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At finite N, the number of restricted Schur polynomials is greater than or equal to the number of
generalized restricted Schur polynomials. In this note, we study this discrepancy and explain its origin. We
conclude that for quiver gauge theories, in general, the generalized restricted Shur polynomials correctly
account for the complete set of finite N constraints, and they provide a basis, while the restricted Schur
polynomials only account for a subset of the finite N constraints and are thus overcomplete. We identify
several situations in which the restricted Schur polynomials do in fact account for the complete set of finite
N constraints. In these situations, the restricted Schur polynomials and the generalized restricted Schur
polynomials both provide good bases for the quiver gauge theory. Finally, we demonstrate situations in
which the generalized restricted Schur polynomials reduce to the restricted Schur polynomials.
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I. SUMMARY AND CONCLUSIONS

Our focus in this article is on free gauge theories whose
structure is elegantly summarized in a quiver. By a quiver
we mean a set of nodes (or vertices) connected by directed
arrows; that is, a quiver is a directed graph. The gauge group
of the quiver gauge theory is a direct product of groups, one
associated with each node of the quiver so that there is a
gauge field associated with each node of the quiver. We
are interested in the case that each node corresponds to a
unitary groupUðNaÞ. Although our arguments carry over to
a general quiver gauge theory, we mostly focus on quivers
with two nodes, which correspond to studying a UðN1Þ ×
UðN2Þ gauge group. For each directed arrow, there is a
bifundamental scalar. An arrow stretching from node a to
node b gives a field that transforms in the fundamental
representation of UðNaÞ in the antifundamental of UðNbÞ
and is a singlet of UðNcÞ, c ≠ a; b.
Our primary interest is in the finite N physics of these

theories. A natural basis for the local gauge-invariant
operators of the theory is provided by taking traces of
products of fields. At finite N, not all trace structures are
independent. As a simple example, consider a scalar field Z
that is an N × N matrix transforming in the adjoint repre-
sentation of UðNÞ. A complete set of operators built using
three fields is given by fTrðZ3Þ;TrðZ2ÞTrðZÞ;TrðZÞ3g,
when N > 2. For N ¼ 2, this set is overcomplete because
we have the identity

TrðZ3Þ ¼ 1

2
½3TrðZ2ÞTrðZÞ − TrðZÞ3�: ð1:1Þ

It is a highly nontrivial problem to write a basis of local
operators that is not overcomplete at finite N. This problem

has been solved for multimatrix models with UðNÞ gauge
group in [1–9] and for single matrix models with SOðNÞ or
SpðNÞ gauge groups in [10–12]. The result of these studies
is a basis of local operators that also diagonalizes the free
field two-point function. These bases have been useful for
exploring giant gravitons [13–23] and new background
geometries [24–35] in AdS/CFT [36], as well as for the
computations of anomalous dimensions in large N but
nonplanar limits [37–43]. Elements in the basis are labeled
byYoung diagrams. The finiteN relations are encoded in the
statement that operators labeled by Young diagrams with
more thanN rows vanish. To illustrate this point, note that a
basis for operators built using a single field are the Schur
polynomials. ForN ¼ 2, the constraint (1.1) is the statement

(1.2)

For quiver gauge theories, there are two distinct
approaches that have been developed to study the finite
N physics [44,45].1 In the remainder of this introduction,
we review these two approaches with the goal of exhibiting
a tension between them. The primary goal of this article is
to clarify the origin of this tension and to explain how it is
resolved.
For concreteness, consider a quiver gauge theory with

gauge group UðN1Þ ×UðN2Þ and assume that N1 > N2.
We use Roman indices for the UðN1Þ gauge group and
Greek indices for the UðN2Þ gauge group. Consider the
problem of building gauge-invariant operators using the
bifundamentals ðAIÞaα and ðBI†Þαa, where I ¼ 1; 2. It is clear
that any gauge-invariant operator must be a product of
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1For earlier work, focusing on essentially single matrix
dynamics, see [46–49].
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traces of an alternating product of As and B†s. This
motivates the products

ϕIJa
b ¼ ðAIÞaαðBJ†Þαb; ð1:3Þ

which transform in the adjoint of UðN1Þ. Any gauge-
invariant single trace operator is the trace of a unique (up to
cyclic permutations) product of ϕIJ fields. Thus, we can use
the restricted Schur polynomials [4] to build a basis for
the local operators of the quiver [44]. The Young diagrams
labeling these operators are cut off to have no more than N1

rows. If we had instead chosen to work with the fields

ψJIα
β ¼ ðBJ†ÞαaðAIÞaβ; ð1:4Þ

we would have constructed restricted Schur polynomials
that have Young diagram labels cut off to have no more
than N2 rows. These cutoffs are different, and they do not
give the same number of gauge-invariant operators; thus,
there is a puzzle. To see how this is resolved, restrict
attention to a single field ϕ11 in which case our operators
are the Schur polynomials χRðϕ11Þ. For R⊢d, we obtain a
Schur polynomial of degree d. Recall that the degree d
Schur polynomials in N variables are a linear basis for the
space of homogeneous degree d symmetric polynomials
in N variables [50]. Thus, these Schur polynomials are
functions of the N1 eigenvalues λi of ϕ11. Concretely, we
can write the Schur polynomial as a sum of monomials

χRðλ1; λ2;…; λNÞ ¼
X
T

λT ¼
X
T

λt11 …λtnn ; ð1:5Þ

where the summation is over all semistandard Young
tableaux T of shape R. The powers of the eigenvalues ti
counts the number of times the number i appears in T.
We have not yet considered the eigenvalues of

ϕ11 ¼ A1ðB1Þ†: ð1:6Þ

ðB1Þ† is an N2 × N1 matrix, while A1 is an N1 × N2 matrix.
These matrices are not square, so they do not admit an
eigendecomposition. There is, however, the notion of a
singular value decomposition (SVD), which can be applied
[51]. The SVD decomposition of ðB1Þ† is

ðB1Þ† ¼ UBΣBV
†
B; ð1:7Þ

where UB is an N2 × N2 unitary matrix, V†
B is an N1 × N1

unitary matrix, and ΣB is an N2 × N1 rectangular matrix
with nonzero singular values on its diagonal. Since ðB1Þ†
has (at most) N2 nonzero singular values, the generic
matrix ðB1Þ† has a null space of dimension N1 − N2.
[Nongeneric ðB1Þ† can have an even larger null space.]
Of course, ϕ11 and ðB1Þ† share the same null space so that
ϕ11 has at least N1 − N2 zero eigenvalues.

Recall that a semistandard Young tableau is column
strict, that is, the entries weakly increase along each row
and strictly increase down each column. This implies that
if R has more than N2 rows every term in χRðϕ11Þ is a
product of at least N2 þ 1 distinct eigenvalues. Since only
N2 of these can be nonzero, it follows that χRðϕ11Þ actually
vanishes as soon as R has more than N2 rows. This proves
that the Schur polynomials χRðϕ11Þ and χRðψ11Þ are both
cut off such that R must have at most N2 rows. A very
simple generalization of this reasoning allows us to con-
clude that we can construct restricted Schur polynomials
using either ψ IJ or ϕIJ. The finiteN constraints are encoded
in the statements that operators labeled by Young diagrams
with more than2 minðN1; N2Þ rows vanish. This implies in
particular that the number of gauge-invariant operators that
can be constructed will depend only on the smallest of N1

and N2. We call this the restricted Schur basis.
A second approach to the finite N physics entails

working with the field AI and ðBIÞ† directly [45]. In this
case, we organize the UðN1Þ indices using Young diagrams
that have no more than N1 rows, and we organize the
UðN2Þ indices using Young diagrams that have no more
than N2 rows. Thus, each operator is labeled by two types
of Young diagrams that have distinct cutoffs. In this case,
both N1 and N2 enter. This dependence is genuine, and one
finds, for example, that the number of operators that can
be constructed depend on both N1 and N2. This is the
generalized restricted Schur basis [45].
At infinite N, the counting of restricted Schur poly-

nomials and generalized restricted Schur polynomials
agree. At finite N, there are more restricted Schur poly-
nomials than there are generalized restricted Schur poly-
nomials. This means that either the restricted Schur
polynomials are overcomplete or the generalized restricted
Schur polynomials are undercomplete. We show in what
follows that the restricted Schur polynomials are over-
complete, for a subtle reason that is peculiar to quiver gauge
theories, as we now explain. Given a collection of fields
fAI; ðBJÞ†g, we can form the fields ϕIJ. The number nIJ of
each type of field is not unique, and it depends on the
details of how we pair the AIs and the ðBJÞ†s. To get the
complete set of restricted Schur polynomials, we need to
consider each possible pairing with its collections of fields
described by the numbers fnIJg. For a given pairing fnIJg,
the restricted Schur polynomials do give the correct finiteN
constraints. There are, however, extra genuinely new
conditions that can be written that involve fields that come
from different pairings, pairing fnIJg and pairing fnIJ 0g
say. The restricted Schur polynomials do not respect
these additional constraints and are thus overcomplete.
The generalized restricted Schur basis correctly accounts
for the complete set of finite N trace relations. This is an
important general lesson: at finite N, the physics of quiver

2minðN1; N2Þ is equal to the smallest of N1 or N2.
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gauge theories is not correctly captured by contracting
fields to construct adjoints of specific gauge groups and
then building operators from these adjoints. The adjoints
retain knowledge that they are constructed from more basic
bifundamental fields in the form of extra finite N relations.
To correctly account for the complete set of finite N
relations, it seems easiest to work directly with the original
bifundamental fields and hence the generalized restricted
Schur polynomial basis.
There are exceptions to this general lesson: in certain

subsectors of the theory and in specific limits, some of
which we identify below, the restricted Schur polynomials
do provide a complete basis and do account for all finite N
relations. In these cases, it may be simpler to use the
restricted Schur polynomials rather than the generalized
restricted Schur polynomials.
In Sec. II, we outline in detail, using a specific example,

the origin and form of the new constraints. There are
situations in which the restricted Schur polynomials do
capture the complete set of finite N constraints and are
consequently not overcomplete. In these situations, one
may use either basis, as dictated by the problem being
considered. In Sec. III, we identify and describe these

situations. Sec. IV considers the computation of some
simple correlators that provide further useful and indepen-
dent insight into the finite N physics. Finally, in Sec. V,
we compare the structure of the restricted Schur poly-
nomials and the generalized restricted Schur polynomials,
with the goal of explaining why it may be simpler to use
the restricted Schur polynomials rather than the generalized
restricted Schur polynomials for certain computations.
Section V also demonstrates situations in which the gene-
ralized restricted Schur polynomials reduce to the restricted
Schur polynomials.
In what follows, we talk of a Young diagram r that hasm

boxes or of a Young diagram r that is a partition of m or
even more simply, r⊢m.

II. NEW FINITE N RELATIONS

The number of generalized restricted Schur polynomials
N gðn1; n2; m1; m2Þ that can be built in a theory with gauge
group UðN1Þ ×UðN2Þ, using n1 copies of the field A1, n2
copies of A2, m1 copies of ðB1Þ†, and m2 copies of ðB2Þ† is
given by [lðRÞ is the length of the first column in R and lðSÞ
is the length of the first column in S] [45]

X

R;S⊢n1þn2

lðRÞ≤N1lðSÞ≤N2

X

r1⊢n1
r2⊢n2

X

s1⊢m1

s2⊢m2

gðr1; r2; RÞgðr1; r2; SÞgðs1; s2; RÞgðs1; s2; SÞ; ð2:1Þ

where we have n1 þ n2 ¼ m1 þm2 and where gð·; ·; ·Þ
is a Littlewood-Richardson coefficient. The finite N
relations are accounted for by restricting the above sum
so that R has no more than N1 rows and S has no more than
N2 rows.
Consider now the counting for the restricted Schur

polynomial. The first step in the construction of the
resticted Schur polynomials entails pairing the As and
B†s to produce nIJ copies of ϕIJ. There is one Young
diagram for each of these ϕIJ fields. The number of
restricted Schur polynomials is now given by
[N− ≡minðN1; N2Þ]

N rðn1; n2; m1; m2Þ ¼
X
fnIJg

N fnIJg; ð2:2Þ

where the above sum is a sum over all possible distinct
ways of pairing; that is, it is a sum over all possible
distinct sets fnIJg and [52]

N fnIJg ¼
X

R⊢n1þn2

lðRÞ≤N−

X
rIJ⊢nIJ

ðgðr11; r12; r21; r22;RÞÞ2; ð2:3Þ

In general, (2.1) and (2.2) do not agree. The goal of this
section is to explain the origin of the discrepancy.3

To make the discussion concrete, we focus on a specific
example. Consider n1 ¼ 3, n2 ¼ 1,m1 ¼ m2 ¼ 2, and take
N1; N2 > 4 so that there are no finite N constraints. In this
case, a simple application of (2.1) givesN gð3; 1; 2; 2Þ ¼ 28
generalized restricted Schur polynomials. For the number
of restricted Schur polynomials, we need to consider two
cases

Case I : n11 ¼ 2 n12 ¼ 1 n21 ¼ 0 n22 ¼ 1

Case II : n11 ¼ 1 n12 ¼ 2 n21 ¼ 1 n22 ¼ 0: ð2:4Þ

For these cases, (2.2) gives N I ¼ 14, N II ¼ 14 so that in
total N rð3; 1; 2; 2Þ ¼ 28. In the next section, we prove that
the number of restricted Schur polynomials and generalized
restricted Schur polynomials always agree in the absence of
finite N constraints.

3The Littlewood-Richardson number has three indices gðr; s; tÞ.
The number gðr; s; tÞ gives the number of times irrep t of GLN
appears in the tensor product of GLN representations r and s.
By gðr1; r2; :::; rn;RÞ we mean the number of times R appears in
the tensor product of r1 with r2 with r3 with… with rn. We could
write this as

P
si gðr1; r2; s1Þgðs1; r3; s2Þ…gðsn−1; rn; RÞ.
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Wewill see that it isN rð3; 1; 2; 2Þ that does not correctly
count the number of gauge-invariant operators at finite N.
Since this is one of the main points of our discussion,
we give the complete details on how Eq. (2.2) is applied.
Toward this end, we have summarized the labels for the
relevant restricted Schur polynomials in Appendix A.
Consider next the case that N1 ¼ N2 ¼ 2. A simple
application of (2.1) gives N gð3; 1; 2; 2Þ ¼ 13 generalized
restricted Schur polynomials. Next, consider the complete
set of possible restricted Schur polynomial labels given in
Appendix A. For Case I, the operators given in (A1), (A2),
and (A3) vanish so that we have eight operators. For
Case II, the operators given in (A9), (A10), and (A11)
vanish so that we have eight operators. This gives a total
of N rð3; 1; 2; 2Þ ¼ 16 restricted Schur polynomials, which
shows a clear discrepancy between (2.1) and (2.2).
To explore the origin of this discrepancy, we have

developed a numerical algorithm to determine the number
and precise form of the finite N constraints. Consider
first the case of a single N × N matrix Z. For N ¼ 2, we
know one of the finite N constraints is given by (1.1). If we
choose a random 2 × 2 matrix Z and form the vector

~v ¼

2
64

TrðZ3Þ
TrðZ2ÞTrðZÞ

TrðZÞ3

3
75; ð2:5Þ

it will point in a random direction depending on the specific
matrix Z. However, we know that it must lie in a two-
dimensional subspace of the three-dimensional space it
belongs to because thanks to (1.1) we know that

~v · ~u ¼ 0 ~u ¼

2
64

2

−3
1

3
75: ð2:6Þ

Now imagine preparing an ensemble of random matrices
ZðiÞ, i ¼ 1;…; k. This ensemble of ZðiÞ can be used to
construct an ensemble ~vðiÞ using (2.5), and then we can
form the matrix

M ¼ 1

k

Xk
i¼1

vðiÞTvðiÞ: ð2:7Þ

Since the ~vðiÞ are all orthogonal to ~u but otherwise explore
the orthogonal two-dimensional subspace, we know thatM
will have a single null vector, which is ~u itself.
The logic clearly generalizes to multimatrix models.

We collect the complete set of multitrace structures into a
vector ~v. By preparing an ensemble of random matrices,
we can prepare an ensemble of random vectors ~vðiÞ and
construct thematrixM as in (2.7). Each null vector ofM then
corresponds to a finiteN constraint. In this way, the finiteN
constraints are recovered from the null vectors of M.

For Case I described above, we find that a total of 14
multitrace structures is possible. Setting N1 ¼ N2 ¼ 2,
we find that M has a total of six null vectors. Thus, there
are six finite N constraints leaving eight independent
multitrace operators, in perfect agreement with the number
of restricted Schur polynomials. For Case II, we again find
a total of 14 multitrace structures are possible, and again,
forN1 ¼ N2 ¼ 2, we find thatM has six null vectors. Thus,
there are six finite N constraints leaving eight independent
multitrace operators, again in perfect agreement with the
number of restricted Schur polynomials. If we now form
the complete set of gauge-invariant operators that we can
construct using n1 ¼ 3, n2 ¼ 1, and m1 ¼ m2 ¼ 2, we find
that a total of 28 multitrace structures are possible, given
by the operators of Case I and Case II above. In this case,
M has a total of 15 null vectors, leaving a total of 13
independent multitrace operators, in perfect agreement
with the number of generalized restricted Schur polyno-
mials. At this point, the origin of the discrepancy is clear.
The construction of restricted Schur polynomials starts by
breaking the complete space of gauge-invariant operators
up into two sets, Case I and Case II above. By searching
for the finite N constraints within the operators of Case I
and Case II separately, we have discovered 12 constraints.
This is three short of the complete set of 15 constraints
discovered when searching in the complete set of gauge-
invariant operators. Clearly, there are some finite N con-
straints that mix operators from Case I and operators from
Case II, and these constraints are not captured in the
restricted Schur construction of [44].
To summarize the conclusion of our discussion, the

generalized restricted Shur polynomials correctly account
for the complete set of finite N constraints, and they
provide a basis, while the restricted Schur polynomials
only account for a subset of the finite N constraints and are
thus overcomplete.

III. SITUATIONS WITHOUT NEW
FINITE N RELATIONS

As our discussion in the introduction suggests, in the
absence of finite N constraints, we expect that both the
generalized restricted Schur polynomials and the restricted
Schur polynomials provide good bases. This implies, in
particular, that in the absence of finite N constraints the
number of restricted Schur polynomials is equal to the
number of generalized restricted Schur polynomials. This
is indeed the case as we now explain. For concreteness,
we again consider a UðN1Þ ×UðN2Þ model, building our
operators from the fields ðAIÞaα and ðBI†Þαa, where I ¼ 1; 2.
Thus, we can form four adjoint fields ϕIJ, and our restricted
Schur polynomials are labeled by five Young diagrams,
one Young diagram rIJ for each field ϕIJ and one which
organizes the complete set of fields. According to [9,52],
the number of restricted Schur polynomials at N ¼ ∞ is
given by expanding
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Zrðt11; t12; t21; t22Þ ¼
X

n1;n2;m1;m2

X
a;b;c;d

δaþb;n1δcþd;n2δaþc;m1
δbþd;m2

N rðn1; n2; m1; m2Þta11tb12tc21td22

¼
Y∞
k¼1

1

1 − tk11 − tk12 − tk21 − tk22
: ð3:1Þ

The coefficient of tn1111 t
n12
12 t

n21
21 t

n22
22 tells us the number of restricted Schur polynomials that can be built using n11 ϕ11 fields, n12

ϕ12 fields, n21 ϕ21 fields, and n22 ϕ22 fields. The number of generalized restricted Schur polynomials at N ¼ ∞ is given by
expanding [45]

Zgðta1 ; ta2 ; tb1 ; tb2Þ ¼
X

n1;n2;m1;m2

N gðn1; n2; m1; m2Þtn1a1tn2a2tm1

b1
tm2

b2

¼
Y∞
k¼1

1

1 − ðta1tb1Þk − ðta1tb2Þk − ðta2tb1Þk − ðta2tb2Þk
. ð3:2Þ

The coefficient of tn1a1t
n2
a2t

m1

b1
tm2

b2
tells us how many general-

ized restricted Schur polynomials can be built using n1 A1

fields, n2 A2 fields, m1 B
†
1 fields, and m2 B

†
2 fields. We can

clearly transform (3.1) into (3.2) by setting tij ¼ tai tbj ,
which proves that in the absence of finite N constraints
the number of restricted Schur polynomials is equal to the
number of generalized restricted Schur polynomials. This
change of variables provides important insight into how
to relate the counting of restricted Schur polynomials and
generalized restricted Schur polynomials, even when finite
N constraints play a role, as we will see.

A. A single nIJ sector

Consider next the case that one of n1; n2; m1; m2 is equal
to zero. In this case, there is only one possible value for the

nIJ so that according to our discussion above the restricted
Schur polynomials correctly account for all finite N
constraints, and we therefore expect that the number of
restricted Schur polynomials matches the number of
generalized restricted Schur polynomials. For concreteness,
consider the case that n1 ¼ 0. In this case, the Young
diagram appearing in (2.1) is the Young diagram with no
boxes, which we denote as ·. Consequently,

gðr1; r2; RÞ ¼ gð·; r2; RÞ ¼ δr2;R

gðr1; r2; SÞ ¼ gð·; r2; SÞ ¼ δr2;S

so that the number of generalized restricted Schur poly-
nomials (2.1) becomes

X
R;S⊢n2lðRÞ≤N1lðSÞ≤N2

X
r2⊢n2

X
s1⊢m1s2⊢m2

δr2;Rδr2;Sgðs1; s2; RÞgðs1; s2; SÞ ¼
X

R⊢n1lðRÞ≤N−

X
s1⊢m1

X
s2⊢m2

gðs1; s2; RÞgðs1; s2; RÞ: ð3:3Þ

To count the number of restricted Schur polynomials, note
that now r11 ¼ ·, r12 ¼ ·, n21 ¼ m1, and n22 ¼ m2 so that
(2.2) becomes

X
R⊢n2lðRÞ≤N−

X
r21⊢m1

X
r22⊢m2

ðgðr21; r22;RÞÞ2: ð3:4Þ

This demonstrates an exact match between the number of
restricted Schur polynomials and the number of generalized
restricted Schur polynomials as we predicted. We recover

this result by showing that in this case the generalized
restricted Schur polynomials reduce to the restricted Schur
polynomials in Sec. V.

B. One finite rank

Finally, consider the case that one of the ranks of the
two gauge groups goes to infinity. For concreteness,
we take N2 → ∞. The counting of restricted Schur
polynomials is

Zrðt11; t12; t21; t22Þ ¼
X

r11;r12;r21;r22;R;lðRÞ≤N1

ðgðr11; r12; r21; r22;RÞÞ2tjr11j11 tjr12j12 tjr21j21 tjr22j22 : ð3:5Þ

FINITE N QUIVER GAUGE THEORY PHYSICAL REVIEW D 89, 126004 (2014)

126004-5



A simple change of variables gives

Zr ¼
X

r11;r12;r21;r22;R;lðRÞ≤N1

ðgðr11; r12; r21; r22;RÞÞ2ðta1tb1Þjr11jðta1tb2Þjr12jðta2tb1Þjr21jðta2rb2Þjr22j:

Employing the identities

gðr11; r12; r21; r22;RÞ ¼
X
r⊢n1

X
s⊢n2

gðr11; r12; rÞgðr21; r22; sÞgðr; s; RÞ

¼
X
t⊢m1

X
u⊢m2

gðr11; r21; tÞgðr12; r22; uÞgðt; u; RÞ; ð3:6Þ

we find

Zr ¼
X
r;s;t;u

X
R;lðRÞ≤N1

gðr; s; RÞgðt; u; RÞtn1a1tn2a2tm1

b1
tm2

b2

×
X

r11;r12;r21;r22

gðr11; r12; rÞgðr21; r22; sÞgðr11; r21; tÞgðr12; r22; uÞ: ð3:7Þ

We have used n1 ¼ jr11j þ jr12j, n2 ¼ jr21j þ jr22j, m1 ¼ jr11j þ jr21j, and m2 ¼ jr12j þ jr22j in writing this expression.
We now compute the sum

S ¼
X

r11;r12;r21;r22

gðr11; r12; rÞgðr21; r22; sÞgðr11; r21; tÞgðr12; r22; uÞ: ð3:8Þ

In the sum above, the number of rows in the rIJ is not restricted. Indeed, to capture the finite N constraints, it is enough to
cut the number of rows of R off as we have done in (3.7). Making use of the identity (r⊢n, s⊢m, t⊢nþm)

gðr; s; tÞ ¼ 1

n!m!

X
σ1∈Sn

X
σ2∈Sm

χrðσ1Þχsðσ2Þχtðσ1∘σ2Þ ð3:9Þ

and the formula
X
R⊢n

χRðσÞχRðτÞ ¼
X
γ∈Sn

δðγσγ−1τ−1Þ; ð3:10Þ

we can write S as

S ¼
X

ni1þni2¼ni

X
n1iþn2i¼mi

X
ψ1∈Sn11

X
ψ2∈Sn21

X
τ1∈Sn12

X
τ2∈Sn22

1

n11!n12!n21!n22!
χrðψ1∘τ1Þχsðψ2∘τ2Þχtðψ1∘ψ2Þχuðτ1∘τ2Þ

¼
X

σ1∈Sn1

X
σ2∈Sn2

X
ρ1∈Sm1

X
ρ2∈Sm2

X
γ∈Sn1þn2

1

n1!n2!m1!m2!
δðσ1∘σ2ðρ1∘ρ2Þ−1Þχrðσ1Þχsðσ2Þχtðρ1Þχuðρ2Þ

¼
X

σ1∈Sn1

X
σ2∈Sn2

X
ρ1∈Sm1

X
ρ2∈Sm2

X
S⊢n1þn2

1

n1!n2!m1!m2!
χSðσ1∘σ2ÞχSðρ1∘ρ2Þχrðσ1Þχsðσ2Þχtðρ1Þχuðρ2Þ

¼
X

S⊢n1þn2

gðr; s; SÞgðt; u; SÞ: ð3:11Þ

Plugging this back into (3.7), we find

Zr ¼
X
r;s;t;u

X
R;lðRÞ≤N1S

gðr; s; SÞgðt; u; SÞgðr; s; RÞgðt; u; RÞtn1a1tn2a2tm1

b1
tm2

b2

¼ Zg; ð3:12Þ
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proving the equality. See Appendix B for a nontrivial
example demonstrating this equality.

IV. CORRELATORS

In this section, we compute correlation functions of
restricted Schur polynomials. There are two things this will

teach us. First, we can confirm that the correct cutoff on
the number of rows of our Young diagram labels is the
smallest of N1 and N2. Second, we want to point out that
operators from different nIJ sectors are not orthogonal,
which corrects a statement in [44].
The operators we study were given in [44]

OR;frgαβ ¼
1Q

IJnIJ!

X
σ∈Sn1þn2

TrfrgαβðΓRðσÞÞTrðσðϕ11Þ⊗n11ðϕ12Þ⊗n12ðϕ21Þ⊗n21ðϕ22Þ⊗n22Þ. ð4:1Þ

The irrep R will in general be a reducible representation
of the Sn11 × Sn12 × Sn21 × Sn22 subgroup of Sn1þn2 . One
of the Sn11 × Sn12 × Sn21 × Sn22 irreps that R subduces is frg.
frg may be subduced more than once from R. α and β label
these copies. In the above formula, Trfrg is an instruction to
trace only over the frg subspace of the carrier space of R.
More precisely, we trace the row label over the α copy of frg
and the column label over the β copy of frg. For simplicity,
we set n2 ¼ 0. The two-point function

hOR;frgαβO
†
S;fsgγδi¼δRSδfrg;fsgδαγδβδ

hooksRfRðN1ÞfRðN2Þ
hooksr11hooksr12

ð4:2Þ
follows immediately after using the results of [44].
When the right-hand side of this correlator vanishes, the

operator itself vanishes. Thus, by determining where the
right-hand side of this correlation function vanishes, we learn
how the rows of the Young diagram labels should be
restricted to obtain nonzero operators. Toward this end, recall
that fRðNÞ is a product of the factors of the Young diagram,
one for each box, where the box in row i and column j has
factor N − iþ j. Consequently, fRðNÞ vanishes whenever R
has more thanN rows. Studying (4.2), we see that R can have
no more than N− rows where N− is the smallest of N1 and
N2. This is precisely the conclusion we reached in Sec. I. By
studying two-point functions, one can in general conclude
that for gauge group UðN1Þ ×UðN2Þ × � � � × UðNpÞ, all
Young diagram labels must have no more than N− rows,
where N− is the smallest of N1; N2;…; Np [53].
To consider the case of general n1, n2, m1, m2, it proves

convenient to use the operators

OR;frgαβ ¼ TrðPR;frgαβA⊗nτB†⊗nÞ

¼ 1

n11!n22!n12!n21!

X
σ∈Sn

TrfrgðΓRðσÞÞ
Yn1
i¼1

ðA1Þaiαi
Yn

j¼1þn1

ðA2ÞajαjðτÞα1���αnβ1���βn

×
Yn11
i¼1

ðB†
1ÞβiaσðiÞ

Yn1
i¼1þn11

ðB†
2ÞβiaσðiÞ

Yn1þn21

i¼1þn1

ðB†
1ÞβiaσðiÞ

Yn
i¼1þn1þn21

ðB†
2ÞβiaσðiÞ ; ð4:3Þ

where τ is an element of the group algebra, constructed to
obey

Trðτρ−1τσ−1Þ ¼ δðρ−1σ−1Þ: ð4:4Þ

The two-point function is [44]

hOR;frgαβO
†
S;fsgγδi ¼ n11!n12!n21!n22!TrðPR;frgαβPS;fsgγδÞ:

Thus, the two-point function in the subspace of operators
with fixed nIJ is diagonal. However, even after fixing
nI; mJ, we can change the nIJ. Projectors corresponding
to different nIJ will not in general be orthogonal. The
identity (4.4) also does not help. Operators from different
nIJ sectors are not orthogonal, which is again an indica-
tion that the restricted Schur basis for quiver gauge

theories is, in general, overcomplete. Note, however, that
the operators constructed in [45] are a complete basis,
and they do diagonalize the two-point function.

V. POLYNOMIAL STRUCTURE

The key general lesson of this article is that at finite N,
the physics of quiver gauge theories is not correctly
captured by contracting fields to construct adjoints of
specific gauge groups. The fact that the adjoints are
constructed from more basic bifundamental fields is
reflected in extra finite N relations. To correctly account
for all finite N relations, it seems easiest to work
directly with the original bifundamental fields and hence
the generalized restricted Schur polynomial basis. In
Sec. III, we have proved that there are exceptions to
this general lesson: in certain subsectors and in specific
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limits, the restricted Schur polynomials correctly account
for all finite N relations and hence do provide a suitable
basis. In these cases, it may be simpler to use the
restricted Schur polynomials rather than the generalized
restricted Schur polynomials, as we explain in this
section. Finally, we show that when there is a single
nIJ sector the generalized restricted Schur polynomials
reduce to the restricted Schur polynomials constructed
in [44].
The restricted Schur polynomial (4.1) can be written as

OR;frgαβ ¼
1Q

IJnIJ!

×
X

σ∈Sn1þn2

X
a

hR; fsg;α; ajΓRðσÞjR; fsg; β; ai

× Trðσðϕ11Þ⊗n11ðϕ12Þ⊗n12ðϕ21Þ⊗n21ðϕ22Þ⊗n22Þ:

Above, we have explicitly written the restricted trace
using the states jR; fsg; γ; ai. These states span a subspace
of the carrier space of representation R of Sn1þn2 . The
subspace carries a representation fsg of the subgroup
Sn11 × Sn12 × Sn21 × Sn22 . Since fsg will in general be
subduced more than once, we need the multiplicity label
γ. Finally, index a indexes states in the basis that spans the
subspace. The key technical challenge is then to develop a
good enough working knowledge of the states jR; r; γ; ai,
that one can carry out computations using the restricted
Schur polynomials. The group theoretic quantity

X
a

hR; frg; α; ajΓRðσÞjR; frg; β; ai ð5:1Þ

is the “restricted character” introduced in [19].
Using the same notation, the generalized restricted Schur

polynomials can be written as

OR;S;ftg;frg;αβγδ ¼
1Q

IJnIJ!

X
σ;ρ∈Sn1þn2

X
a;b

hR; ftg; α; bjΓRðσÞjR; frg; β; ai

× hS; frg; γ; ajΓSðρÞjS; ftg; δ; biTrðσA⊗n1
1 A⊗n2

2 ρðB†
1Þ⊗m1ðB†

2Þ⊗m2Þ:

Notice that four collections of states have been introduced: jR; ftg; α; bi, jR; frg; β; ai, jS; ftg; α; bi, and jS; frg; β; ai. The
label frg specifies an irrep of Sn1 × Sn2 and ftg specifies an irrep of Sm1

× Sm2
. The collections of states introduced provide

a basis for the advertised carrier spaces, within the carrier space of R and S, which are both irreps of Sn1þn2 . Greek labels are
multiplicity labels. a labels states within the basis of frg and b labels states within the basis of ftg. The group theoretic
quantity

X
a;b

hR; ftg; α; bjΓRðσÞjR; frg; β; aihS; frg; γ; ajΓSðρÞjS; ftg; δ; bi ð5:2Þ

is the “quiver character” introduced in [45].
From a group theory point of view, restricted characters seem to be simpler quantities than quiver characters. Efficient

methods have been developed in [39] to work with restricted characters. It remains to be seen if these methods can be
extended to quiver characters. This investigation is underway [54].
Finally, consider the situation for which (say) m2 ¼ 0 so that there is a single nIJ sector. In this case, we find the

generalized restricted Schur polynomial reduces to the restricted Schur polynomial

OR;S;ftgfSg;αδ ¼
δRSQ
IJnIJ!

X
σ;ρ∈Sn1þn2

X
a;b

hS; ftg; α; bjΓSðσÞjS; fSg; aihS; fSg; ajΓSðρÞjS; ftg; δ; biTrðρA⊗n1
1 A⊗n2

2 σðB†
1Þ⊗n1þn2Þ

¼ δRSQ
IJnIJ!

X
σ;ρ∈Sn1þn2

X
a;b

hS; ftg; α; bjΓSðσρÞjS; ftg; δ; biTrðρA⊗n1
1 A⊗n2

2 σðσ−1ðB†
1Þ⊗n1þn2σÞÞ

¼ δRSQ
IJnIJ!

X
σ;ρ∈Sn1þn2

X
a;b

hS; ftg; α; bjΓSðσρÞjS; ftg; δ; biTrðσρA⊗n1
1 A⊗n2

2 ðB†
1Þ⊗n1þn2ÞÞ

¼ δRSðn1 þ n2Þ!Q
IJnIJ!

X
σ∈Sn1þn2

X
a;b

hS; ftg; α; bjΓSðσÞjS; ftg; δ; biTrðσðϕ11Þ⊗n1ðϕ22Þ⊗n2ÞÞ

¼ δRSðn1 þ n2Þ!Q
IJnIJ!

OS;ftg;αδ: ð5:3Þ
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In the above computation, ftg specifies an irreducible
representation of Sn1 × Sn2 .
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APPENDIX A: RESTRICTED
SCHUR POLYNORMIALS FOR

n1 ¼ 3, n2 ¼ 1, m1 ¼ m2 ¼ 2

The construction of restricted Schur polynomials
has been described in full generality in [4]. In this
Appendix, we simply list the possible operators that
can be defined. This is all that is needed to follow the
counting arguments of Sec. II. The notation followed is
to list χR;ðr11;r12;r21;r22Þαβ with α and β multiplicity labels.
When only a single copy of representations appear, there
is no need for a multiplicity index, and it is simply
omitted.

1. Case I

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

2. Case II

(A.9)

(A.10)

(A.11)
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(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

APPENDIX B: COUNTING WHEN FINITE N CONSTRAINTS MATCH

For the counting in this Appendix, we take n1 ¼ 1, n2 ¼ 4, m1 ¼ 3, m2 ¼ 2, N1 ¼ ∞, and N2 ¼ 2. Thus, all restricted
Schur polynomials labels have at most two rows. For the generalized restricted Schur polynomials, one of theYoung diagrams
is unrestricted, and one has at most two rows [see Eq. (2.1)]. In this example, there are two fnIJg sectors of operators:
(1) trðσϕ11 ⊗ ðϕ21Þ⊗2 ⊗ ðϕ22Þ⊗2Þ
(2) trðσϕ12 ⊗ ðϕ21Þ⊗3 ⊗ ϕ22Þ.

To count the restricted Schur polynomials in sector 1, we use the Littlewood-Richardson numbers appearing in the following
products:

(B.1)

To count the restricted Schur polynomials in sector 2, we use the Littlewood-Richardson numbers appearing in the following
products:

(B.2)
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Restricting to Young diagrams with no more than two rows, we find

N lðRÞ≤2 ¼ N 1 þN 2 ¼ 14þ 11 ¼ 25: ðB3Þ
The following products appear when counting the number of generalized restricted Schur Polynomials. For r1⊢1 and

r2⊢4,

(B.4)

For s1⊢3 and s2⊢2

(B.5)

Using these products of Young diagrams, the number of generalized restricted Schur polynomials after restricting lðRÞ ≤ 2
and leaving S unrestricted is N ¼ 25 matching (B3).
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