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We study the general properties of axially symmetric dissipative configurations under the shear-free
condition. The link between the magnetic part of the Weyl tensor and the vorticity is clearly exhibited, as
well as the role of the dissipative fluxes. As a particular case, we examine the geodesic fluid. In this case,
the magnetic part of the Weyl tensor always vanishes, suggesting that no gravitational radiation is produced
during the evolution. In addition, for the geodesic case, in the absence of dissipation, the system evolves
towards a Friedmann-Roberston-Walker spacetime if the expansion scalar is positive.
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I. INTRODUCTION

In a recent paper [1], using a 1þ 3 approach [2–5], we
developed a general framework for studying axially sym-
metric dissipative fluids. In this work we endeavor to apply
this approach to the specific case of shear-free fluids.
The relevance of the shear tensor in the evolution of

self-gravitating systems, and the consequences emerging
from its vanishing, have been discussed by many authors
(see [6–12] and references therein).
Furthermore, as it has been recently shown [13], the

shear-free flow (in the nondissipative case) appears to be
equivalent to the well-known homologous evolution. It
should be recalled that homology conditions are of great
relevance in astrophysics [14–16].
Thus, in spite of the fact that the shear-free condition

appears to be unstable with respect to some important
physical phenomena [17], shear-free fluids play an impor-
tant role in the study of self-gravitating objects.
As we shall see below, the shear-free condition brings

out a clear link between the magnetic part of the Weyl
tensor (Hαβ) and vorticity, even in the general (anisotropic
and dissipative) case. It will be shown that for a shear-free
fluid that is not necessarily perfect, the necessary and
sufficient condition to be irrotational is that the Weyl tensor
be purely electric; this thus generalizes a result by Barnes
[18,19] and Glass [20].
The subcase represented by the geodesic fluid is ana-

lyzed in some detail, the dissipationless case in particular.
In this latter case it is shown that if the expansion scalar
is positive, the system relaxes asymptotically to a
Friedmann-Roberston-Walker (FRW) spacetime. Also, it

is shown that, in this case, the magnetic part of the Weyl
tensor always vanishes.
In order to avoid rewriting most of the equations, we

shall very often refer to [1]. Thus, we suggest that the reader
have Ref. [1] at hand when reading this manuscript.

II. THE SHEAR-FREE CONDITION
AND ITS CONSEQUENCES

We shall consider axially and reflection-symmetric fluid
distributions that are not necessarily bounded. For such a
system, the most general line element may be written in
“Weyl spherical coordinates” as

ds2 ¼ −A2dt2 þ B2ðdr2 þ r2dθ2Þ þ C2dϕ2 þ 2Gdθdt;

ð1Þ
where A;B;C, and G are positive functions of t, r, and θ.
We number the coordinates x0 ¼ t, x1 ¼ r, x2 ¼ θ,
and x3 ¼ ϕ.
The energy momentum tensor in the “canonical” form

reads

Tαβ ¼ ðμþ PÞVαVβ þ Pgαβ þ Παβ þ qαVβ þ qβVα; ð2Þ
where, as usual, μ; P;Παβ; Vβ, and qα denote the energy
density, the isotropic pressure, the anisotropic stress tensor,
the four-velocity and the heat flow vector, respectively. The
anisotropic stress tensor may be written in terms of three
scalar functions (ΠI;ΠII , and ΠKL), whereas the heat flow
vector is defined by two scalar functions, qI and qII [see
Eqs. (10)–(16) in [1] for details].
The shear tensor is defined by two scalar functions, σI

and σII, which in terms of the metric functions read [see
Eqs. (20)–(25) in [1]]

2σI þ σII ¼
3

A

�
_B
B
−

_C
C

�
; ð3Þ

*lherrera@usal.es
†adiprisc@ciens.ucv.ve
‡j.ospino@usal.es

PHYSICAL REVIEW D 89, 127502 (2014)

1550-7998=2014=89(12)=127502(5) 127502-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.127502
http://dx.doi.org/10.1103/PhysRevD.89.127502
http://dx.doi.org/10.1103/PhysRevD.89.127502
http://dx.doi.org/10.1103/PhysRevD.89.127502
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For the other kinematical variables (the expansion, the
four-acceleration, and the vorticity) we have the expansion

Θ ¼ AB2

r2A2B2 þ G2

�
r2
�
2
_B
B
þ

_C
C

�

þ G2

A2B2
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−
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þ
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þ

_C
C

��
; ð5Þ

and the four-acceleration

aα ¼ VβVα;β ¼ aIKα þ aIILα; ð6Þ

with vectors K and L having components

Kα ¼ ð0; B; 0; 0Þ; Lα ¼
�
0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p

A
; 0

�
;

ð7Þ

and where the two scalar functions (aI and aII) are defined
by [see Eq. (17) in [1]]

aI ¼
A0

AB
; ð8Þ

aII ¼
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2B2r2 þ G2
p

�
G
A2

�
−
_A
A
þ

_G
G

�
þ A;θ

A

�
; ð9Þ

whereas the vorticity vector is defined through a single
scalar Ω, given by [see Eq. (29) in [1]]

Ω ¼ ðAG0 − 2GA0Þ
2AB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2r2 þ G2

p ; ð10Þ

where primes and dots denote derivatives with respect to r
and t, respectively.
If we assume the evolution to be shear free, i.e.,

σI ¼ σII ¼ 0; ð11Þ

then from (3) and (4) we have

Cðt; r; θÞ ¼ Rðr; θÞBðt; r; θÞ
Gðt; r; θÞ ¼ Aðt; r; θÞBðt; r; θÞ ~Gðr; θÞ: ð12Þ

From regularity conditions at the origin we must require
Rð0; θÞ ¼ ~Gð0; θÞ ¼ 0.

Next, from (A.5) in [1] we may write, if σαβ ¼ 0,

∇hαωβi þ 2ωhαaβi ¼ Hαβ; ð13Þ

where angled brackets denote the spatially projected,
symmetric, and trace-free part, and ∇αωβ ≡ hδαωβ;δ.
From the above, it follows at once that ωα ¼ 0 ⇒

Hαβ ¼ 0. Furthermore, the inverse is also true. Indeed,
assuming Hαβ ¼ 0 in (13), we obtain

∇αω
α ¼ −2aαωα; ð14Þ

however, if the shear tensor vanishes, the following identity
holds:

∇αω
α ¼ aαωα: ð15Þ

Equations (14) and (15) imply that ωαβ ¼ 0. Alternatively,
the regularity condition at the origin, ωαðr ¼ 0Þ ¼ 0, can
be analytically extended to the whole distribution by taking
successive ∇α derivatives of (14), thereby leading to the
same result.
Thus, using the notation of [1], we have established that

H1 ¼ H2 ¼ 0⇔Ω ¼ 0; ð16Þ

where H1 and H2 are the two scalar functions that define
the magnetic part of the Weyl tensor.
It is important to stress the point that in order to arrive at

(16), we have used the tensorial equation (A.5) [Eq. (13)
above], which is not restricted to the axially symmetric
case. In other words, the necessary and sufficient condition
for a shear-free fluid to be irrotational is that the Weyl
tensor be purely electric. This generalizes a result by
Barnes [18,19] and Glass [20] to anisotropic and dissipative
fluids. (Observe that in [1] it was incorrectly stated that
such a generalization only applies to nondissipative fluids.)
For the heat flow scalars, we obtain in this case (shear

free and axially symmetric), using (B.6) and (B.7) from [1],

4πqI ¼
1

3B
Θ0; ð17Þ

4πqII ¼
1

3Br
Θ;θ: ð18Þ

Thus, in the dissipationless case, the expansion scalar is
homogeneous, Θ ¼ ΘðtÞ.

III. GEODESIC CONDITION: aα ¼ 0

We shall further restrict our system to the case of
vanishing four-acceleration. Two important observations
are in order at this point:

(i) As it will be shown below, all geodesic and shear-
free fluids are necessarily irrotational.
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(ii) Shear-free irrotational, geodesic fluids have been
analyzed in great detail by Coley and McManus
[21,22]. Here we look at the axially symmetric heat-
conducting case of these fluid distributions.

Next, the geodesic condition implies that

aI ¼
A0

AB
¼ 0 ⇒ A ¼ ~Aðt; θÞ ð19Þ

and

aII ¼
1

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ~G2

p
�
~GΘB
3

þ A;θ

A

�
¼ 0 ⇒ ~GΘB

¼ F2ðt; θÞ: ð20Þ

Given that Ωðt; 0; θÞ ¼ ~Gðt; 0; θÞ ¼ 0, from (20) we find
that

F2ðt; θÞ ¼ 0 ⇒ Ω ¼ 0 or Θ ¼ 0: ð21Þ

The above results can also be obtained from (A.3) in [1],
which reads in this particular case as

hβαVδωβ;δ ¼ −
2

3
Θωα: ð22Þ

Indeed, combining the above equation—or its projection
on theKL vectors [Eq. (B.5) in [1]]—with (3), (4), and (5),
we obtain the same result, i.e., ΘΩ ¼ 0. This is in agree-
ment with the so-called “shear-free conjecture” for perfect
fluids, which suggests that σαβ ¼ 0 implies ΘΩ ¼ 0 (see
[23] and references therein). Here we have not restricted
ourselves to the perfect fluid case, although our result only
applies to geodesic fluids.
Let us first consider the case Ωαβ ¼ 0, Θ ≠ 0.

A. Ωαβ ¼ 0, Θ ≠ 0

In this case the line element takes the form

ds2 ¼ −dt2 þ B2ðt; r; θÞ½dr2 þ r2dθ2 þ R2ðr; θÞdϕ2�;
ð23Þ

and the following equations have to be satisfied: the
“continuity” equation [Eq. (A.6) in [1]],

_μþ ðμþ PÞΘþ qα;α ¼ 0; ð24Þ

and the generalized “Euler” equation [Eq. (A.7) in [1]],

hβαðP;β þ Πμ
β;μ þ qβ;μVμÞ þ 4

3
Θqα ¼ 0: ð25Þ

In the nondissipative case, it is known that the shear-free
condition poses restrictions on the equilibrium equation of
state (see [6,7]) even in the nongeodesic case. Thus, it is

legitimate to ask, in our case, whether or not any admissible
equation of state is restricted by the transport equation
assumed for the heat transport.
The answer to the above question seems to be affirma-

tive, if we observe that the last term within the round
bracket in (25) is related to the thermodynamic variables
through the transport equation (57) in [1] (if we assume
the Israel-Stewart theory). However, in the general case
(aα ≠ 0), there is four-acceleration–heat coupling, and the
answer is not so evident; this requires a more detailed
analysis, which is outside the scope of this manuscript.
Next, from Eqs. (B.2), (B.3), and (B.4) in [1], it follows

that

YI ¼ YKL ¼ YII ¼ 0; ð26Þ

implying that

XI ¼−2EI; XII ¼−2EII; XKL ¼−2EKL;

EI ¼ 4πΠI; EII ¼ 4πΠII; EKL ¼ 4πΠKL; ð27Þ

where EI; EII , and EKL are the three scalar functions
defining the electric part of the Weyl tensor (see [1] for
details), and YI; YKL; YII; XI; XII , and XKL are some of the
structure scalars obtained from the orthogonal splitting of
the Riemann tensor, which are defined in Eqs. (38)–(50)
in [1].
Additionally, as stated before, we obtain (17) and (18)

from (B.6) and (B.7).
Finally, (B.10)–(B.18) in [1] produce (some of which are

redundant)

−
1

3
ðXI − 4πμ _Þ þ 1

3
EIΘ ¼ −

4π

3

�
μþ Pþ 1

3
ΠI

�
Θ

−
4π

B
q0I − 4π

qIIBθ

B2r
; ð28Þ

− _XKL − ΘXKL ¼ 8π

3
ΠKLΘ − 2πðKμLν þ KνLμÞqν;μ;

ð29Þ

1

3
ð−XII þ 4πμ _Þ þ Θ

3
EII ¼ −

4π

3

�
μþ Pþ 1

3
ΠII

�
Θ

− 4πLμLνqν;μ: ð30Þ

We shall now turn our attention specifically to the
dissipationless case qI ¼ qII ¼ 0; this is similar to the
models analyzed in [22], although the anisotropic stress
tensor is more general. The Petrov type of each specific
model depends on the number of distinct eigenvalues of
Παβ [24,25].
From Eqs. (5), (17), (18), (24), and (26) it follows at once

that in the dissipationless case,
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Θ¼ΘðtÞ⇒Bðt;r;θÞ¼ fðtÞbðr;θÞ;
μ¼ μðtÞ; P¼PðtÞ; ΠI ¼ΠIðtÞ;

ΠII ¼ΠIIðtÞ; ΠKL ¼ΠKLðtÞ; ð31Þ

where we use the fact that YT ¼ 4πðμþ 3PÞ [Eq. (42)
in [1]].
Then, Eqs. (28), (29), and (30) may be easily integrated

to obtain

EI¼EIð0Þexp
�
−
2

3

Z
Θdt

�
; EII¼EIIð0Þexp

�
−
2

3

Z
Θdt

�
;

EKL¼EKLð0Þexp
�
−
2

3

Z
Θdt

�
; ð32Þ

or, feeding the expression of Θ back into (32),

EI ¼
EIð0Þ
B2

; EII ¼
EIIð0Þ
B2

; EKL ¼ EKLð0Þ
B2

:

ð33Þ
From the above it becomes evident that B ¼ fðtÞ, and, in
the Θ > 0 case, the system tends to a FRW spacetime.
Let us now analyze the other case.

B. Θ ¼ 0, Ω ≠ 0

In this case the system becomes time independent, as it
can be easily inferred from (5).
Then, from (B.1), (B.2), (B.3), and (B.4) in [1], we

obtain

2Ω2 ¼ YT ¼ 2YI ¼ 2YII; YKL ¼ 0; ð34Þ
and from (B.6) and (B.7) in [1],

−ðΩBRÞ;θ ¼ 8πqIB2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ~G2

p
; ð35Þ

ðΩBRÞ0 ¼ 8πqIIB2R: ð36Þ
From the two equations above, it becomes evident that

Ω ¼ 0 in the dissipationless case; this implies, because
of (34), that μ ¼ P ¼ 0, unless we assume the equation of

state μ ¼ −3P. In other words, any model belonging to this
class (Θ ¼ 0) must necessarily be dissipative.
However it is a simple matter to check—from (B.8),

(B.9), and (B.13) in [1], together with (35), (36) and the
regularity conditions on the axis of symmetry—that no
such models (Θ ¼ 0) exist.

IV. CONCLUSIONS

Using the framework developed in [1], we have analyzed
in some detail the general properties of the shear-free case.
We have seen that, for a general dissipative and anisotropic
fluid, vanishing vorticity is a necessary and sufficient
condition for the magnetic part of the Weyl tensor to
vanish, providing a generalization of the same result for
perfect fluids obtained in [18–20]. This result, in turn,
implies that vorticity should necessarily appear if the
system radiates gravitationally. We stress that this result
is not restricted to the axially and reflection-symmetric
case. This further reinforces the well-established link
between radiation and vorticity (see [26] and references
therein).
In the geodesic case, the vorticity always vanishes (and

therefore the magnetic parts of the Weyl tensor), suggesting
that in this case no gravitational radiation is produced
during the evolution. This result is in agreement with the
shear-free conjecture mentioned above. However, we do
not know if it holds for the nongeodesic case. If it does,
then it is clear that we should consider shearing fluids when
looking for sources of gravitational radiation.
The above result is also similar to the one obtained for

the cylindrically symmetric case [27], and suggests (as does
the shear-free conjecture) a link between the shear of the
source and the generation of gravitational radiation during
its evolution.
In the geodesic case, we also observe that, in the

nondissipative case, the models do not need to be FRW
(as already stressed in [21]); however, the system relaxes
to the FRW spacetime if Θ is positive. In presence of
dissipative fluxes, such a tendency does not appear, further
illustrating the relevance of dissipative processes in the
evolution of self-gravitating fluids.
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