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For an evaporating black hole which is a radiation-black hole combined system, we express the
entanglement entropy and the Page time in terms of the conformal time in the Russo-Susskind-Thorlacius
model. The entropy change of the black hole is nicely written in terms of Hawking flux. Integrating the first
law of thermodynamics, we can obtain the decreasing black hole entropy and the increasing radiation
entropy, and the entanglement entropy for this system based on the Page argument. We also obtain
analytically the critical temperature to release black hole information, which corresponds to the Page time,
and discuss the relation between the conserved total entropy and information recovering of the black hole in
this model.
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Bekenstein has suggested that the entropy of a black hole
is proportional to the area of the horizon [1–3], and
subsequently Hawking’s discovery has led to the result
that the black hole has thermal radiation with the temper-
ature TH ¼ κH=2π [4], where κH is the surface gravity at the
event horizon. It has also been claimed that the black hole
would eventually disappear completely through thermal
radiation, which gives rise to information loss problem [5].
However, if Hawking radiation plays a role of carrier of
information, information will come out so slowly until the
Page time [6] when the entanglement entropy becomes
maximum such that the dimension of radiation equals to
that of the black hole in the Hilbert space. When the
dimension of radiation is larger than that of the black hole,
information is naturally contained in radiation. Moreover, it
has been shown that in Ref. [6] the above statistical analysis
can be realized in the Callan-Giddings-Harvey-Strominger
(CGHS) model [7] by taking into account the classical
metric along with the corresponding constant temperature
which is independent of black hole mass so that radiation
does not reflect the backreaction of the geometry. Actually,
the black hole entropy of a two-dimensional black hole
with the backreaction was studied for the static case in
Refs. [8,9].
In this work, we are going to study the entanglement

entropy based on the Page formulation using the Russo-
Susskind-Thorlacius (RST) model [10,11] to take into
account backreaction of the geometry, which yields natu-
rally the time-dependent geometry. The essential difficulty
is to identify the time-dependent temperature which is quite
awkward in standard thermodynamics. So we would like to

assume that a radiation-black hole combined system is in
equilibrium at each time such that the radiation temperature
measured by the fixed observer at the future null infinity is
identified with the black hole temperature. Then, the
thermodynamic first law is also read off from the differ-
ential form of the energy conservation law [12], so that the
entropy change of the black hole is neatly written in terms
of Hawking flux. Integrating the first law of thermody-
namics, we can obtain the decreasing black hole entropy
and the increasing radiation entropy, and the entanglement
entropy based on the Page argument [6]. So, the total
entropy is always constant while the total information is not
conserved locally because of the time-dependent entangle-
ment entropy; however, it is expected that the total
information is recovered after complete evaporation of
the black hole.
Now, let us start with the RST model given by the

action [10]

I ¼ IDG þ If þ IPL þ Icorr; ð1Þ
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where κ ¼ ðN − 24Þ=12which can be positive by taking into
account the ghost decoupling term [13] and λ is a cosmo-
logical constant. Equation (5) is added to obtain an exact
black hole solution and it is reduced to the CGHS model
without this term [7]. From the action (1), the equations
of motion are given by □fi ¼ 0, e−2ϕ½R − 4ð∇ϕÞ2þ
4□ϕþ 4λ2� þ κ

4
R ¼ 0, and Gμν ¼ Tf

μν þ Tqt
μν, where Gμν≡

2πffiffiffiffi−gp δ
δgμν ðIDG þ IcorrÞ ¼ 2e−2ϕ½∇μ∇νϕþ gμνðð∇ϕÞ2 −□ϕ−

λ2Þ� þ κ
2
ð∇μ∇νϕ − gμν□ϕÞ. The energy-momentum tensors

for matter are defined as
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2πffiffiffiffiffiffi−gp δIPL
δgμν

: ð7Þ

It can be checked that the dilaton improved Bianchi
identity for the RST model is satisfied, i.e., ∇μGμν ¼ 0,
which yields covariant conservation relations for classical
matter and quantum matter as ∇μTf

μν ¼ 0 ¼ ∇μTqt
μν ¼ 0.

Thus, the definitions of the classical and the quantum
energy-momentum tensors given by Eqs. (6) and (7) in
the RST model are compatible with those of the CGHS
model as long as covariant conservation relations are
concerned. In the conformal gauge given by
ds2 ¼ e2ρdxþdx−, the classical energy-momentum tensor
(6) is written as Tf

�� ¼ 1
2

P
N
i¼1ð∂�fiÞ2 and Tf

�∓ ¼ 0 and
the quantum energy-momentum tensor (7) is given by
Tqt
�� ¼ κ½∂2

�ρ − ð∂�ρÞ2 − t�ðx�Þ� and Tqt
�∓ ¼ −κ∂þ∂−ρ,

which agrees with the quantum energy-momentum tensor
introduced in the CGHS model [7]. The unknown
functions t�ðx�Þ reflect the nonlocal property of the
effective action. Of course, one may define the energy-
momentum tensor for matter in a different way by
including the contribution from Eq. (5) because it is
actually not unique. However, it can be well defined at
asymptotic future null infinity since it can be expressed by
only the boundary function as Tqt

�� ¼ −κt� when we
consider Hawking radiation in that region.
By introducing new variables given by χ ¼ ffiffiffi
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simplicity, the action (1) can be written as [10,11]
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and the two constraints are given by κt� ¼ −∂�χ∂�χþffiffiffi
κ

p ∂2
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2

P
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motion derived from the action (8) can be exactly solved. In
the Kruskal coordinates where χ ¼ Ω, the evaporating
black hole formed by an incoming shock wave of
Tf
þþ ¼ ½M=ðλxþ0 Þ�δðxþ − xþ0 Þ is described by the solu-

tion of Ωðxþ; x−Þ ¼ −λ2xþx−=
ffiffiffi
κ

p
−
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4
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ðxþ − xþ0 ÞΘðxþ − xþ0 Þ, where the linear dilaton vac-

uum is chosen for xþ < xþ0 . An asymptotically static
coordinate can be obtained from the coordinate transforma-
tions defined by xþ ¼ ð1=λÞeλσþ and x− ¼ −ð1=λÞe−λσ−−
ðM=λ2Þe−λσþ0 Θðσþ − σþ0 Þ, where σþ0 ¼ λ−1 lnðλxþ0 Þ.
Note that the RST model is known to be quantum-

mechanically inconsistent after appearance of the naked
singularity [14]. The curvature singularity and apparent
horizon collide in a finite proper time and the singularity is
naked after the two have merged [10]. In order to avoid
the naked singularity, a vacuum state can be patched at the
intersection point (σþs ; σ−s ) of the singularity curve and the
apparent horizon as shown in the Penrose diagram of Fig. 1,
where the intersection point is given by σ−s ¼ σþ0 þ
λ−1 ln ½ðλ=MÞðexpð4M=ðκλÞÞ − 1Þ� and σþs ¼ σ−s þ
λ−1 lnðκ=4Þ [10–12,14]. However, this patching procedure
requires the thunderpop energy which is the negative
classical energy emanated from the black hole. So we
are going to mainly discuss the entanglement entropy of the
RST model before the negative Bondi mass appears.

FIG. 1. It shows the Penrose diagram of the black hole formed
by a shock wave at σþ ¼ σþ0 .
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On the other hand, from the covariant conservation law,
one can get the ordinary conserved quantity by expanding the
metric and dilaton fields around the linear dilaton vacuum.

Then, the linearized equation of motion becomes Gð1Þ
μν ¼

Tf
μν −Gð2Þ

μν [15], where Tf
μν is a classical energy-momentum

tensor,Gð1Þ
μν is the linear perturbed part ofGμν, andG

ð2Þ
μν is the

rest. Then, one can choose the time and space coordinate so
that it is easy to show that the linearized equation of motion
identically satisfies the ordinary conservation law,
∂μGð1Þμ0 ¼ 0, by the use of the linearized Bianchi identity

[16]. It implies that the current defined as Jμ ¼ Tμ0
f −Gð2Þμ0

satisfies the ordinary conservation law ∂μJμ ¼ 0. Thus we
can define the Bondi mass Bðσ−Þ which is the energy
evaluated along the null line [17], Bðσ−Þ ¼ ð1=2ÞR
∞
−∞ dσþGð1Þ−0ðσþ; σ−Þ while the Anowitt-Deser-Misner
(ADM) mass is calculated at the spatial infinity as
EADMðtÞ ¼

R∞
−∞ dqGð1Þ00ðt; qÞ [18]. Using the integrated

form of the linearized equation of motion, after some
calculations the difference between the ADM mass and
the Bondi mass can be obtained as [12]

EADMðtÞ − Bðσ−Þ ¼
Z

σ−

−∞
dσ−ðTf

−− þ Tqt
−−Þjσþ→∞: ð9Þ

Note that the classical infalling energy-momentum tensor
does not exist since it cannot appear in the asymptotic future
null infinity. However, in the RST model there may exist the
classical outgoing negative energy density called the thun-
derpop energy at σ−s . From now on, we will consider
radiation-hole combined system before the thunderpop
appears, and then the conformal time is restricted to
−∞ < σ < σ−s . It means that we can takevanishing outgoing
classical energy-momentum tensor in this analysis.
Next, the integrated Hawking flux is given by

Hðσ−Þ ¼ R
σ−
−∞ dσ−hðσ−Þ, where the Hawking flux is

hðσ−Þ ¼ Tqt
−−jσþ→∞. The Hawking flux is simply reduced

to the boundary function as hðσ−Þ ¼ −t−ðσ−Þ since σ� is a
quasistatic coordinate system at infinity, and so the fields
approach the linear dilaton vacuum at σþ → ∞. In this
black hole, the Hawking radiation is written as hðσ−Þ ¼
ðκλ2=4Þ½1 − ð1þ ðM=λÞeλðσ−−σþ0 ÞÞ−2� [7]. Note that the
Bondi mass is the remaining energy after quantum-
mechanical Hawking radiation has been emitted from the
system. So it is plausible to regard the Bondi mass as a
black hole mass in the quantum backreacted model. From
Eq. (9), we can get the conservation law as [12]

Bðσ−Þ þHðσ−Þ ¼ M; ð10Þ
whereM is the ADMmass. The energy can be conserved in
this evaporating black hole system so that the Bondi energy
plus the Hawking radiation should be equal to the initial
infalling energy by the scalar fields.
Now, we will assume the radiation-black hole combined

system as a thermal equilibrium system for each conformal

time σ− in order to apply the thermodynamic first law. Let
us first relate the Hawking flux to the Hawking temperature
in analogy with the static case [19], then one can read off
the black hole temperature Tðσ−Þ from the Hawking
radiation by identifying

hðσ−Þ ¼ κπ2T2ðσ−Þ; ð11Þ
which yields
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Note that it vanishes at σ− → −∞ since the black hole did
not radiate yet and the well-known Hawking temperature is
recovered as TH ¼ λ=2π at σ− → ∞ which is compatible
with the previous static results [6,19]. Using the differential
form of the energy conservation law (10), the change of the
black hole entropy can be written as

ΔSh ¼ Shðσ−Þ − S0h ¼
Z

dB
T

¼ −π
ffiffiffi
κ

p Z
σ−

−∞
dσ−

ffiffiffiffiffiffiffiffiffiffiffiffi
hðσ−Þ

p
; ð13Þ

where S0h denotes the entropy of the black hole at
σ− → −∞. The entropy change is essentially due to
Hawking radiation such that the entropy of the black hole
is decreasing. From Eq. (13) the entropy is calculated as

Shðσ−Þ ¼
2πM
λ

−
πκ

2

�
sec−1γðσ−Þ þ ln ðγðσ−Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðσ−Þ− 1

q
Þ
�
;

ð14Þ
where γðσ−Þ ¼ 1þ ðM=λÞeλðσ−−σþ0 Þ and we employed the
fact that the entropy of the black hole is given by S0h ¼
2πM=λ at the initial time of σ− → −∞ since the entropy of
the black hole starts with the maximum thermal entropy of
the area law, and at the same time the Hawking temperature
(12) is zero. As time goes on, the black hole entropy is
decreasing according to the increasing Hawking temper-
ature which amounts to TH ¼ λ=2π at σ− → ∞. Note that
in the conventional thermodynamic analysis, the black hole
entropy and the temperature are given as S ¼ 2πM=λ,
and TH ¼ λ=2π.
On the other hand, for a system consisting of the black

hole subsystem and the radiation subsystem, the entangle-
ment entropy for Sh; Sr ≫ 1 is given by the Page argument
as [6]

Sent ≃
(
Sr − 1

2
eSr−Sh for Sr ≤ Sh

Sh − 1
2
eSh−Sr for Sr ≥ Sh

; ð15Þ
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where Sh and Sr are the black hole entropy and the radia-
tion entropy, respectively. Note that the total entropy
of the system is preserved such that it is given as
Sr þ Sh ¼ 2πM=λ. The entanglement entropy (15) has a

maximum value at the Page time when the black hole emits
a half of its initial Bekenstein-Hawking entropy, i.e.,
Sr ¼ πM=λ. Using Eq. (14), we can write the entanglement
entropy explicitly in terms of σ−, and it becomes

Sentðσ−Þ≃ πκ
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�
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for σ− ≤ σ−c and
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for σ− ≥ σ−c . Note that the entanglement entropy becomes
maximum at the conformal time of σ−c which comes from
the maximization of the entanglement entropy formally
given in the closed form of γðσ−c Þ cos½lnðγðσ−c Þþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðσ−c Þ − 1

p
Þ − 2M=ðκλÞ� ¼ 1. That point is just the Page

time expressed by the conformal time since the radiation
entropy is the same with the black hole entropy as shown in
Fig. 2. The radiation entropy is monotonically increasing
while the black hole entropy is monotonically decreasing,
and their sum is constant.
By the way, there is a deficiency in this calculation that

the black hole entropy is negative for σ− > σ−p because the
Bondi mass in the RST model is negative due to the surplus
Hawking radiation after σ−p [14] so that the present
calculations are meaningful before σ−p . Moreover, the
expression for the entanglement entropy based on the
Page argument is valid only for many degrees of freedom
as was noticed below (15) such as Sh; Sr ≫ 1. So, it seems
to be inappropriate to discuss beyond the end point of the
entropy in our formulation, and the calculation of the

entanglement entropy becomes a good approximation
around σ−c . One more thing to be mentioned is that we
distinguished the definition of the entropy depending on the
subsystem: the black hole entropy is defined by employing
the Bondi mass, which is plausible in that the entropy
change of the black hole should be negative because the
black hole radiates while the entropy change of radiation
should be positive because Hawking radiation is increased
monotonically.
As for the naked singularity of the black hole, the black

hole can generally form a singularity. However, as seen from
the original work [6], the black hole system was assumed to
have many degrees of freedom such asm; n ≫ 1 in order to
formulate the system and derive the explicit form of the
average value of the entanglement entropy of Eq. (15). It
means that even in spite of the small black hole, it should
havemany degrees of freedom in this formulation so that the
black hole does not lose its mass completely and then the
naked singularity is no more concerned. Based on this
argument, we have employed the same entropy formula in
the present RSTmodel so that our result is also valid only for
the many degrees of freedom just at the conformal time
σ− ≪ σ−p for which Sh ≫ 1. Therefore, the entanglement
entropy turns out to bewell defined only around σ−c in Fig. 2
except the extreme limits of very small degrees of freedom.
Furthermore, the advantage of the RSTmodel in Ref. [10] is
that it has been designed to be free from the naked singularity
because the flat metric can be patched with the black hole
metric when the singularity forms at σ−s as seen from Fig. 1.
As a result, we have obtained the decreasing black hole

entropy, the increasing radiation entropy, the entanglement
entropy, and the Page time in terms of the conformal time in
the exactly soluble RST model. Moreover, we can find a
Page temperature at the Page time since σ−c was identified
so that it becomes formally Tðσ−c Þ from Eq. (12). In other
words, information is significantly leased above the critical
temperature of Tðσ−c Þ.
In Refs. [20,21], the black hole entropy and increase

theorem related to the second law of black hole

c p s

Sh Sr

Sent

FIG. 2 (color online). The solid, the dashed, and the thick-
dotted lines show the behaviors of the entanglement entropy Sent,
the black hole entropy Sh, and the thermodynamic radiation
entropy Sr, respectively. The entanglement entropy has a maxi-
mum at σ−c and it vanishes at σ−p .
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thermodynamics have been studied for the RST model, and
we would like to mention some differences between our
work and them. First, the system in our work was divided
into two subsystems so that the black hole has the black
hole entropy and radiation has the radiation entropy,
respectively, while there appears only a single system
and the single entropy to define the black hole system
in the previous works. Additionally, the entanglement
entropy in this work has been defined throughout corre-
lation between the two subsystems, so that the entropy in
Refs. [20,21] behaves like not the entanglement entropy but
the radiation entropy in our work in the sense that it is
always increasing as time goes on and the entropy change is
always positive, which guarantees the second law of black
hole thermodynamics.
In the original work done by Page in Ref. [6], the system

was divided into two subsystems; one is for the black hole
with dimension m and the other is for radiation with

dimension n. The most important assumption is that these
subsystems form a total system in a pure state in a Hilbert
space of fixed dimensionmn. It means that the total entropy
is constant, and consequently ΔS ¼ 0. Following this
assumption in Ref. [6], we also assumed that the total
entropy should be constant in order to realize the Page
argument in the RST model. In particular, for the case of
ΔS > 0, the information will be eventually lost like
ordinary thermal systems. Therefore, the requirement of
the fixed total entropy is a sort of constraint based on the
hypothesis that no information is lost in black hole
formation and evaporation as was claimed in Ref. [6].
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