an SU(3) subgroup
of SW(4} generated by F""'"""and —,'E'
+ ', /fF".—Ifthe generators F '"""do not de-
stroy the vacuum state, the scalar isodoublets
Se zp and Szz z2 will be massless.

(3) e = e, =-(1 ——,')a])/(I+-,'(o.')) yields spA„'""
=0 and corresponds to the validity of another SU(3)
subgroup of SW(4) generated by E"', —,'E'
+ ,'WE",-and F'"'"'" This is the chimeral
analog of the SU(3) group realized at e=e, . With
the vacuum invariance as in (2}, we expect the
pseudoscalar isodoublets P, „and P»» to be
massless here.

(4) e = e4 —= (1+~o.~)/(I —~o) corresponds to 8pA&'"
=0 and implies that the Hamiltonian density is in-
variant under another subgroup SU& (2) SU'(2)
SU(1) of SW(4), where SU'(2} is the chimeral ana-
log of the SU(2) group discussed in (1) and is gen-
erated by E,' '~ and E". If the symmetry of the
vacuum is generated by E'"", then the pseudo-
scalar isosinglet mesons P» and P,4 would be
massless.

(5) e = -1 implies the usual chiral SU(3) 8 SU(3)
symmetry of the Hamiltonian as discussed in Sec.
III.

There are other subgroups of SW(4) which are
realized for the special value, +=0. For example,
the Hamiltonian would be SU(4)-invariant (generated
by E', . . . , E")if a =0 and e =0. Note if o, =0, the
points e, and e, coincide at e =0, the SU(4)-invari-
ant point. Similarly, the Hamiltonian would be in-
variant under a chimeral SU(4) symmetry, gener-
ated by I' ', . . . ,I ', E,', . . . , g,", and E", if a=0
and e =1. Again for e =0, e, and e4 coincide at
this point.
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The (4, 4*) + {4*,4) model of broken SU(4) x SU(4) as an approximate symmetry of hadrons is
investigated. Spectral-function sum rules for scalar and pseudoscalar densities are derived
in this model. Sum rules based on octet-type breaking of SU(3) at q2 = 0 and q~ = ~ are also
obtained. It is shown that the q2 = 0 sum rule rules out SU(2) x SU(2) as a good symmetry of
the Hamiltonian, when the vacuum is approximately SU(3)-invariant, in the present model.
Thus the problem of understanding SU(2) g SU(2) and SU{3) as approximate symmetries of
the Hamiltonian persists as'in the case of the popular (3, 3*)+ {3*,3}model of broken
SU(3) &( SU(3). It is shown that the q2 = ~ sum rule is consistent with the idea that SU(2) x SU(2)
is a good symmetry of the Hamiltonian. A mass formula for charmed pseudoscalar mesons
is also derived.

I. INTRODUCTION

SU(4) &&SU(4) as an approximate symmetry of
hadrons has recently been proposed by several
authors. The motivation for such an idea comes
from the recent developments in unified gauge
theories of leptons and several attempts to in-
corporate hadrons in such theories. ' In unified

gauge theories with hadrons, in order to restore
renormalizability and eliminate sizeable strange-
ness-changing neutral currents, a fourth quark
has been introduced carrying charm quantum
number in addition to the usual triplet of quarks.
It is then natural to consider SU(4) as a possible
approximate symmetry' of hadrons. This, how-

ever, poses problems because the known spectrum
of hadrons seems to fall in SU(3) multiplets. A

way out of this difficulty has been proposed by
Dittner and Eliezer. They suggest SU(4)XSU(4)
as an approximate symmetry' of the Hamiltonian
of hadrons where the symmetry is realized by
Goldstone bosons, and in the chiral limit the
vacuum is only SU(3)-invariant. In this scheme,
Dittner et a/. "have been able to obtain a solution
for the symmetry-breaking parameters which
shows that both SU(2) && SU(2) and SU(3) are good
symmetries of the Hamiltonian. Their solution
also xequires that the masses of the charmed

mesons be large (-5 GeV), explaining why such
particles, if they exist, have not yet been de-
tected.

The purpose of the present paper is to analyze
the breaking of SU(4) XSU(4) down. to the isospin
group SU(2) following a method' recently applied
to SU(3)xSU(3). The basic idea of such an ap-
proach is to obtain constraints" on the symxnetry-
breaking parameters by studying the spectral-
function sum rules for the scalar and pseudo-
scalar densities. In Sec. II of this paper, spectral-
function sum rules for the scalar and pseudoscalar
densities in the broken SU(4) &&SU(4) model are
'derived. In Sec. III sum rules based on the as-
sumption of octet-type breaking of SU(3) for the
two-point functions are derived. It is shown that
the broken-SU(3) sum rule for the pseudoscalar
density constrains the symmetry-breaking pa-
rameters in such a way that SU(2)XSU(2) cannot
be- a good symmetry of the Hamiltonian if the
vacuum is approximately SU(3)-invariant. This
is in contradiction with the result of Dittner
sf gl."who claim SU(2) &&SU(2) as well as SU(3)
as good symmetries of the Hamiltonian. In Sec.
IV sum xules are derived assuming the validity
of octet-type breaking of asymptotic SU(3) sym-
metry' for the two-point functions. It is shown
that the asymptotic sum rules are consistent


