PHYSICAL REVIEW D 89, 127502 (2014)
Shear-free axially symmetric dissipative fluids
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We study the general properties of axially symmetric dissipative configurations under the shear-free
condition. The link between the magnetic part of the Weyl tensor and the vorticity is clearly exhibited, as
well as the role of the dissipative fluxes. As a particular case, we examine the geodesic fluid. In this case,
the magnetic part of the Weyl tensor always vanishes, suggesting that no gravitational radiation is produced
during the evolution. In addition, for the geodesic case, in the absence of dissipation, the system evolves

towards a Friedmann-Roberston-Walker spacetime if the expansion scalar is positive.
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I. INTRODUCTION

In a recent paper [1], using a 1 + 3 approach [2-5], we
developed a general framework for studying axially sym-
metric dissipative fluids. In this work we endeavor to apply
this approach to the specific case of shear-free fluids.

The relevance of the shear tensor in the evolution of
self-gravitating systems, and the consequences emerging
from its vanishing, have been discussed by many authors
(see [6-12] and references therein).

Furthermore, as it has been recently shown [13], the
shear-free flow (in the nondissipative case) appears to be
equivalent to the well-known homologous evolution. It
should be recalled that homology conditions are of great
relevance in astrophysics [14-16].

Thus, in spite of the fact that the shear-free condition
appears to be unstable with respect to some important
physical phenomena [17], shear-free fluids play an impor-
tant role in the study of self-gravitating objects.

As we shall see below, the shear-free condition brings
out a clear link between the magnetic part of the Weyl
tensor (H ,5) and vorticity, even in the general (anisotropic
and dissipative) case. It will be shown that for a shear-free
fluid that is not necessarily perfect, the necessary and
sufficient condition to be irrotational is that the Weyl tensor
be purely electric; this thus generalizes a result by Barnes
[18,19] and Glass [20].

The subcase represented by the geodesic fluid is ana-
lyzed in some detail, the dissipationless case in particular.
In this latter case it is shown that if the expansion scalar
is positive, the system relaxes asymptotically to a
Friedmann-Roberston-Walker (FRW) spacetime. Also, it
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is shown that, in this case, the magnetic part of the Weyl
tensor always vanishes.

In order to avoid rewriting most of the equations, we
shall very often refer to [1]. Thus, we suggest that the reader
have Ref. [1] at hand when reading this manuscript.

II. THE SHEAR-FREE CONDITION
AND ITS CONSEQUENCES

We shall consider axially and reflection-symmetric fluid
distributions that are not necessarily bounded. For such a
system, the most general line element may be written in
“Weyl spherical coordinates” as

ds* = —A%df? + B2(dr* + r?d6?) + C*d¢? + 2Gd0dt,
(1)

where A, B, C, and G are positive functions of ¢, r, and 6.
We number the coordinates x°=1¢ x!=r, x2=0,
and x* = ¢.

The energy momentum tensor in the “canonical” form
reads

Top =+ P)\VVy+Pgop+Tog+q.Vs+aqsVe (2)

where, as usual, u, P, 11,4, Vy, and g, denote the energy
density, the isotropic pressure, the anisotropic stress tensor,
the four-velocity and the heat flow vector, respectively. The
anisotropic stress tensor may be written in terms of three
scalar functions (I1;, I1;;, and Ilg; ), whereas the heat flow
vector is defined by two scalar functions, ¢; and ¢g;; [see
Egs. (10)—(16) in [1] for details].

The shear tensor is defined by two scalar functions, o;
and oy;, which in terms of the metric functions read [see
Egs. (20)—(25) in [1]]

3/B C
201+ oy =2 <E_E> (3)
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3 B C
201[ + o] = A—282r2 T G2 |:ABzr2 <E - E)

ALY o

For the other kinematical variables (the expansion, the
four-acceleration, and the vorticity) we have the expansion

AB? (B C
e 22 L =
= gt [r ( Bt C)

L@ B A+G+C )
AB°\B A G C)|

and the four-acceleration
g = V/}Va;/i =a;K, + ajLa, (6)
with vectors K and L having components

\/m())

K,=(0,B.0,0); L,= (o, 0, .

(7)

and where the two scalar functions (a; and a;;) are defined
by [see Eq. (17) in [1]]

A/
=, 8
ar AB ()
A G A G\ A,
= | = |-+ = —1, (9
U L LV( A+G) " A} ®)

whereas the vorticity vector is defined through a single
scalar Q, given by [see Eq. (29) in [1]]

AG' —2GA’'
Q- ) (10)
2ABVA*B*r* + G?

where primes and dots denote derivatives with respect to r
and ¢, respectively.
If we assume the evolution to be shear free, i.e.,

O']ZO'H:O, (11)

then from (3) and (4) we have

C(t,r,0)
G(t,r,0)

R(r,0)B(t,r,0)
A(t,r,0)B(t,r,0)G(r.0). (12)

From regularity conditions at the origin we must require

R(0,0) = G(0,0) = 0.
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Next, from (A.5) in [1] we may write, if 6,53 =0,
v((lw/)’> + 2a)<aa/}> = Ha/}v (13)

where angled brackets denote the spatially projected,
symmetric, and trace-free part, and V,w; = hzwﬁ;(s.

From the above, it follows at once that w, =0 =
H,z; = 0. Furthermore, the inverse is also true. Indeed,
assuming H,; = 0 in (13), we obtain

V0 = =2a,0", (14)

however, if the shear tensor vanishes, the following identity
holds:

V0% = a,0”. (15)

Equations (14) and (15) imply that @, = 0. Alternatively,
the regularity condition at the origin, w,(r = 0) = 0, can
be analytically extended to the whole distribution by taking
successive V, derivatives of (14), thereby leading to the
same result.

Thus, using the notation of [1], we have established that

H, = H, =050 =0, (16)

where H| and H, are the two scalar functions that define
the magnetic part of the Weyl tensor.

It is important to stress the point that in order to arrive at
(16), we have used the tensorial equation (A.5) [Eq. (13)
above], which is not restricted to the axially symmetric
case. In other words, the necessary and sufficient condition
for a shear-free fluid to be irrotational is that the Weyl
tensor be purely electric. This generalizes a result by
Barnes [18,19] and Glass [20] to anisotropic and dissipative
fluids. (Observe that in [1] it was incorrectly stated that
such a generalization only applies to nondissipative fluids.)

For the heat flow scalars, we obtain in this case (shear
free and axially symmetric), using (B.6) and (B.7) from [1],

1

4rq; = 3—B®/, (17)
1

47[q11 = E@ﬂ. (18)

Thus, in the dissipationless case, the expansion scalar is
homogeneous, ® = O(r).

III. GEODESIC CONDITION: a, =0

We shall further restrict our system to the case of
vanishing four-acceleration. Two important observations
are in order at this point:

(1) As it will be shown below, all geodesic and shear-

free fluids are necessarily irrotational.
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(i) Shear-free irrotational, geodesic fluids have been
analyzed in great detail by Coley and McManus
[21,22]. Here we look at the axially symmetric heat-
conducting case of these fluid distributions.

Next, the geodesic condition implies that

A’ ~
and
1 GOB A, -
ay = — ) =0= GOB
" vV r2+éz ( 3 >
= Fy(1.0). (20)

Given that Q(r,0,0) = G(1,0,0) = 0, from (20) we find
that

Fy(1.) =0=>Q=0 or ©=0. (21)

The above results can also be obtained from (A.3) in [1],
which reads in this particular case as

2
hgvé(l)ﬂ;(g = - g @(l)a. (22)

Indeed, combining the above equation—or its projection
on the KL vectors [Eq. (B.5) in [1]]—with (3), (4), and (5),
we obtain the same result, i.e., ®Q = 0. This is in agree-
ment with the so-called “shear-free conjecture” for perfect
fluids, which suggests that ¢,5 = 0 implies ©Q = 0 (see
[23] and references therein). Here we have not restricted
ourselves to the perfect fluid case, although our result only
applies to geodesic fluids.

Let us first consider the case .5 =0, © # 0.

A Qy=0,0%0

In this case the line element takes the form

ds* = —dr* + B*(t,r,0)[dr? + r*d6* + R*(r,0)d¢?],
(23)

and the following equations have to be satisfied: the
“continuity” equation [Eq. (A.6) in [1]],

p+u+P)O+q% =0, (24)
and the generalized “Euler” equation [Eq. (A.7) in [1]],

4

100,=0.  (25)

p
ha(Pp+ 10, + qp, V*) +
In the nondissipative case, it is known that the shear-free
condition poses restrictions on the equilibrium equation of
state (see [6,7]) even in the nongeodesic case. Thus, it is
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legitimate to ask, in our case, whether or not any admissible
equation of state is restricted by the transport equation
assumed for the heat transport.

The answer to the above question seems to be affirma-
tive, if we observe that the last term within the round
bracket in (25) is related to the thermodynamic variables
through the transport equation (57) in [1] (if we assume
the Israel-Stewart theory). However, in the general case
(a, # 0), there is four-acceleration-heat coupling, and the
answer is not so evident; this requires a more detailed
analysis, which is outside the scope of this manuscript.

Next, from Egs. (B.2), (B.3), and (B.4) in [1], it follows
that

Y =Yg, =Yy =0, (26)
implying that
X,:—251, X”:_zgll’ XKL:_25KL’
E=4nll;, Eyp=4nlly, Exp=4ally,, (27)

where &;,&;, and Ek; are the three scalar functions
defining the electric part of the Weyl tensor (see [1] for
details), and Y;, Y, Y1, X, X;p, and Xg; are some of the
structure scalars obtained from the orthogonal splitting of
the Riemann tensor, which are defined in Egs. (38)—(50)
in [1].

Additionally, as stated before, we obtain (17) and (18)
from (B.6) and (B.7).

Finally, (B.10)—(B.18) in [1] produce (some of which are
redundant)

1 | 47 1
—3(X[—47Tﬂ)+3(€[®:—3(ﬂ+P+3H1>®
4n q11Bo
—Fq’,—4ﬂ 2, (28)
. 8x - VT
—XKL_GXKL :?HKL@—ZIL'(K L +K L )qll;}l’
(29)
1 - 0 ¥/ 1
5(—X”+4H/fl)+§g][:—?<M+P+§H">®
—4rltLYq,,. (30)

We shall now turn our attention specifically to the
dissipationless case g; = q;; = 0; this is similar to the
models analyzed in [22], although the anisotropic stress
tensor is more general. The Petrov type of each specific
model depends on the number of distinct eigenvalues of
s [24,25].

From Egs. (5), (17), (18), (24), and (26) it follows at once
that in the dissipationless case,
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®©=0(1) = B(t,r,0) = f(1)b(r,0),
P=P(1), I, =I(),
Mg, =Tk, (2), (31)
where we use the fact that Y; = 4z (u + 3P) [Eq. (42)
in [1]].

Then, Egs. (28), (29), and (30) may be easily integrated
to obtain

2 2
EIZSI(O)eXp |:—§/®dt:|, 511:511(0)exp |:—§/®dt:|,

p=n(t),
I, =11;,(2).

EKL——EKLGDeXp{—§]/®d%, (32)

or, feeding the expression of ® back into (32),

From the above it becomes evident that B = f(¢), and, in
the ® > 0O case, the system tends to a FRW spacetime.
Let us now analyze the other case.

B.O=0,Q#0

In this case the system becomes time independent, as it
can be easily inferred from (5).
Then, from (B.1), (B.2), (B.3), and (B.4) in [1], we
obtain
ZQZZYTZZYIZZYII, YKLZO, (34)

and from (B.6) and (B.7) in [1],
—(QBR) , = 87q,B*R\V 1> + G, (35)
(QBR)' = 8rq;;B*R. (36)
From the two equations above, it becomes evident that

Q =0 in the dissipationless case; this implies, because
of (34), that u = P = 0, unless we assume the equation of
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state 4 = —3P. In other words, any model belonging to this
class (® = 0) must necessarily be dissipative.

However it is a simple matter to check—from (B.8),
(B.9), and (B.13) in [1], together with (35), (36) and the
regularity conditions on the axis of symmetry—that no
such models (® = 0) exist.

IV. CONCLUSIONS

Using the framework developed in [1], we have analyzed
in some detail the general properties of the shear-free case.
We have seen that, for a general dissipative and anisotropic
fluid, vanishing vorticity is a necessary and sufficient
condition for the magnetic part of the Weyl tensor to
vanish, providing a generalization of the same result for
perfect fluids obtained in [18-20]. This result, in turn,
implies that vorticity should necessarily appear if the
system radiates gravitationally. We stress that this result
is not restricted to the axially and reflection-symmetric
case. This further reinforces the well-established link
between radiation and vorticity (see [26] and references
therein).

In the geodesic case, the vorticity always vanishes (and
therefore the magnetic parts of the Weyl tensor), suggesting
that in this case no gravitational radiation is produced
during the evolution. This result is in agreement with the
shear-free conjecture mentioned above. However, we do
not know if it holds for the nongeodesic case. If it does,
then it is clear that we should consider shearing fluids when
looking for sources of gravitational radiation.

The above result is also similar to the one obtained for
the cylindrically symmetric case [27], and suggests (as does
the shear-free conjecture) a link between the shear of the
source and the generation of gravitational radiation during
its evolution.

In the geodesic case, we also observe that, in the
nondissipative case, the models do not need to be FRW
(as already stressed in [21]); however, the system relaxes
to the FRW spacetime if ® is positive. In presence of
dissipative fluxes, such a tendency does not appear, further
illustrating the relevance of dissipative processes in the
evolution of self-gravitating fluids.
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