
Enhancement of jet quenching around phase transition: Result from the
dynamical holographic model

Danning Li,1 Jinfeng Liao,2,3 and Mei Huang1,4
1Institute of High Energy Physics, Chinese Academy of Sciences,

100049 Beijing, People’s Republic of China
2Physics Department, Center for Exploration of Energy and Matter, Indiana University,

2401 North Milo B. Sampson Lane, Bloomington, Indiana 47408, USA
3RIKEN BNL Research Center, Building 510 A, Brookhaven National Laboratory,

Upton, New York 11973, USA
4Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,

100049 Beijing, People’s Republic of China
(Received 15 January 2014; published 25 June 2014)

The phase transition and jet quenching parameter q̂ are investigated in the framework of the dynamical
holographic QCD model. We find that both the trace anomaly and the ratio of the jet quenching parameter
over cubic temperature q̂=T3 show a peak around the critical temperature Tc, and the ratio of the jet
quenching parameter over entropy density q̂=s sharply rises at Tc. This indicates that the jet quenching
parameter can characterize the phase transition. The effect of the jet quenching parameter enhancement
around the phase transition on the nuclear modification factor RAA and elliptic flow v2 are also analyzed,
and we find that the temperature-dependent jet quenching parameter from the dynamical holographic QCD
model can considerably improve the description of jet quenching azimuthal anisotropy as compared with
the conformal case.
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I. INTRODUCTION

Studying the quantum chromodynamics (QCD) phase
transition and properties of hot/dense quark matter at high
temperature has been the main target of heavy ion collision
experiments at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC). It is now believed
that the system created at the RHIC and LHC is a strongly
coupled quark-gluon plasma (sQGP) and behaves like a
nearly “perfect” fluid [1,2].
The collective flow v2 of the highly excited and strongly

interacting matter formed at the RHIC can be well
described by relativistic hydrodynamics with a negligible
ratio of shear viscosity over entropy density η=s [3]. A
lattice QCD calculation confirmed that η=s for the purely
gluonic plasma is rather small and in the range of 0.1–0.2
[4]. Shear viscosity η characterizes how strongly particles
interact and move collectively in a many-body system. In
general, the stronger the interparticle interaction, the
smaller the ratio of shear viscosity over entropy density.
Another unusual feature of the strongly interacting matter
formed at the RHIC is that the emission of hadrons with
large transverse momentum is strongly suppressed in
central collisions [5]. The suppression of hadrons at large
transverse momentum is normally referred to as jet quench-
ing, which characterizes the squared average transverse
momentum exchange between the medium and the fast
parton per unit path length [6]. The current knowledge on
jet quenching is that it is caused by gluon radiation induced
by multiple collisions of the leading parton with color

charges in the near-thermal medium [6–8]. Therefore, jet
quenching can tell us the properties of the created hot dense
matter by the energetic parton passing through the medium.
It is very interesting to ask whether transport quantities

can characterize phase transitions. It has been observed that
the shear-viscosity-over-entropy-density ratio η=s has a
minimum in the phase transition region in systems of water,
helium, nitrogen [9], and many other substances [10]. It has
been shown that η=s is suppressed near the critical temper-
ature in the semi-quark-gluon plasma [11], and η=s can
characterize first- and second-order phase transitions and
crossover [12], i.e.,η=s shows a cusp, a jump at Tc, and a
shallow valley around Tc, respectively.
In Ref. [13], it has been suggested that the jet quenching

parameter can also be used to measure the coupling
strength of the medium and a general relation between
the shear viscosity η=s and the jet quenching parameter
q̂=T3 for a quasiparticle-dominated quark-gluon plasma the
relation has been derived, i.e.,η=s ∼ T3=q̂. The relation
associates a small ratio of shear viscosity to entropy density
to a large value of the jet quenching parameter. If we
naively extend this relation to the critical temperature
region, we expect that q̂=T3 will show a peak around
the critical temperature Tc. Furthermore, the validity of this
extension can be seen from anisotropic holographic studies
[14,15], where similar behavior of the violation of the lower
bound of the ratio η=s and the violation of the universal
properties of the Langevin diffusion coefficients, in some
sense, indicates the close relation of these variables in a
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strongly coupled region. Phenomenologically, the strong
near-Tc-enhancement (NTcE) scenario of jet-medium inter-
action [16] was proposed in the efforts to explain the large
jet quenching anisotropy at high pt at the RHIC [17–20].
More recently, it was shown in Refs. [21,22] that the NTcE
model naturally induces a reduction (∼30%) of jet-medium
interaction strength from the RHIC to LHC.
It is worth mentioning that another transport coefficient,

the bulk viscosity ζ=s, also exhibits a sharp rising behavior
around the critical temperature Tc as shown in lattice QCD
[23–25], the linear sigma model [26], the Polyakov-loop
linear sigma model [27], and the real scalar model [28]. The
rising of bulk viscosity near the phase transition corre-
sponds to the peak of the trace anomaly around Tc, which
shows the equation of state is highly nonconformal [29,30]
around the phase transition.
Because of the complexity of QCD in the regime

of strong coupling, in recent years, the anti–de Sitter/
conformal field theory (AdS/CFT) correspondence [31–33]
has generated enormous interest in using thermal N ¼ 4
super-Yang-Mills theory (SYM) to understand sQGP.
However, a conspicuous shortcoming of this approach is
the conformality of SYM: the square of the speed of sound
c2s always equals 1=3, the bulk viscosity is always zero at
all temperatures in this theory, and η=s ¼ 1

4π [34] and
q̂=T3 ≃ 7.53

ffiffiffi
λ

p
(λ ¼ g2YMNc the ’t Hooft coupling) [35]

remains constant for all temperatures. In order to describe
the nonconformal properties near the phase transition and
mimic the QCD equation of state, much effort has been
made to find the gravity dual of gauge theories which break
the conformal symmetry, e.g., Refs. [36–39], where a real
scalar dilaton field background has been introduced to
couple with the graviton. References [36, 37] have used
different dilaton potentials as input, Ref. [38] has used a
QCD β function as input, and Ref. [39] has introduced a
deformed metric background.
On the other hand, much effort has also been made to

establish a more realistic holographic QCD model for
glueball spectra and meson spectra [40–44]. Recently, a
dynamical holographic QCD model [45–47] has been
developed by mimicking the evolution of the renormaliza-
tion group from ultraviolet (UV) regime to infrared regime
(IR). The dynamical holographic QCD model is con-
structed in the graviton-dilaton-scalar framework, where
the dilaton background field Φ and scalar field X are
responsible for the gluodynamics and chiral dynamics,
respectively. At the UV boundary, the dilaton field is dual
to the dimension-four gluon operator, and the scalar field is
dual to the dimension-three quark-antiquark operator. The
metric structure at IR regime is automatically deformed by
the nonperturbative gluon condensation and chiral con-
densation in the vacuum. The produced scalar glueball
spectra in the graviton-dilaton framework agree well with
the lattice data, and the light-flavor meson spectra gen-
erated in the graviton-dilaton-scalar framework are in good

agreement with the experimental data. Both the chiral
symmetry breaking and linear confinement are realized
in this dynamical holographic QCD model.
In this work, we will investigate the phase transition,

equation of state, and calculate the jet quenching parameter
in the dynamical holographic QCD model. The paper is
organized as follows. In Sec. II, we briefly introduce the
dynamical holographic QCD model for a pure gluon
system and a light-flavor system. In Sec. III, we will
investigate the phase transition and equation of state,
including the entropy density, the pressure density, and
the energy density for the pure gluon system. Then, in
Secs. IV–VI, we calculate jet quenching parameter and
investigate the nuclear modification factor RAA and elliptic
flow v2. The summary and discussion are given in Sec. VII.

II. DYNAMICAL HOLOGRAPHIC QCD MODEL

QCD in terms of quark and gluon degrees of freedom is
accepted as the fundamental theory of the strong inter-
action. In the UV or weak coupling regime of QCD, the
perturbative calculations for deep inelastic scattering agree
well with the experimental data. However, in the IR regime,
the description of the QCD vacuum as well as hadron
properties and nonperturbative processes still remains an
outstanding challenge in the formulation of QCD as a local
quantum field theory. In the past half century, various
nonperturbative methods have been developed, in particu-
lar, lattice QCD, Dyson-Schwinger equations, and func-
tional renormalization group equations. In recent decades,
an entirely new method based on the AdS/CFT correspon-
dence and the conjecture of the gravity/gauge duality
[31–33] provides a revolutionary method to tackle the
problem of strongly coupled gauge theories.
In general, holography relates quantum field theory

(QFT) in d dimensions to quantum gravity in ðdþ 1Þ
dimensions, with the gravitational description becoming
classical when the QFT is strongly coupled. The extra
dimension can be interpreted as an energy scale or
renormalization group (RG) flow in the QFT [48].
The recently developed dynamical holographic QCD

model [45,46] can resemble the renormalization group
from UV to IR, as shown in Fig. 1 [47]. The dilaton
background ΦðzÞ is introduced to describe the gluody-
namics, and the scalar field XðzÞ is responsible for chiral
dynamics, respectively.
For the pure gluon system, we construct the quenched

dynamical holographic QCD model in the graviton-dilaton
framework by introducing one scalar dilaton field ΦðzÞ in
the bulk. The 5D graviton-dilaton coupled action in the
string frame is given below:

SG ¼ 1

16πG5

Z
d5x

ffiffiffiffi
gs

p
e−2ΦðRs þ 4∂MΦ∂MΦ − Vs

GðΦÞÞ;

ð1Þ
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whereG5 is the 5D Newton constant, and gs, Φ, and Vs
G are

the 5D metric, the dilaton field, and the dilaton potential in
the string frame, respectively. The metric ansatz is often
chosen to be

ds2 ¼ e2AsðzÞðdz2 þ ημνdxμdxνÞ: ð2Þ
In this paper, the capital letters like “M and N” stand for all
the coordinates (0,1,..,4), and the greek indices stand for
the 4D coordinates (0,…,3). We use the convention
η00 ¼ η00 ¼ −1, ηij ¼ ηij ¼ δij.
To avoid the gauge noninvariant problem and to meet the

requirement of gauge/gravity duality, we take the dilaton
field in the form of

ΦðzÞ ¼ μ2Gz
2 tanhðμ4G2z2=μ2GÞ: ð3Þ

In this way, the dilaton field at UV regime behaves
ΦðzÞ→z→0

μ4G2z4 and is dual to the dimension-four gauge
invariant gluon operator TrG2, while at IR regime it takes
the quadratic form ΦðzÞ →z→∞

μ2Gz
2. The equations of motion

can be derived as

−A″
s −

4

3
Φ0A0

s þ A2
s þ

2

3
Φ″ ¼ 0; ð4Þ

Φ″ þ ð3A0
s − 2Φ0ÞΦ0 −

3

8
e2As−4

3
Φ∂Φðe4

3
ΦVs

GðΦÞÞ ¼ 0: ð5Þ

By self-consistently solving the Einstein equations, the
metric structure As will be automatically deformed at IR
regime by the dilaton background field or the nonpertur-
bative gluodynamics. It is found in Ref. [46] that the scalar
glueball spectra in the quenched dynamical model are in
very good agreement with the lattice data. For details,
please refer to Ref. [46].
To describe the two-flavor system, we then add light

flavors in terms of the meson fields on the gluodynamical
background. The total 5D action for the graviton-dilaton-
scalar system takes the following form:

S ¼ SG þ Nf

Nc
SKKSS: ð6Þ

Here, SG is the 5D action for gluons in terms of the dilaton
field Φ and takes the same form as Eq. (1), and SKKSS is the
5D action for mesons propagating on the dilaton back-
ground and takes the same form as in the Karch-Katz-Son-
Stephanov (KKSS) model [41]

SKKSS ¼ −
Z

d5x
ffiffiffiffi
gs

p
e−ΦTr

�
jDXj2 þ VXðXþX;ΦÞ

þ 1

4g25
ðF2

L þ F2
RÞ
�
: ð7Þ

The difference here is that the metric structure As is solved
from the following coupled equations of motion:

−A″
s þ A02

s þ 2

3
Φ″ −

4

3
A0
sΦ0 −

λ0
6
eΦχ02 ¼ 0; ð8Þ

Φ″ þ ð3A0
s − 2Φ0ÞΦ0 −

3λ0
16

eΦχ02

−
3

8
e2As−4

3
Φ∂ΦðVGðΦÞ þ λ0e

7
3
ΦVCðχ;ΦÞÞ ¼ 0; ð9Þ

χ″ þ ð3A0
s − Φ0Þχ0 − e2AsVC;χðχ;ΦÞ ¼ 0: ð10Þ

Here we have defined VC ¼ TrðVXÞ and VC;χ ¼
∂VC∂χ

16πG5Nf

L3Nc
→ λ0.

For a two-flavor system in the graviton-dilaton-scalar
framework, the deformed metric is self-consistently solved
by considering both the chiral condensate and nonpertur-
bative gluodynamics in the vacuum, which are responsible
for the chiral symmetry breaking and linear confinement,
respectively. The mixing between the chiral condensate and
gluon condensate is important to produce the correct light-
flavor meson spectra [46].

III. PHASE TRANSITION
AND EQUATIONS OF STATE

The chiral and deconfinement phase transitions for the
graviton-dilaton-scalar system will be investigated in the
near future. In this section, we will focus on the deconfine-
ment phase transition for the pure gluon system described
by Eq. (1).
The finite temperature dynamics of gauge theories has a

natural holographic counterpart in the thermodynamics of
black holes on the gravity side. Adding the black-hole
background to the holographic QCD model constructed
from vacuum properties, in the string frame we have

ds2S ¼ e2As

�
−fðzÞdt2 þ dz2

fðzÞ þ dxidxi
�
: ð11Þ

FIG. 1 (color online). Duality between d-dimension QFT and
ðdþ 1Þ-dimension gravity as shown in Ref. [48] (left-hand side).
Dynamical holographic QCD model resembles the RG from UV
to IR (right-hand side): At the UV boundary, the dilaton bulk field
ΦðzÞ and scalar field XðzÞ are dual to the dimension-four gluon
operator and dimension-three quark-antiquark operator, which
develop condensates at IR regime.
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The metric in the string frame is useful to calculate the jet
quenching parameter.
The thermodynamical properties of the equation of state

is convenient to be derived in the Einstein frame,

ds2E ¼ e2As−4Φ
3

�
−fðzÞdt2 þ dz2

fðzÞ þ dxidxi
�
: ð12Þ

Under the frame transformation

gEmn ¼ gsmne−2Φ=3; VE
G ¼ e4Φ=3Vs

G; ð13Þ
Eq. (1) becomes

SEG¼
1

16πG5

Z
d5x

ffiffiffiffiffi
gE

p �
RE−

4

3
∂mΦ∂mΦ−VE

GðΦÞ
�
: ð14Þ

We can derive the following equations from the Einstein
equations of ðt; tÞ; ðz; zÞ, and ðx1; x1Þ components:

−A″
s þ A02

s þ 2

3
Φ″ −

4

3
A0
sΦ0 ¼ 0; ð15Þ

f″ðzÞ þ ð3As
0ðzÞ − 2Φ0ðzÞÞf0ðzÞ ¼ 0: ð16Þ

The equation of motion of the dilaton field is given as the
following:

8

3
∂zðe3AsðzÞ−2ΦfðzÞ∂zΦÞ − e5AsðzÞ−10

3
Φ∂ΦVE

G ¼ 0: ð17Þ

To get the solutions, we impose the asymptotic AdS5
condition fð0Þ ¼ 1 near the UV boundary z ∼ 0, and
require Φ; f to be finite at z ¼ 0; zh with zh the black-hole
horizon. Fortunately, we find that the solution of the black-
hole background takes the form of

fðzÞ ¼ 1 − fhc

Z
z

0

e−3Asðz0Þþ2Φðz0Þdz0; ð18Þ

with

fhc ¼
1R zh

0 e−3Asðz0Þþ2Φðz0Þdz0
: ð19Þ

A black-hole solution with a regular horizon is
characterized by the existence of a surface z ¼ zh,
where fðzhÞ ¼ 0. The Euclidean version of the solution
is defined only for 0 < z < zh. In order to avoid the conical
singularity, the periodicity of the Euclidean time can be
fixed by

τ → τ þ 4π

jf0ðzhÞj
: ð20Þ

This determines the temperature of the solution as

T ¼ jf0ðzhÞj
4π

: ð21Þ

From Eq. (18), one can easily read out the relation
between the temperature and position of the black-hole
horizon,

T ¼ e−3AsðzhÞþ2ΦðzhÞ

4π
R zh
0 e−3Asðz0Þþ2Φðz0Þdz0

: ð22Þ

For numerical calculations, we take μG ¼ 0.75 GeV in
Eq. (3) so that the transition temperature is around 255MeV,
and we take three different values for μG2 : μG2 ¼
μG ¼ 0.75 GeV, μG2 ¼ 3 GeV, and μG2 ¼ ∞. When
μG2 ¼ ∞, thedilatonfieldEq.(3) takes theformofaquadratic
term Φ ¼ μ2Gz

2, and the model can be regarded as the self-
consistent KKSS model. The only difference is that in this
model, the metric structure is self-consistently deformed by
the dilatonbackground,while in theKKSSmodel, themetric
structure takes the same as AdS5.
We can solve As from Eq. (15), and the results of the As

configurations for μG ¼ 0.75 GeV and μG2 ¼ 0.75 GeV,
μG2 ¼ 3 GeV, and μG2 ¼ ∞ are shown in Fig. 2. To show
the configuration smoothly, we have subtracted the logðzÞ
divergence in As. Comparing with the AdS5 metric, it is
easy to find that the metric structure is largely deformed at
IR regime by the dilaton background field or gluodynam-
ics. The two cases μG2 ¼ 3 GeV and μG2 ¼ ∞ are almost
the same.
From Eqs. (16) and (22), we can get the fðzÞ solution

and the temperature behavior. The temperature vs horizon
for μG ¼ 0.75 GeV and μG2 ¼ 0.75 GeV, μG2 ¼ 3 GeV,
and μG2 ¼ ∞ are shown in Fig. 3. As long as μG2 is large,
the IR physics is not sensitive to large μG2 , and the
behaviors for μG2 ¼ 3 GeV and μG2 ¼ ∞ are almost the
same. From Fig. 3, it is noticed that for a pure AdS5-
Schwarz black hole, the temperature monotonically
decreases with the increasing of the horizon. If one solves
the dual black-hole background self-consistently, one can
find that there is a minimal temperature Tmin ¼ 255 MeV
at a certain black-hole horizon z0h. This is similar to the case

+  +  + Pure AdS

G2 0.75 GeV

G2 3.0 GeV

G2

0 5 10 15 20
z GeV 1

0

1

2

3

4

As Log z L

FIG. 2 (color online). As configurations compared with the
AdS5 metric for G5 ¼ 1.25 and μG ¼ 0.75 GeV and
μG2 ¼ μG ¼ 0.75 GeV, μG2 ¼ 3 GeV, and μG2 ¼ ∞, respec-
tively. To show the configuration smoothly, we have subtracted
the logðzÞ divergence in As.
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for the confining theory (at zero temperature) discussed in
Ref. [37]. For T < Tmin, there are no black-hole solutions.
For T > Tmin, there are two branches of black-hole sol-
utions. When zh < z0h, the temperature increases with the
decreasing of zh, which means that the temperature
increases when the horizon moves close to UV regime,
this phase is thermodynamically stable. When zh > z0h, the
temperature increases with the increase of zh, which means
that the temperature becomes higher and higher when the
horizon moves to IR regime. This indicates that the solution
for the branch zh > z0h is unstable and, thus, not physical. In
order to determine the critical temperature, we have to
compare the free energy difference between the stable
black-hole solution and the thermal gas. Following the
discussion in Ref. [39], the transition temperature would be
near this minimal temperature, and we would just take it as
the transition temperature Tc ¼ 255 MeV, which is in
agreement with the lattice result for the pure gluon system.
From the Bekenstein-Hawking formula, one can easily

read the black-hole entropy density s, which is defined by
the area Aarea of the horizon:

s ¼ Aarea

4G5V3

����
zh

¼ 1

4G5

e3AsðzhÞ−2ΦðzhÞ; ð23Þ

where G5 is the Newton constant in 5D curved space,
and V3 is the volume of the spatial directions. It is noticed
that the entropy density is closely related to the metric in
the Einstein frame. The results of the scaling entropy
density s=T3 for μG ¼ 0.75 GeV and μG2 ¼ 0.75 GeV,
μG2 ¼ 3 GeV, and μG2 ¼ ∞ are shown in Fig. 4 compared
with the lattice results for the pure gluon system [29]. It can
be seen that when μG2 is large enough, the result is not
sensitive to the value of μG2 , and it takes almost the same as
that in the self-consistent KKSS model. The entropy
density for μG2 ¼ 3 GeV to μG2 ¼ ∞ agrees well with
the lattice result for pure SUð3Þ gauge theory.

The pressure density pðTÞ can be calculated from the
entropy density sðTÞ by solving the equation

dpðTÞ
dT

¼ sðTÞ; ð24Þ

and the energy density is related to the entropy density by

ε ¼ −pþ sT: ð25Þ

The trace anomaly ðε − 3pÞ=T4 for μG ¼ 0.75 GeV and
μG2 ¼ 0.75 GeV, μG2 ¼ 3 GeV, and μG2 ¼ ∞ are shown
in Fig. 5 compared with lattice results for the pure gluon
system [29]. The trace anomaly shows a peak around
T=Tc ¼ 1.1. When μG2 ¼ 0.75 GeV, the height of the peak
is around 3.7, and when μG2 ¼ 3 GeV ∼∞, the height
reduces to 2.7, which agrees with the lattice data for pure

G2

G2 3.0 GeV

G2 0.75 GeV

+  +  + Pure AdS

1 2 3 4
zh GeV 1

0.1

0.2

0.3

0.4

0.5

0.6
T GeV

FIG. 3 (color online). The temperature as a function of horizon
for G5 ¼ 1.25 and μG ¼ 0.75 GeV and μG2 ¼ 0.75 GeV,
μG2 ¼ 3 GeV, and μG2 ¼ ∞, respectively. The blue lines stand
for cases I and II, and the red lines are the results of the AdS-
Schwarz black hole.

G2

G2 3.0 GeV

G2 0.75 GeV

+  +  + SU(3) Lattice

1 2 3 4

T
Tc

1

2

3

4

5

6

s
T3

FIG. 4 (color online). The entropy density as a function of
T=Tc for G5 ¼ 1.25 and μG ¼ 0.75 GeV and μG2 ¼ 0.75 GeV,
μG2 ¼ 3 GeV, and μG2 ¼ ∞, respectively. The red crosses are
lattice results from Ref. [29].

G2

G2 3.0 GeV

G2 0.75 GeV

+  +  + SU(3) Lattice

1 2 3 4

T

Tc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

3 p

T4

FIG. 5 (color online). Trace anomaly as a function of T=Tc for
G5 ¼ 1.25 and μG ¼ 0.75 GeV and μG2 ¼ 0.75 GeV,
μG2 ¼ 3 GeV, and μG2 ¼ ∞, respectively. The red crosses are
lattice results from Ref. [29].
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SUð3Þ gauge theory, as shown in Ref. [29]. At very high
temperature, the trace anomaly goes to zero, which indi-
cates the system is asymptotically conformal at high
temperature.
The sound velocity c2s can be obtained from the temper-

ature and entropy:

c2s ¼
d logT
d log s

¼ s
Tds=dT

; ð26Þ

which can directly measure the conformality of the system.
For the conformal system, c2s ¼ 1=3, for the nonconformal
system, c2s will deviate from 1=3. From Eq. (26), we can see
that the speed of the sound is independent of the normali-
zation of the 5D Newton constant G5 and the space
volume V3.
The numerical result of the square of the sound velocity

is shown in Fig. 6. At Tc, the sound velocity square is
around 0, which is in agreement with the lattice data [29].
At high temperature, the sound velocity square goes to 1=3,
which means that the system is asymptotically conformal.

IV. JET QUENCHING PARAMETER Q̂

Jet quenching measures the strength of an energetic
partons interacting with the created hot dense medium. It is
very important to find the characterization of the resulting
medium-induced modification of high-pT parton fragmen-
tation, i.e., jet quenching and its connection to properties of
the hot dense matter, and whether and how such a
parameter can tell us about the QCD phase transitions.
It has been expected that the shear-viscosity-over-

entropy-density ratio η=s has a minimum in the QCD
phase transition region [12] as that in systems of water,
helium, and nitrogen [9,10]. The bulk viscosity ζ=s also
exhibits a sharp rising behavior around the critical temper-
ature Tc as shown in lattice QCD [23–25] and some model

calculations [26,28]. It has been suggested in Ref. [13] that
shear viscosity η=s and the jet quenching parameter q̂=T3

for a quasiparticle-dominated quark-gluon plasma have a
general relation η=s ∼ T3=q̂. If we naively extend this
relation to the critical temperature region, we expect that
q̂=T3 will show a peak around the critical temperature Tc.
Phenomenologically, the strong NTcE scenario of jet-
medium interaction [16] was proposed in the efforts to
explain the large jet quenching anisotropy at high pt at the
RHIC [17–20].
There are no model calculations for the jet quenching

parameter around the critical temperature. Lattice QCD is
not suitable for transport properties. Recently, there have
been several groups making efforts to calculate the jet
quenching parameter on the lattice [49,50]. However, no
information on the jet quenching parameter has been
extracted around the critical temperature. In this section,
we will investigate the jet quenching parameter around the
critical temperature in the dynamical holographic QCD
model which can describe phase transitions.
Following Ref. [35] (see, also, Refs. [51–53]), the jet

quenching parameter is related to the adjoint Wilson
loop by

WAdj½C� ≈ exp

�
−

1

4
ffiffiffi
2

p q̂L−L2

�
; ð27Þ

where L−; L are distances along x− ¼ t−x1ffiffi
2

p and the spatial

direction x2, respectively. (Another method for jet quench-
ing of light quarks has been developed in Ref. [54].)
Denoting xþ ¼ tþx1ffiffi

2
p ; x− ¼ t−x1ffiffi

2
p , then the metric in

Eq. (11) becomes

ds2 ¼ e2As

�
dx−dxþ þ 1− fðzÞ

2
½dxþ2þ dx−2�

þ 1

fðzÞdz
2 þ dx22þ dx23

�
: ð28Þ

The action on the string world sheet is taken to be

SNG ¼ 1

2πα0

Z
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGαβÞ

q
; ð29Þ

with Gαβ ¼ gsμν∂αxμ∂βxν the induced metric on the string
world sheet.
With the above configuration in Fig. 7, we have

S1 ¼
1

2πα0

Z
dτdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g−−gzzz02ðσÞ þ g−−g22

q
; ð30Þ

and with the below configuration in Fig. 7, we have

S2 ¼
1

2πα0

Z
dτdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g−−gzz

p
; ð31Þ
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FIG. 6 (color online). The square of the sound velocity c2s as a
function of scaled temperature T=Tc for G5 ¼ 1.25 and μG ¼
0.75 GeV and μG2 ¼ 0.75 GeV, μG2 ¼ 3 GeV and μG2 ¼ ∞,
respectively. The red crosses are lattice results from Ref. [29].
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where g−− ¼ e2As 1−fðzÞ
2

, gzz ¼ e2As
fðzÞ, g22 ¼ e2As can be read

from Eq. (28).
Then we extract the adjoint Wilson loop by

WAdj ¼ expð2iðS1 − S2ÞÞ; ð32Þ
and from the small L expansion of WAdj, we get q̂ of the
form

q̂ ¼
ffiffiffi
2

p ffiffiffi
λ

p

π
R zh
0 dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzz=ðg222g−−Þ

p ; ð33Þ

with
ffiffiffi
λ

p ¼ R2
AdS
α0 .

In order to be more comprehensive, by transforming the
integral variable from z to dimensionless variable ν ¼ z=zh,
we rewrite the above equation as

q̂ ¼
ffiffiffi
2

p ffiffiffi
λ

p

πz3h
R
1
0 dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−4AsðνzhÞ

z4h

1−fðνzhÞ
2

fðνzhÞ
q : ð34Þ

In the AdS-Schwarz black-hole case, fðzÞ ¼ 1 − z4=z4h ¼
1 − ν4, 1 − fðzÞ ¼ ν4, and e−4AsðzÞ=z4h ¼ z4=z4h ¼ ν4 only
depend on ν. Therefore, the integral kernel in the above
equation would only depend on ν, and we have
q̂ ∝ 1=z3h ∝ T3, which is the result of the conformal back-
ground. However, if we introduce a scale through the
dilaton field in the form of Eq. (3) to break the con-
formality, from Eqs. (15) and (16), it is easy to see that in
this case, fðzÞ and AsðzÞ would depend on μG and μ2G.
Correspondingly, from dimension analysis it is easy to see
that after rescaling the integral variable, the integral kernel

in Eq. (34) would depend not only on ν but also on μGzh
and μG2zh, and the integral part would have extra con-
tribution dependent on zh. As a result, we expect the result
of q̂=T3 would no longer be a constant but depend on T
through the dependence on zh.
The numerical results of the jet quenching parameter

q̂ and the ratio of q̂=T3 for μG ¼ 0.75 GeV and μG2 ¼
0.75 GeV, μG2 ¼ 3 GeV, and μG2 ¼ ∞ are shown in
Figs. 8 and 9, respectively. The results are compared with
the AdS5 case. For all the cases, we have taken λ ¼ 6π as in
Ref. [35]. It is found that the jet quenching parameter q̂ itself
doesnot showmuchdifference for all thecases. It is evenhard
to findmuchdifferencecomparingwith theAdS5 case.Forall
these cases, the value of q̂ is around 5 − 10 GeV2=fm in the
temperature range300–400MeV,which is in agreementwith
the lattice result in Ref. [50]. However, the ratio q̂=T3 shows
verydifferent behavior for different cases: For theAdS5 case,

z

x2
x , x2

z zh

x2 L 2 x2 L 2

x , z

z

z zh

x2 L 2

x2

x2 L 2

FIG. 7 (color online). Two kinds of string configurations.
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FIG. 8 (color online). Jet quenching parameter as a function of
the temperature T for μG ¼ 0.75 GeV and μG2 ¼ 0.75 GeV,
μG2 ¼ 3 GeV, and μG2 ¼ ∞ with G5 ¼ 1.25. The red crosses
are the results of the AdS-SW black hole in Ref. [35]. We have
taken λ ¼ 6π here.
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FIG. 9 (color online). Jet quenching parameter over cubic
temperature q̂=T3 as a function of T=Tc for μG ¼ 0.75 GeV
and μG2 ¼ 0.75 GeV, μG2 ¼ 3 GeV, and μG2 ¼ ∞ with
G5 ¼ 1.25. The red crosses are the results of the AdS-SW black
hole in Ref. [35]. We have taken λ ¼ 6π here.
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the ratio is a constant; for the dynamical holographic QCD
model, which can describe the deconfinement phase tran-
sition,wecanfindthat q̂=T3, indeed, showsapeakat thesame
temperature where the trace anomaly also shows a peak. For
the case of μG2 ¼ 3 GeV ∼∞, the height of the peak is
around 40 at T ¼ 1.1Tc.
It is worth mentioning that our q̂ is very dependent on the

value of the ’t Hooft coupling λ, which, at the moment, is a
free parameter. In the recent work [55], the jet quenching
parameter q̂ extracted from experiment is around
1.1 GeV2=fm at T ¼ 370MeV and 1.9 GeV2=fm for
T ¼ 470 MeV, which is 5 times smaller than our results.
This might indicate that we should take a smaller ’t Hooft
coupling. However, the temperature-dependent feature is
independent of the ’t Hooft coupling.

V. JET QUENCHING CHARACTERIZING THE
PHASE TRANSITION

We have observed that both the q̂=T3 and trace anomaly
ðε − 3pÞ=T4 show a peak around the critical temperature for
μG ¼ 0.75 GeV, which indicates that the jet quenching

parameter over the cubic temperature can characterize the
QCDphase transition. Inthissection,weexplorehowdifferent
values of μG affect the phase transition and jet quenching.
From Refs. [45,46], μG is related to the linear confinement
and determines the Regge slope of the glueball spectra as
well as the string tension of the linear quark potential.
In Figs. 10 and 11, we show the behavior of the q̂=T3 and

trace anomaly ðε − 3pÞ=T4 for different values of μG as a
function of temperature T and scaled T=Tc, respectively.
From Fig. 10, we find that for different values of μG

(with μG2 → ∞), the critical temperature Tc increases
with μG. We can read Tc ¼ 146; 170; 204; 255 MeV for
μG ¼ 0.43; 0.5; 0.6; 0.7 GeV, respectively. It is also
observed that the height of the peak for either q̂=T3 or
ðε − 3pÞ=T4 does not change with the value of μG, but the
width of the peak increases with μG.
Another interesting observation from Fig. 11 is that

neither q̂=T3 nor ðε − 3pÞ=T4 as a function of scaled T=Tc
is sensitive to μG, i.e., q̂=T3ðT=TcÞ or ðε − 3pÞ=T4ðT=TcÞ
overlaps for different values of μG.
In the next section, we will investigate the nuclear

modification RAA and elliptic flow v2, where the behavior
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FIG. 10 (color online). q̂=T3 and trace anomaly ðε − 3pÞ=T4 as
a function of T for different values of μG with μG2 ¼ 3 GeV ∼∞.
The red crosses are for the AdS5 case. We have taken G5 ¼ 1.25
and λ ¼ 6π here.
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FIG. 11 (color online). q̂=T3 and trace anomaly ðε − 3pÞ=T4 as
a function of T=Tc for different values of μG with
μG2 ¼ 3 GeV ∼∞. The red crosses are for the AdS5 case. We
have taken G5 ¼ 1.25 and λ ¼ 6π here.

DANNING LI, JINFENG LIAO, AND MEI HUANG PHYSICAL REVIEW D 89, 126006 (2014)

126006-8



of q̂=s is needed. For the case of AdS5, the temperature is
T ¼ 1

πzh
, and the entropy density takes the form of

sAdS5 ¼
1

4G5

1

z3h
¼ π3

4G5

T3 ≃ 7.75
1

G5

T3; ð35Þ

and the jet quenching parameter is given by

q̂AdS5 ¼
π3=2

ffiffiffi
λ

p
Γ½3=4�

Γ½5=4� T3 ≃ 7.53
ffiffiffi
λ

p
T3: ð36Þ

Therefore, in the AdS5 limit, the ratio of the jet quenching
parameter over the entropy density takes the value of

q̂AdS5=sAdS5 ¼ 0.97G5

ffiffiffi
λ

p
: ð37Þ

With the parameters used in our work, we have
q̂AdS5=sAdS5 ¼ 5.27. The ratio of q̂=s in the dynamical
holographic QCD model as a function of T and T=Tc is
shown in Fig. 12 compared with the AdS5 result. It is found
that the ratio of q̂=s reaches the AdS5 limit 5.27 at high

temperature, and it sharply riseswith the decreasing ofT and
develops a peak exactly at Tc with the height 16.3, which
is about 3 times larger than its value at high temperature. It is
worth mentioning that the sharp rising of q̂=s around Tc is
very similar to thebehavior of thebulkviscosityover entropy
density ζ=s, as shown in Refs. [23,24].
Moreover, q̂=s as a function of the scaled temperature

T=Tc overlaps for different values of μG.

VI. JET QUENCHING PHENOMENOLOGY
FROM HOLOGRAPHY

In this section, we study the phenomenological impli-
cations of the temperature dependence for q̂ðTÞ as obtained
from the holography model above. The observable com-
monly used for jet quenching phenomenology in AA
collisions is the nuclear modification factor RAA defined
as the ratio between the hadron production in AA collision
and that in NN collision (further scaled by the expected
binary collision number). If a jet parton loses energy along
its path penetrating the hot medium, one expects a
significant suppression of leading high-pt (transverse
momentum) hadron production from the jet as compared
with the pp collision at the same beam energy. A strong
suppression was first observed at the RHIC [5] and then at
the LHC [56], with RAA reaching ∼0.2 in the most central
collisions. Another important aspect of jet quenching is the
so-called geometric tomography [57] by measuring the
azimuthal angle dependence of the suppression RAAðϕÞ,
where ϕ is the angle of the produced hadron with respect to
the reaction plane. In a typical off-central collision, the hot
medium, on average, has an almondlike geometric shape,
and, thus, the jet in-medium path length would depend on
its orientation with respect to the matter geometry, leading
to nontrivial dependence of the suppression on the azimu-
thal angle. The dominant component of the ϕ dependence
is the second harmonic with its coefficient commonly
referred to as v2. Both the RHIC and LHC measurements
have shown a sizable v2 in the high-pt region where the jet
energy loss should be the mechanism of generating such
anisotropy [58–61].
The key issue we focus on here is the temperature

dependence of the jet-medium coupling, in particular, its
possible nontrivial behavior near the parton/hadron phase
boundary. As was first found in Ref. [16], the geometric
anisotropy v2 at high pt is particularly sensitive to such
temperature dependence, and a simultaneous description of
high-pT RAA and v2 at the RHIC requires a strong
enhancement of jet-medium coupling in the near-Tc region.
The near-Tc enhancement of jet-medium interaction as a
generic mechanism has been further studied in many later
works and shown to increase the jet azimuthal anisotropy
with fixed overall suppression. Furthermore, how the
overall opaqueness of the created fireball evolves with
collisional beam energy is also very sensitive to such
temperature dependence. From the RHIC to LHC, the
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FIG. 12 (color online). q̂=s as a function of T and T=Tc for
different values of μG with μG2 ¼ 3 GeV ∼∞, respectively. The
red crosses are for the AdS5 case. We have taken G5 ¼ 1.25
and λ ¼ 6π here.
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collision beam energy increases by a little more than 10
times, and the matter density increases (in most central
collisions) by a factor of about 2. Such a span from the
RHIC to LHC provides an opportunity for determining how
the jet-medium interaction changes with the temperature. In
particular, the near-Tc enhancement predicts a visible
reduction of average opaqueness of the fireball from the
RHIC to LHC. A number of recent analyses have con-
sistently reported that the RAA data at the RHIC and LHC,
indeed, suggest an ∼30% reduction of jet-medium inter-
action at the LHC as compared to the RHIC [21,22,62–67].
Therefore, phenomenologically, it appears that there is now
strong evidence for a nontrivial temperature dependence, in
particular, the near-Tc enhancement of jet-medium cou-
pling on matter temperature.
Theoretically, however, there has been a very limited

way to figure out the precise form of such T dependence
due to the highly nonperturbative nature of this temper-
ature regime. The holographic approach provides a useful
way to gain insight into this problem. In the previous
section, we used the holographic QCD model with non-
conformal dynamics to calculate the q̂ðTÞ. As clearly seen
in Fig. 9, the scaled jet-medium coupling q̂=T3 shows
strong enhancement in the vicinity of Tc, while, in
contrast, any conformal holographic model will show
no T dependence for the q̂=T3. We also emphasize that
the same holographic model describes the trace anomaly
(with a strong peak near Tc) in thermodynamics. With
such T dependence obtained from the holographic model
here, it is of great interest to see its phenomenological
implications. Here we use the simple geometric energy
loss model as in Refs. [16,62] to study the RAA and v2 at
high pt for the RHIC, which are most sensitive to such T
dependence. Let us assume that the final energy Ef
of a jet with initial energy Ei after traveling an in-medium
path ~P (specified by the jet initial spot and momentum
direction) can be parametrized as Ef ¼ Ei × f~P with the
f~P given by

f~P ¼ exp

�
−
Z
~P
κ½sðlÞ�sðlÞldl

�
: ð38Þ

Here, sðlÞ is the local entropy density along the jet path,
while the κðsÞ represents the local jet-medium interaction
strength which depends on the local density sðlÞ (or,
equivalently, the temperature T). We choose to explicitly
separate out the density s itself, and the combination κðsÞs
corresponds to q̂. To implement the holographic model
results for q̂, we use κ½s� ¼ ξ½q̂=T3� with q̂=T3 given as in
Fig. 9 and with ξ just one parameter to be fixed by the
most central collisions RAA ≈ 0.18 for 0%–5% centrality
class and then used for other computations. We use optical
the Glauber model to sample initial jet spots according to
binary collision density, and we determine a medium
density from a participant density with longitudinal boost-

invariant expansion. There are strong initial state fluctua-
tions, which could also contribute. But since we are
focusing on the average RAA and the dominant geometric
anisotropy component v2 is from geometry dominantly,
the current approach is reasonable (for detailed discus-
sions of the initial fluctuations for the hard probe, see, e.g.,
Refs. [21,22,68]). In our simulations for each given impact
parameter, we compute the energy loss for 1 × 106 jet
paths with different initial spots and orientations and
extract the RAA:

RAAðϕÞ ¼ hðf~Pϕ
Þn−2i~Pϕ

; ð39Þ

where hi~Pϕ
means averaging over all jet paths with

azimuthal orientation ϕ and including all sampled initial
jet production spots. The exponent n comes from the
reference pp spectrum at the same collision energy: n ≈
8.1 and 6.0 for

ffiffiffi
s

p ¼ 0.2 and 2.76 TeV. The so-obtained
RAAðϕÞ in each event can be further Fourier decomposed
as RAAðϕÞ ¼ RAA½1þ 2v2 cosð2ϕÞ�. The overall quench-
ing RAA as well as the azimuthal anisotropy v2 can then be
determined. While the jet energy loss anisotropy we
discuss here arises from the geometric origin with the
plasma being locally isotropic, it should be pointed out
that additional angular dependence of energy loss might
also occur due to intrinsic anisotropy within the local
plasma; see, e.g., studies of jet quenching in strongly
coupled anisotropic plasma in Refs. [69,70].
In Fig. 13, we show the results for RAA and v2 at high pt

for the RHIC with the input T-dependent jet-medium
interaction from our nonconformal holographic model
(the thick blue curves). For comparison, we also show
the results from the conformal model, i.e., with q̂=T3 being
constant in the QGP phase (the thin red curves). The data
are from PHENIX measurements in Ref. [58]. As one can
see, while both types of models describe the RAA well, the
nonconformal model shows a sizable improvement over
the conformal model in getting closer to the data. Of
course, our current nonconformal model still does not give
enough anisotropy, which implies that the T dependence of
the jet-medium coupling in this model may still show
less near-Tc enhancement than the phenomenologically
favored form. Such discrepancy at a quantitative level may
not be unexpected due to a number of issues. After all, the
holographic model used here is supposed to be an effective
description dual to pure gluodynamics and, strictly speak-
ing, may not be suitable for direct application to full QCD
phenomenology. First of all, in a real QCD case with
crossover transition, there is the “hadronic” side (i.e., the
sizable contribution for q̂ when T is smaller but close to
Tc) [71], which is missing in the current holographic
model with first order transition. Furthermore, the entropy
density here (only counting the gluons, essentially) is also
different from full QCD where there are quarks too, and
that, in general, would shift the peak toward the lower
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density region in the present model. One might attempt to
“cook up” certain extrapolative ways of accounting for
such differences and, thus, improve the agreement with the
data. We, however, feel that would weaken the internal
rigor and consistency of the holographic model approach
and would add very little to our main purpose, which is not
to claim success in the description of the data but to
demonstrate the consequence of nonconformal dynamics

in our holographic model on the jet energy loss
phenomenology.
Let us end by reiterating our main points here: (1) There

are strong nonconformal, nonperturbative dynamics going
on in the near-Tc region (which is modeled via holography
here by introducing quadratic terms); (2) such dynamics
leads to nonmonotonic behavior in QGP thermodynamics
as shown by the strong near-Tc peak of the trace anomaly
(which is well modeled by holography); (3) the same
dynamics leads to nonmonotonic behavior in the QGP
transport properties and, in particular, strong near-Tc
enhancement of the jet-medium coupling; (4) phenomeno-
logically, the T dependence of q̂ from the nonconformal
holographic model considerably improves the description
of jet quenching azimuthal anisotropy as compared with the
conformal case.

VII. SUMMARY

We have investigated QCD phase transition and jet
quenching parameter q̂ in the framework of a dynamical
holographic QCD model. The thermodynamical properties
in this dynamical holographic QCD model agree well with
lattice results for a pure gluon system. It was found that
both the trace anomaly ðε − 3pÞ=T4 and the ratio of the jet
quenching parameter over cubic temperature q̂=T3 show a
peak around the critical temperature Tc. It was also noticed
that the ratio of jet quenching parameter over entropy
density q̂=s sharply rises at Tc, which is similar to the
behavior of bulk viscosity over entropy density ζ=s. The
enhancement of the jet quenching parameter around Tc
indicated that, like the ratio of shear viscosity over entropy
density η=s and the ratio of bulk viscosity over entropy
density ζ=s, the ratio of jet quenching parameter over
entropy density q̂=s can also characterize the phase
transition.
The effect of jet quenching parameter enhancement

around the phase transition on nuclear modification factor
RAA and elliptic flow v2 were also been analyzed, and it was
found that the T dependence of q̂ from the nonconformal
dynamical holographic model could considerably improve
the description of jet quenching azimuthal anisotropy as
compared with the conformal case.
Here are several remarks about the dynamical holo-

graphic QCDmodel we used in this work: (1) We have only
considered the graviton-dilaton coupled system for the pure
gluon system; it would be interesting to see in the future
how the behavior of the jet quenching parameter changes
by including dynamical quarks and how it will affect RAA
and v2. (2) We have only considered the gluonic matter
above Tc; one needs to construct the thermal gas below Tc
in order to get the q̂=T3 behavior in the hadron gas. (3) One
should also consider how to distinguish the energy loss of
gluons and quarks [72] in the framework of hologra-
phy QCD.
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FIG. 13 (color online). The RAA (upper) and v2 (lower) at high
pt as a function of participant number Npart for the RHIC. The
thick blue curves are the results from the nonconformal holo-
graphic model with q̂=T3 given in Fig. 9 (μG ¼ 0.75 GeV,
Tc ¼ 255 MeV), while the thin red curves are from the con-
formal model with q̂=T3 being constant. The data are PHENIX
measurements of neutral pions for the kinematic range of
6 < pt < 9 GeV and pt > 9 GeV.
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