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We consider the perturbative consistency of inflationary models with features with effective field theory
methods. By estimating the size of one-loop contributions to the three-point function, we find the energy
scale where their contribution is of the same order of the tree-level amplitude. It is well known that beyond
that scale, perturbative unitarity is lost and the theory is no more under theoretical control. Requiring that
all the relevant energy scales of the problem are below this cutoff, we derive a strong upper bound on the
sharpness of the feature, or equivalently on its characteristic time scale, which is independent on the
amplitude of the feature itself. We point out that the sharp features that seem to provide better fits to
the cosmic microwave background power spectrum are already outside this bound, questioning the
consistency of the models that predict them.
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I. INTRODUCTION

The recent analysis of Planck data does not show any
significant deviations from the simplest single-field slow-
roll models of inflation, but some issues remain open. In
particular, it seems that there could be a relative better fit
to the curvature power spectrum if the possibility of
small and rapid oscillations were taken into account
[1–4]. Even though, from present data, it seems that there
is not enough improvement in the fits to assess their
statistical significance [5,6], it is very interesting to study
the models that could provide a primordial origin to these
signatures. In this paper we will focus on the so-called
“models with features,” which are well known in the
literature [7–32]. Typically, oscillations in the power
spectrum are due to some features in the potential of
the inflaton or in the speed of sound, which induce a
temporary deviation from the slow-roll dynamics that
comes back to the attractor solution in less than few
e-folds without ruining inflation. Very interestingly, fea-
tures also induce non-Gaussianity, giving us the possibil-
ity to constrain these models also with another observable,
the bispectrum [33].
In this context, from a theoretical point of view,

a useful tool can be the effective field theory of inflation
(EFTI) [34,35]. Independently of the mechanism that
could produce the features, their effects on observables
can equivalently be described through the time-dependent
coefficients of the effective action of the Goldstone
boson that nonlinearly realizes time diffeomorphisms,
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where π is related to the curvature perturbation ζ by
ζ ¼ −Hπ. Consider, for example, a time dependence of
the form

_HðtÞ ¼ _H0ðtÞ
�
1þ ϵstepF

�
t − tf
b

��
; ð2Þ

where the function F represent a step centered in tf with a
height ϵstep and a characteristic width Δt ¼ b. It has been
shown that, when inserted into the effective action (1), one
obtains the predicted damped oscillations in the power
spectrum for models with features in the potential, simply
neglecting the Mn coefficients [36]. Moreover the EFTI
approach allow us to go beyond the standard scenario and
generalize features in a model independent way to the
speed of sound, cs, and any other coefficients. Besides the
spectrum, from the Taylor expansion

_Hðtþ πÞ ¼ _HðtÞ þ ḦðtÞπ þ � � � ; ð3Þ

we get new interactions as, for example, the cubic term

L3∋ −M2
PlḦðtÞπ _π2; ð4Þ

which gives the largest contribution to the three-point
function in the case of sharp feature. The resulting
bispectrum is not scale invariant and will be peaked for
those modes that at the time of the feature, tf, have an
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energy comparable to the inverse of the characteristic time
scale, b, of the feature [36]. If we define a sharpness
parameter,

β ¼ 1

bH
; ð5Þ

as the ratio between the energy 1=b and the Hubble scaleH,
it can be shown that the modes that are most affected are
more inside horizon as the feature becomes sharper and
sharper [14,18,20]. Moreover, as the amplitude at the peak
grows quadratically with the sharpness, this can become
the major source of non-Gaussianity and be possibly seen in
future data analyses. However, with β unconstrained, non-
linearities could also be too large, not only for observations,
but also for the theoretical consistency of the models.

II. ENERGY SCALES AND UNITARITY

The validity of the perturbative treatment one commonly
uses relies on the assumption that higher-order contribu-
tions are smaller. This is what is done for example when
one computes the equations of motion truncating the action
at second order: it is implicitly assumed that the third-order
contribution L3, for example, is small compared to the
quadratic Lagrangian L2. To confirm that assumption, then
one should check that L3=L2 ≪ 1 in the relevant energy
scales of the problem, so that the theory is perturbatively
safe. In the standard cases, the only relevant energy scale
is H, where fluctuations are crossing the horizon, so the
bound is taken at E ∼H. However, for inflationary models
with features (or resonances [37–40]), this should be
required also for the scale where the largest interaction
happens [36,41], which corresponds to the inverse of the
relevant time-scale b of the feature (or the resonance). In
the case of inflationary models with features, we should
make sure that L3=L2 ≪ 1 is valid even in the worst
possible case, i.e., at the time of the feature tf, when the
interaction is maximized. Given that, one can find [36]
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However we should check also that higher-order con-
tributions from Ln satisfy a similar bound. In order to do
this, notice that the most important interaction in the
Lagrangian at nth order (which comes from the Taylor
expansion of the term _Hðtþ πÞ in the effective action [41]),
parametrically scales as

Ln ∼M2
PlH

ðn−1Þπn−2 _π2; ð8Þ

while

_H ∼ ϵH2; ð9Þ

HðnÞ ∼ ϵϵstepβ
n−1Hnþ1: ð10Þ

Our perturbative expansion is then safe if

Ln

L2

����
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∼ ϵstepβ
2n−4ζn−2 ≪ 1; ð11Þ

which implies

β2 ≲ P−1=2
ζ;0

ϵ1=ðn−2Þstep

∼n≫1P−1=2
ζ;0 ; ð12Þ

where in the last step we take the limit for n → ∞. This
simple argument then suggests that we should take β2 ≲
P−1=2

ζ;0 if we do not want higher-order corrections to threat
perturbativity. An important thing to note here is that, being
inside the horizon, our theory is a quantum theory, so the
violation of (11) is signaling an actual quantum-mechanical
strong coupling (in the sense that quantum loops are not
suppressed), so that unitarity is lost and the model is not
under control [34,42–44]. In order to state the problem
more rigorously, we will estimate the amplitudes of one-
loop contributions to the three-point function and compare
them to the tree-level amplitudes.1

Consider the cubic operator,

L3∋M2
PlḦ

�
t − tf
b

�
π _π2; ð13Þ

at the timeof the feature, tf,where the interaction ismaximal.
Upon canonical normalization, ð−2M2

Pl
_HÞ−1=2π ¼ πc, and

using (10), we have

1

2

ϵstepβ

MPl
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2ϵ

p πc _π
2
c ¼ ϵstepgπc _π2c: ð14Þ

Notice that, as the operator π _π2 has mass-energy dimension
E5, the coupling g in front of it has dimension 1=E.
Diagrammatically, the corresponding vertex and amplitude
(by dimensional analysis) are

1Notice that one can obtain the same result considering, for
example, one-loop contributions the two-point instead of the
three-point function.
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(15)

With the same simple arguments, one can see that the
vertex with four πs is proportional to ϵstepg2, with five πs to
ϵstepg3 and so on. Then we can list all the possible diagrams
with three free legs and only one loop:

(16)

(17)

(18)

The list ends here, as there are no more ways to connect
three free legs with only one loop. Notice also that the
largest effect comes from the last diagram, where one has
the lower power of ϵstep and the higher power of β (as
ϵstep ≲ 1 and β ≫ 1). Now, we can compare the tree-level
amplitude with the loop contributions: the energy scale
where the first one is comparable to the second, i.e.,

Mð0Þ ∼Mð1Þ; ð19Þ

is to be considered as the maximum energy Λ, at which the
loop expansion is under control. Beyond that, interactions
become strongly coupled and the effective theory becomes
nonunitary. It is easy to obtain Λ from the previous
equation, using Eqs. (15) and (18):

Λ2 ≃ 16π

�
MPl

ffiffiffiffiffi
2ϵ

p

β

�2

: ð20Þ

If we want to trust our predictions, we should then make
sure that the energy scales we study are all below this
cutoff.2 In particular,

βH ≪ Λ ⇒ β2 ≪
2ffiffiffi
π

p P−1=2
ζ;0 : ð21Þ

Some comments are in order. The bound (21) is very
strict and should be taken with care, even from an
observational point of view. Indeed, from Planck data
analysis, the best fit of the power spectrum seems to prefer
very sharp features [1,2], with β≃ 300. However this is
already out of the allowed region, as from (21) we have
β ≲ 160. This put serious questions on the consistency of
these models for those values of β, as we have shown that
problems with the unitarity of the theory then arise.
Beyond the simplest case, with no other coefficients in

the action but _HðtÞ, the EFTI naturally contains higher
order operators, which induce a speed of sound cs < 1 and
are source of non-Gaussianity. These interactions will have
a new UV cutoff [34],

Λ4
cs ≃ 16π2M2

Pl
_Hc5s ; ð22Þ

Then, it can be seen that there is an even stronger upper
bound on β requiring βH be below this cutoff:

β2 ≲ c2sP
−1=2
ζ : ð23Þ

This conclusion is very general and applies to every
models where the slow-time dependence of the slow-roll
parameters, the speed of sound or any coefficient in the
effective action is broken by some temporary effects with a
characteristic time scale Δt ¼ b ¼ 1=βH. Physically, this
bound is just telling us that we cannot “effectively”
consider features on arbitrary small time scales, as the
theory of fluctuations is no more weakly coupled and
perturbative unitarity is lost.

III. CONCLUSIONS

In this paper, we considered the perturbative consistency
of inflationary models with features by means of effective

2The same happens for resonant models, where one requires
that the frequency of the resonance is smaller than the UV cutoff
of the effective theory [41].
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field theory methods. By estimating the size of loop
contributions to the n-point functions and comparing them
with the tree-level computation, one can identify the
maximal energy scale at which the theory is unitary and
perturbativity is safe. Then, by requiring that all the relevant
energy scales of the physics we are interested in are below
this UV cutoff, we can derive bounds on the parameters of
the models. While in the standard slow-roll models of
inflation, the only relevant energy scale isH, when features
(or resonances) are present there is a new energy scale
E≃ 1=Δt corresponding to the inverse of the characteristic
time-scale of the interaction. In the case of feature models,
that we have studied here, we estimated the size of one-loop
contributions to the three-point functions and compared
them to the tree-level expectation. Our main result is that
there is a very strong upper bound on the sharpness
β ¼ 1=ΔtH of the feature, Eq. (23), beyond which the
unitarity of the theory is lost. The result is general and valid
for any feature either in the slow-roll parameters, the speed
of sound or any other coefficient in the effective action for
scalar perturbations during inflation. We point out that this
bound is relevant even on observational grounds, as current
best fits of the cosmic microwave background power
spectrum seem to prefer sharp feature models with a

sharpness β≃ 300, which is already outside our estimate
of the unitarity bound.
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Note added.—While writing up this work, a related paper
by P. Adshead and W. Hu [45] appeared. Similar issued are
addressed with different methods and results agree, up to
numerical factors. The twoworks overlap in the discussions
of the strong coupling scale: while here we adopt a
diagrammatic evaluation of loop contributions, there the
impact of nonlinearities on the energy density is consid-
ered. Both approaches require that fluctuations are weakly
coupled in the regime of interest. Indeed, both recognize
that there are theoretical contraints that are stronger than
previously considered, and it is noted that the tighter bound
on the sharpness of the feature comes from the cutoff set by
a small speed of sound.
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