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In this paper, we first compute the Killing spinors of AdS4 ×Q1;1;1 and its certain orbifolds. Based on
this, two classes of M2-brane solutions are found. The first class of solutions includes M2-branes dual to
Wilson loops in the fundamental representation as a special case. The second class includes the candidates
of the holographic description of vortex loops in the dual field theories.
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I. INTRODUCTION

Many examples of the AdS4=CFT3 correspondence have
been established since the seminal paper [1], which itself
was inspired by Refs. [2–6]. In this correspondence, certain
three-dimensional superconformal Chern-Simons-matter
theories are proposed to be dual to M theory on
AdS4×X7. The three-dimensional theory has N ¼1 (2,3)
supersymmetry when X7 is a weak G2 (Sasaki-Einstein,
3-Sasaki) manifold. Loop operators play an important role
in the studies of this AdS4=CFT3 duality, as they do in the
case of the AdS5=CFT4 correspondence. The 1=6-BPS
Wilson loops in the Aharony-Bergman-Jafferis-Maldacena
(ABJM) theory were first studied in detail in Refs. [7–9].
Later, a highly nontrivial 1=2-BPS Wilson loop was
constructed in Ref. [10]. An interesting explanation on
the origin of these Wilson loops was given in [11] based on
[12]. Some exact results for Wilson loops were obtained
based on powerful tools of supersymmetric localization
[13]. The Wilson loops with quite less supersymmetries
were studied in [14–16].
It is certainly interesting to generalize these studies on

loop operators to AdS4=CFT3 correspondences with less
supersymmetries, since now the dynamics is less con-
strained by supersymmetries. In Chern-Simon-matter
theories with N ¼ 2 supersymmetries, BPS Wilson loops
can be constructed when the loop is a straight line or a
circle [17]. This point is different from the four-
dimensional N ¼ 1 gauge theories, although they have
the same number of supercharges. Half-BPS Wilson loops
in generic three-dimensional N ¼ 2 Chern-Simons-matter
theories were studied in detail in [18]. The geometry of the
matrix models obtained from localization was connected to
the geometry of M2-brane solutions in the holographic
description based on results from differential geometry.
There also exists a vortex loop, a kind of disordered

operator, in these theories. The holographic dual of the
vortex loop in the ABJM theory was studied in [19]. The
vortex loops in generic N ¼ 2 Chern-Simons-matter
theories were studied by using localization in [20,21]
based on [22,23].
The aim of the current paper is to study BPS M2-branes

in a concrete example, with duality to loop operators in
mind. The first reason why we picked up the Sasaki-
Einstein manifold Q1;1;1 is that the metric of this manifold
is very simple, though its isometry group is small. The
second, less obvious reason is that the Killing spinor
equation is easy to solve on this manifold.1 We further
discussed the Killing spinors of certain orbifolds of AdS4 ×
Q1;1;1 by using Lie-Lorentz derivation of spinors with
respect to Killing vectors [25–27]. Based on these results,
we found two classes ofM2-branes. The world volumes of
these M2-branes all have the topology AdS2 × S1. The
AdS2 factor is embedded to the AdS4 part of the back-
ground geometry, so theseM2-branes are candidates for the
holographic duals of loop operators. In the first class, the S1

is embedded in Q1;1;1. This class includes the M2-branes
dual to Wilson loops in the fundamental representation. We
think that our study here is complementary to the results in
Ref. [18] based on more abstract mathematical tools. In the
second class of M2-branes, this S1 has a nontrivial profile
in both AdS4 andQ1;1;1. TheseM2-branes are similar to the
M2-branes in AdS4 × S7=Zk dual to vortex loops in the
ABJM theory [19].
We also noticed that there had been much research about

M theory on AdS4 ×Q1;1;1 and its various orbifolds. This is
another reason why we choose to study M2-branes in this
background. Various field theory duals were proposed and
checked in Refs. [28–32].2 Localization was performed to
obtained a matrix model [34] for the field theory proposed
in Refs. [31,32]. Superconformal indices were computed in
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1A similar thing was noticed for the five-dimensional Sasaki-
Einstein manifold T1;1 [24].

2An old proposal can be found in Ref. [33].
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Refs. [35,36]. Some other membranes and five-branes in
this background were studied in [37–39]. Some spinning
membranes dual to local operators were found in [40]. The
Penrose limit of AdS4 ×Q1;1;1 was studied in [41,42].
Some supergravity solutions related to AdS4 ×Q1;1;1 were
discussed in Ref. [43].
In the next section, we will solve the Killing spinor

equations on AdS4 ×Q1;1;1. Two classes of BPS M2-brane
solutions will be discussed in Sec. 3.

II. KILLING SPINORS OF AdS4 × Q1;1;1

The metric on AdS4 ×Q1;1;1 is

ds2 ¼ R2ðds24 þ ds27Þ; ð1Þ

ds24 ¼
1

4
ðcosh2uð−cosh2ρdt2 þ dρ2Þ þ du2 þ sinh2udϕ2Þ;

ð2Þ

ds27¼
X3
i¼1

1

8
ðdθ2i þ sin2θidϕ2

i Þþ
1

16

�
dψþ

X3
i¼1

cosθidϕi

�
2

;

ð3Þ
with θi ∈ ½0; π�;ϕi ∈ ½0; 2π�ði ¼ 1; 2; 3Þ;ψ ∈ ½0; 4π�. The
four-form field strength on this background is

H4 ¼
3R3

8
cosh2 u sinh u cosh ρdt ∧ dρ ∧ du ∧ dϕ:

ð4Þ

Two kinds of Zk orbifolds of Q1;1;1 were considered in the
literature. In the first case [28,29], the orbifold is obtained
via the identification ðϕ1;ϕ2Þ ∼ ðϕ1 þ 2π

k ;ϕ2 þ 2π
k Þ. In the

second case [30], the identification is ϕ1 ∼ ϕ1 þ 2π
k . We will

denote the first orbifold as Q1;1;1=Zk and the second
orbifold as Q1;1;1=Z0

k from now on. Flux quantization gives

R ¼ 2πlp

�
N

6volðQ1;1;1=ZkÞ
�

1=6
ð5Þ

¼ lp

�
28π2kN

3

�
1=6

; ð6Þ

where we have used

volðQ1;1;1=ZkÞ ¼
π4

8k
: ð7Þ

In order to find the Killing spinors, we find it very useful
to introduce the following one-forms3:

σ1I ¼ dθI; ð8Þ

σ2I ¼ sin θIdϕI; ð9Þ

σ3I ¼ cos θIdϕI; ð10Þ

with I ¼ 1; 2 and

w1 ¼ − cosψ sin θ3dϕ3 þ sinψdθ3; ð11Þ

w2 ¼ sinψ sin θ3dϕ3 þ cosψdθ3; ð12Þ

w3 ¼ dψ þ cos θ3dϕ3; ð13Þ

which satisfy

dσiI þ
1

2
ϵijkσjI ∧ σkI ¼ 0; ð14Þ

dwi þ 1

2
ϵijkwj ∧ wk ¼ 0: ð15Þ

Using these one-forms, we can reexpress the above metric
on Q1;1;1 as

ds27 ¼
X2
I¼1

1

8
½ðσ1I Þ2 þ ðσ2I Þ2� þ

1

8
ðw1Þ2 þ 1

8
ðw2Þ2

þ 1

16
ðσ31 þ σ32 þ w3Þ2: ð16Þ

Now the vielbeins of the 11-dimensional metric are

e0 ¼ R
2
cosh u cosh ρdt; e1 ¼ R

2
cosh u dρ; ð17Þ

e2 ¼ R
2
du; e3 ¼ R

2
sinh udϕ; ð18Þ

e4 ¼ R

2
ffiffiffi
2

p σ11; e5 ¼ R

2
ffiffiffi
2

p σ21; ð19Þ

e6 ¼ R

2
ffiffiffi
2

p σ12; e7 ¼ R

2
ffiffiffi
2

p σ22; ð20Þ

e8 ¼ R

2
ffiffiffi
2

p w1; e9 ¼ R

2
ffiffiffi
2

p w2; ð21Þ

e♯ ¼ R
4
ðσ31 þ σ32 þ w3Þ: ð22Þ

The spin connections with respect to these vielbeins are

ω01 ¼ 2

R
tanh ρ
cosh u

e0; ω02 ¼ 2

R
tanh ue0; ð23Þ3Such a trick was used for T1;1 in Ref. [24].
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ω12 ¼ 2

R
tanh ue1; ω23 ¼ −

2

R
coth ue3; ð24Þ

ω45 ¼ 1

R
ð−2

ffiffiffi
2

p
cot θ1e5 þ e♯Þ;

ω67 ¼ 1

R
ð−2

ffiffiffi
2

p
cot θ2e7 þ e♯Þ; ð25Þ

ω89 ¼ 1

R
ð2

ffiffiffi
2

p
cot θ1e5 þ 2

ffiffiffi
2

p
cot θ2e7 − 3e♯Þ; ð26Þ

ω4 ♯ ¼ 1

R
e5; ω5 ♯ ¼ −

1

R
e4; ð27Þ

ω6 ♯ ¼ 1

R
e7; ω7 ♯ ¼ −

1

R
e6; ð28Þ

ω8 ♯ ¼ 1

R
e9; ω9 ♯ ¼ −

1

R
e8: ð29Þ

And H4 can now be written as

H4 ¼
6

R
e0 ∧ e1 ∧ e2 ∧ e3: ð30Þ

The Killing spinors of AdS4 ×Q1;1;1 satisfy the follow-
ing equation:

∇mηþ
1

576
ð3Γnpq rΓm − ΓmΓnpq rÞHnpq rη ¼ 0: ð31Þ

Our convention about the product of the 11 Γ matrices is

Γ0123456789♯ ¼ 1: ð32Þ

Using the vielbeins and the spin connections given above,
we find that the solution to the above equation is

η ¼ e
u
2
Γ2Γ̂e

ρ
2
Γ1Γ̂e

t
2
Γ0Γ̂e

ϕ
2
Γ23η0; ð33Þ

where η0 is independent of all the coordinates and satisfies
the projection conditions

Γ45η0 ¼ Γ67η0 ¼ Γ89η0; ð34Þ

and Γ̂ is defined as

Γ̂ ¼ Γ0123: ð35Þ

The Killing spinors of Q1;1;1 were also studied in [44,45].
The Killing spinors of AdS4 were given in this coordinate
system in [7,19].
The above projection conditions show that the back-

ground on AdS4 ×Q1;1;1 is 1=4 BPS; i.e., eight super-
charges are preserved. These supercharges correspond to
four super-Poincaré charges and four superconformal

charges in the dual three-dimensional superconformal field
theory.
Now we turn to consider the Killing spinors of the

orbifolds AdS4 ×Q1;1;1=Zk and AdS4 ×Q1;1;1=Z0
k. For this

purpose, we compute the Lie-Lorentz derivative of the
above Killing spinor η with respect to the Killing vector
Ki ≡ ∂

∂ϕi
defined as

LKi
η≡ ðKiÞm∇mηþ

1

4
ð∇mðKiÞnÞΓmnη: ð36Þ

After some calculations, we find

LKi
η ¼ 0; ð37Þ

for each i. This result tells us that η is also the Killing spinor
of AdS4 ×Q1;1;1=Zk and AdS4 ×Q1;1;1=Z0

k. In other
words, the supersymmetries are not broken by this
orbifolding.

III. PROBE MEMBRANE SOLUTIONS
IN AdS4 × Q1;1;1

In this section, we will find two classes of probe M2-
brane solutions in AdS4 ×Q1;1;1. The bosonic part of the
M2-brane action is

SM2 ¼ T2

�Z
d3ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gmn

p
−
Z

P½C3�
�
; ð38Þ

where gmn is the induced metric on the membrane, T2 is the
tension of the M2-brane:

T2 ¼
1

ð2πÞ2l3p
; ð39Þ

and P½C3� is the pullback of the bulk 3-form gauge potential
to the world volume of the membrane. The gauge choice for
the background 3-form gauge potential C3 in the case at
hand is

C3 ¼
R3

8
ðcosh3u − 1Þ cosh ρdt ∧ dρ ∧ dϕ: ð40Þ

From the variation of this action, the membrane equation of
motion is

1ffiffiffiffiffiffi−gp ∂mð
ffiffiffiffiffiffi
−g

p
gmn∂nXNÞGMN þ gmn∂mXN∂nXPΓ

Q
NPGQM

¼ 1

3!
ffiffiffiffiffiffi−gp ϵmnpðP½H4�ÞMmnp: ð41Þ

We always use the indices from the beginning (middle) of
the alphabet to refer to the frame (coordinate) indices and
the underlined indices to refer to the target space ones. Also
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notice that ϵmnp is a tensor density on the world volume of
the membrane.
We are mainly interested in BPS M2-branes. The

supersymmetry projector equation reads

ΓM2η ¼ η; ð42Þ

with

ΓM2 ¼
1ffiffiffiffiffiffi−gp ∂τXμ1∂ξXμ2∂σXμ3em1

μ1 e
m2
μ2 e

m3
μ3 Γm1m2m3

; ð43Þ

where τ; ξ; σ are coordinates on the world volume of the
M2-brane.

A. BPS M2-branes dual to Wilson loops revisited

In this class of solutions, the world volume of the M2-
brane has the topology AdS2 × S1 with AdS2 ∈ AdS4 and
S1 ∈ M7. From now on, byM7 we mean eitherQ1;1;1=Zk or
Q1;1;1=Z0

k. This class includes M2-branes dual to BPS
Wilson loops in gauge theories as a special case, and this
case was studied in [18]. In that paper, the authors started
with general discussions on BPS Wilson loops in the
fundamental representation in N ¼ 2 Chern-Simons-
matter theories and the dual M2-brane solutions. They
also includedM2-branes in AdS4 ×Q1;1;1=Zk as one of the
explicit examples. They used a different coordinate system
for the AdS4 part, and for theQ1;1;1=Zk part they used some
results in differential geometry which appeared in their
general discussions. We will use the explicit results of
Killing spinors obtained in the previous section.
The ansatz of these solutions is

t¼ τ; ρ¼ ξ; ψ ¼ψðσÞ; ϕi¼ϕiðσÞ; i¼1;2;3; ð44Þ

with u;ϕ; θi ði ¼ 1; 2; 3Þ being constants. Here τ; ξ; σ are
three coordinates on the world volume of theM2-brane. We
consider the case that σ ∈ ½0; 2π� is a compact direction
(i.e., we always identify σ þ 2π with σ).
The periodic conditions for the fields ψ ;ϕi are

ψðσ þ 2πÞ ¼ ψðσÞ þ 2πnψ ; ð45Þ

ϕ1ðσ þ 2πÞ ¼ ϕ1ðσÞ þ
2πn1
k

; ð46Þ

ϕ2ðσ þ 2πÞ ¼ ϕ2ðσÞ þ
2πn1
k

þ 2πn2; ð47Þ

ϕ3ðσ þ 2πÞ ¼ ϕ3ðσÞ þ 2πn3; ð48Þ

with ni ∈ Z, i ¼ 1; 2; 3, when M7 ¼ Q1;1;1=Zk.
For the case that M7 ¼ Q1;1;1=Z0

k, the corresponding
conditions are

ψðσ þ 2πÞ ¼ ψðσÞ þ 2πnψ ; ð49Þ
ϕ1ðσ þ 2πÞ ¼ ϕ1ðσÞ þ

2πn1
k

; ð50Þ

ϕ2ðσ þ 2πÞ ¼ ϕ2ðσÞ þ 2πn2; ð51Þ

ϕ3ðσ þ 2πÞ ¼ ϕ3ðσÞ þ 2πn3; ð52Þ

with ni ∈ Z, i ¼ 1; 2; 3.
Now the M2-brane action is

SM2 ¼
TM2R3

4

Z
d3σ cosh2 u cosh ρ

×

�
1

8

X3
i¼1

sin2θiϕ02
i þ 1

16

�
ψ 0 þ

X3
i¼1

cos θiϕ0
i

�
2
�1=2

;

ð53Þ
where 0 means ∂=∂σ. The equation of motion for u gives

u ¼ 0; ð54Þ
while the equation of motion from variation of θi gives

sin θiϕ0
i

�
ψ 0 þ

X3
j¼1

cos θjϕ0
j − 2 cos θiϕ0

i

�
¼ 0: ð55Þ

The equations of motion for ψ ;ϕi can be solved by

ψ ¼ mψσ; ϕi ¼ miσ: ð56Þ

We also checked that the above three equations are
equivalent to the results from the M2-brane equations of
motion given in Eq. (41).
To compute the on-shell action of the M2-brane whose

boundary at infinity is an S1, we switch to the Euclidean
AdS4 with the metric:

ds24 ¼
1

4
ðcosh2 uðdρþ sinh2 ρdψ2Þ þ du2 þ sinh2 udϕ2Þ:

ð57Þ
The on-shell action of the M2-brane [Eq. (53)] now
becomes

SM2 ¼
TM2R3

4

Z
dΩEAdS2dσ

×

�
1

8

X3
i¼1

sin2θim2
i þ

1

16

�
mψ þ

X3
i¼1

cos θimi

�
2
�1=2

;

ð58Þ
with Z

dΩEAdS2 ¼
Z

dρdψ sinh ρ: ð59Þ
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Using the fact that σ ∈ ½0; 2π�, TM2 ¼ 1=ð4π2l3pÞ, and Eq. (6), we get

SM2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kN
3

�
1

8

X3
i¼1

sin2θim2
i þ

1

16

�
mψ þX3

i¼1

cos θimi

�
2
�s Z

dΩEAdS2 : ð60Þ

After adding boundary terms as in Ref. [46], we get

SM2 ¼ −4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kN
3

�
1

8

X3
i¼1

sin2θim2
i þ

1

16

�
mψ þ

X3
i¼1

cos θimi

�
2
�s
: ð61Þ

We now search for the BPS M2-brane in AdS4 ×Q1;1;1

among these solutions. ΓM2 now becomes

ΓM2 ¼
�
1

16

�
ψ 0 þ

X3
i¼1

cos θiϕ0
i

�
2

þ 1

8

X3
i¼1

sin2θiϕ02
i

�−1=2

× Γ01

�
1

4

�
ψ 0 þ

X3
i¼1

cos θiϕ0
i

�
Γ♯

þ 1p
2
sin θ1ϕ0

1Γ5 þ
1p
2
sin θ2ϕ0

2Γ7

− 1p
2
cosψ sin θ3ϕ0

3Γ8 þ
1p
2
sinψ sin θ3ϕ0

3Γ9

�
:

ð62Þ

We need the solutions of ΓM2η ¼ η to also satisfy the
projection conditions Eq. (34). This leads to, for each i,

sin θi ¼ 0; ð63Þ

or

ϕ0
i ¼ 0: ð64Þ

Now we get

ΓM2 ¼ sgn

�
mψ þ

X3
i¼1

cos θimi

�
Γ01 ♯: ð65Þ

The BPS condition leads to

Γ01 ♯η ¼ sgn

�
mψ þ

X3
i¼1

cos θimi

�
η: ð66Þ

By using the fact that we have u ¼ 0 on the world volume
of thisM2-brane solution, it is not hard to see that the above
condition is equivalent to the condition

Γ01 ♯η0 ¼ �η0; ð67Þ

on the M2-brane world volume. This condition is
compatible with the projection conditions Eq. (34), and
this BPS M2-brane is half-BPS with respect to the
background.
TheM2-brane in AdS4 ×Q1;1;1=Zk dual to the half-BPS

Wilson loop is a special solution of this class [18]. It is
given by

mψ ¼ 0; m1 ¼ m2 ¼
1

k
;

m3 ¼ 0; ðθ1; θ2Þ ¼ ð0; 0Þ; ð0; πÞ; ðπ; 0Þ; ðπ; πÞ: ð68Þ

The result for the on-shell action is

SM2 ¼ −2π
ffiffiffiffiffi
N
3k

r
; ð69Þ

when ðθ1; θ2Þ ¼ ð0; 0Þ; ðπ; πÞ, while in the case that
ðθ1; θ2Þ ¼ ð0; πÞ; ðπ; 0Þ

SM2 ¼ 0: ð70Þ

The first two solutions give leading contribution to the
vacuum expectation value of Wilson loops, which reads

hWi ∼ exp

�
2π

ffiffiffiffiffi
N
3k

r �
; ð71Þ

in the leading order of large N expansion. As mentioned in
[18], this is consistent with the result from the matrix model
computations in Ref. [34].
Similarly, among the half-BPS M2-branes in

AdS4 ×Q1;1;1=Z0
k, the one with

mψ ¼ 0; m1 ¼
1

k
; m2¼m3 ¼ 0; θ1 ¼ 0;π ð72Þ
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is dual to half-BPS Wilson loops. For the on-shell action

SM2 ¼ −π
ffiffiffiffiffi
N
3k

r
; ð73Þ

we get

hWi ∼ exp

�
π

ffiffiffiffiffi
N
3k

r �
: ð74Þ

B. The second class of solutions

Now we consider the ansatz

t ¼ τ; ρ ¼ ξ; ϕ ¼ σ; ð75Þ

ψ ¼ ψðσÞ; ϕi ¼ ϕiðσÞ; ð76Þ

with u; θi being constant. We also demand that u is
nonzero. The M2-brane action is now

SM2 ¼
TM2R3

8

Z
d3σ cosh ρ

× ½cosh2 u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 uþ c

p
− cosh3uþ 1�; ð77Þ

with the definition of c

c≡ 1

2

X3
i¼1

sin2θ2iϕ
02
i þ 1

4

�
ψ 0 þ

X3
i¼1

cos θiϕ0
i

�
2

: ð78Þ

The equation of motion for u gives

2 cosh u sinh u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 uþ c

p
þ cosh3 u sinh uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2 uþ c
p

− 3 sinh u cosh2 u ¼ 0: ð79Þ

For nonzero u, it has two solutions:

c ¼ 1 ð80Þ

and

c ¼ −
3

4
cosh2 uþ 1: ð81Þ

From now on wewill consider only the first solution, which
leads to

2
X3
i¼1

sin2θiϕ02
i þ

�
ψ 0 þ

X3
i¼1

cos θiϕ0
i

�
2

¼ 4: ð82Þ

Similar to the solutions in the previous subsection, the
equation of motion for θi gives

sin θiϕ0
i

�
ψ 0 þ

X3
j¼1

cos θjϕ0
j − 2 cos θiϕ0

i

�
¼ 0: ð83Þ

And the equations of motion for ψ ;ϕi can be solved by

ψ ¼ mψσ; ϕi ¼ miσ: ð84Þ

The above equations are equivalent to the results from the
M2-brane equations of motion given in Eq. (41).
Now we turn to discuss the BPS condition for the

M2-branes in AdS4 ×Q1;1;1. Now ΓM2 becomes

ΓM2 ¼
1

cosh2 u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 uþ c

p

× cosh ρΓ01

�
sinh uΓ3 þ

1

2

�
ψ 0 þ

X3
i¼1

ϕ0
i

�
Γ♯

þ 1ffiffiffi
2

p sin θ1ϕ0
1Γ5 þ

1ffiffiffi
2

p sin θ2ϕ0
2Γ7

−
1ffiffiffi
2

p cosψ sin θ3ϕ0
3Γ8 þ

1ffiffiffi
2

p sinψ sin θ3ϕ0
3Γ9

�
:

ð85Þ
To have BPS branes, we also need for each i to have

sin θi ¼ 0 ð86Þ
or

ϕ0
i ¼ 0: ð87Þ

The fact that c ¼ 1 now leads to

ψ 0 þ
X3
i¼1

cos θiϕ0
i ¼ �2: ð88Þ

Using these results, we can get

ΓM2 ¼ Γ01

�
sinh u
cosh u

Γ3 �
1

cosh u
Γ♯

�
: ð89Þ

From Eq. (33), we can get that

ΓM2η ¼ η ð90Þ
is equivalent to

Γ01 ♯η0 ¼ �η0: ð91Þ

So when for each i ¼ 1; 2; 3 we have either sin θi ¼ 0 or
ϕi being constant on the world volume, the M2-branes in
this class are half-BPS. This is similar to the situation in
the previous subsection. After some calculations using the
metric in Eq. (57), we can get that the on-shell action of the
M2-brane is
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SM2 ¼ −2π
ffiffiffiffiffiffi
kN
3

r
; ð92Þ

with the boundary term included.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we found some BPS M2-branes in M
theory on AdS4 ×Q1;1;1 and its certain orbifolds. We
reproduced the M2-branes dual to BPS Wilson loops in
the fundamental representation in the field theory side. We
also studied a second class of the BPS M2-branes which
should include the M2-branes dual to vortex loops in the
field theory side. We also find the explicit solution to the
Killing spinor equations in this background.
There are several further directions that are interesting

for us. For the holographic dual to BPS Wilson loops in the
(anti)fundamental representation, one should search for
suitable D2 (D6)-brane solutions in the IIA string back-
ground obtained from the S1 reduction of the above
M-theory background. On the other hand, one can try to
find a suitable M2-branes (Kaluza-Klein monopoles) sol-
ution in the M-theory background directly. To correctly
identify the dual brane solutions, we also need a more

precise understanding of the loop operators in the field
theory side. We would also like to try to generalize our
studies here to other Sasaki-Einstein 7-manifolds. We
hope to report our progress in these directions in the
near future.
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