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BPS M2-branes in AdS, x Q''!'! and their dual loop operators
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In this paper, we first compute the Killing spinors of AdS, x Q"!'! and its certain orbifolds. Based on
this, two classes of M2-brane solutions are found. The first class of solutions includes M2-branes dual to
Wilson loops in the fundamental representation as a special case. The second class includes the candidates
of the holographic description of vortex loops in the dual field theories.
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I. INTRODUCTION

Many examples of the AdS,/CFTj; correspondence have
been established since the seminal paper [1], which itself
was inspired by Refs. [2—6]. In this correspondence, certain
three-dimensional superconformal Chern-Simons-matter
theories are proposed to be dual to M theory on
AdS, x X;. The three-dimensional theory has N'=1 (2,3)
supersymmetry when X, is a weak G, (Sasaki-Einstein,
3-Sasaki) manifold. Loop operators play an important role
in the studies of this AdS,/CFT; duality, as they do in the
case of the AdSs/CFT, correspondence. The 1/6-BPS
Wilson loops in the Aharony-Bergman-Jafferis-Maldacena
(ABJM) theory were first studied in detail in Refs. [7-9].
Later, a highly nontrivial 1/2-BPS Wilson loop was
constructed in Ref. [10]. An interesting explanation on
the origin of these Wilson loops was given in [11] based on
[12]. Some exact results for Wilson loops were obtained
based on powerful tools of supersymmetric localization
[13]. The Wilson loops with quite less supersymmetries
were studied in [14-16].

It is certainly interesting to generalize these studies on
loop operators to AdS,/CFT; correspondences with less
supersymmetries, since now the dynamics is less con-
strained by supersymmetries. In Chern-Simon-matter
theories with N/ = 2 supersymmetries, BPS Wilson loops
can be constructed when the loop is a straight line or a
circle [17]. This point is different from the four-
dimensional N' =1 gauge theories, although they have
the same number of supercharges. Half-BPS Wilson loops
in generic three-dimensional A/ = 2 Chern-Simons-matter
theories were studied in detail in [18]. The geometry of the
matrix models obtained from localization was connected to
the geometry of M2-brane solutions in the holographic
description based on results from differential geometry.
There also exists a vortex loop, a kind of disordered
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operator, in these theories. The holographic dual of the
vortex loop in the ABJM theory was studied in [19]. The
vortex loops in generic N =2 Chern-Simons-matter
theories were studied by using localization in [20,21]
based on [22,23].

The aim of the current paper is to study BPS M2-branes
in a concrete example, with duality to loop operators in
mind. The first reason why we picked up the Sasaki-
Einstein manifold Q'-""! is that the metric of this manifold
is very simple, though its isometry group is small. The
second, less obvious reason is that the Killing spinor
equation is easy to solve on this manifold." We further
discussed the Killing spinors of certain orbifolds of AdS, x
Q"1 by using Lie-Lorentz derivation of spinors with
respect to Killing vectors [25-27]. Based on these results,
we found two classes of M2-branes. The world volumes of
these M2-branes all have the topology AdS, x S'. The
AdS, factor is embedded to the AdS, part of the back-
ground geometry, so these M2-branes are candidates for the
holographic duals of loop operators. In the first class, the S
is embedded in Q"!'!. This class includes the M2-branes
dual to Wilson loops in the fundamental representation. We
think that our study here is complementary to the results in
Ref. [18] based on more abstract mathematical tools. In the
second class of M2-branes, this S' has a nontrivial profile
in both AdS, and Q"'!'!. These M2-branes are similar to the
M?2-branes in AdS, x S7/Z; dual to vortex loops in the
ABJIM theory [19].

We also noticed that there had been much research about
M theory on AdS, x Q"' and its various orbifolds. This is
another reason why we choose to study M?2-branes in this
background. Various field theory duals were proposed and
checked in Refs. [28—32].2 Localization was performed to
obtained a matrix model [34] for the field theory proposed
in Refs. [31,32]. Superconformal indices were computed in

'A similar thing was noticed for the five-dimensional Sasaki-
Einstein manifold 7' [24].
An old proposal can be found in Ref. [33].
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Refs. [35,36]. Some other membranes and five-branes in
this background were studied in [37-39]. Some spinning
membranes dual to local operators were found in [40]. The
Penrose limit of AdS, x Q"!'! was studied in [41,42].
Some supergravity solutions related to AdS, x Q'!"! were
discussed in Ref. [43].

In the next section, we will solve the Killing spinor
equations on AdS, x Q"' Two classes of BPS M2-brane
solutions will be discussed in Sec. 3.

II. KILLING SPINORS OF AdS, x Q11!
The metric on AdS, x QL1 is

ds* = R?*(ds2 + ds3), (1)

dsi = — (cosh?u(—cosh’pd* + dp?) + du* + sinh>ud¢?),

(2)

4>|~

3
1 2
— 2 102 2
_Z:§ dO} +sin0,dp?) + ¢ (dl//+ZCos9 d¢)
(3)
with 6, € [0, 7], ¢; € [0,27](i = 1,2,3),y € [0,4x]. The

four-form field strength on this background is

3R 3
H, = ?cosh2 u sinh u cosh pdt A dp A du A de.

4)

Two kinds of Z, orbifolds of Q!'!! were considered in the
literature. In the first case [28,29], the orbifold is obtained
via the identification (¢, ;) ~ (¢1 + 2. ¢, + ). In the
second case [30], the identification is ¢p; ~ ¢p; + 27” We will
denote the first orbifold as Q"!'!'/Z, and the second
orbifold as Q"1 /Z} from now on. Flux quantization gives

N 1/6
’=2t (o 7z) o

28722kN 1/0
:z,,< i ) , (6)

where we have used

4

vol(Q"11/Z,) = % (7)

In order to find the Killing spinors, we find it very useful
to introduce the following one-forms™:

3Such a trick was used for T'! in Ref. [24].
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o} = do,, (8)
o} = sinf,d¢;, 9)
o7 = cos 0;dey, (10)

with I = 1,2 and
w! = —cosy sin 8yd¢; + sinydds, (11)
w? = siny sin O3d¢p; + cosydbs, (12)
w? = dy + cos O3deps, (13)

which satisfy

do} + %eiﬂ‘o{ Aok =0, (14)
aw' + %eijkwj Awk=0. (15)

Using these one-forms, we can reexpress the above metric
on QLU as

2
1 2)2 Loz 1oy
Zg }+§(w) +§(W)

Vo3 3. 3
+E(Ui+52+w>- (16)

Now the vielbeins of the 11-dimensional metric are

R R
ed = Ecosh u cosh pdt, el = Ecosh udp, (17)

R R
e = Edu, e = Esinh udg, (18)
R R
et =——o!, e =——02, 19
2\/5 1 2\/5 1 ( )
R R
e =—¢l, el = —— 63, 20
2\/5 2 2\/5 2 ( )
R R
S =—wl, e2 = ——w?, (21)
22 22
R
el = Z(Gl +o3+w). (22)

The spin connections with respect to these vielbeins are

o1 _ 2 tanhp

~ Rcosh u

o0 w2 — =

2
R tanh ue?, (23)

126003-2



BPS M2-BRANES IN AdS, x Q"' AND ...

12

2 2
w2 = Etanh uel, w3 = —Ecoth ues, (24)

¥ = ( —2v2cotfe2 + éb),

67 — — (=2v/2cotBel + ¢b), (25)

>d|'—‘%|

1
0¥ = = (2v2cotfe3 4 22 cotBrel — 3e?),  (26)

ot = lei, = —lei, (27)
R R

= lez, o't = —leg, (28)
R R
1 1

81— — o9 20— _ o8 29

w e @ e (29)

And H, can now be written as

6
H4:Ee9/\el/\eg/\e§. (30)

The Killing spinors of AdS, x Q"!"! satisfy the follow-
ing equation:

+%(3Fﬁmzrm T iminpqr
Our convention about the product of the 11 I matrices is
Do123as67808 = 1 (32)

Using the vielbeins and the spin connections given above,
we find that the solution to the above equation is
7= ATl A0 T ATOE S an N (33)
where 7, is independent of all the coordinates and satisfies
the projection conditions
Iy, =

Iﬁ67770 Fsg’?o» (34)

and I is defined as

The Killing spinors of Q"' were also studied in [44,45].
The Killing spinors of AdS, were given in this coordinate
system in [7,19].

The above projection conditions show that the back-
ground on AdS, x Q"!'! is 1/4 BPS; i.e., eight super-
charges are preserved. These supercharges correspond to
four super-Poincaré charges and four superconformal
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charges in the dual three-dimensional superconformal field
theory.

Now we turn to consider the Killing spinors of the
orbifolds AdS, x Q111 /Z, and AdS, x Q' /Z;. For this
purpose, we compute the Lie-Lorentz derivative of the
above Killing spinor # with respect to the Killing vector
K, = 6 7 defined as

1
Lgn=(K)"V,n+—

1 (Va(K)

P, (36)

After some calculations, we find
Lin=0, (37)

for each i. This result tells us that 7 is also the Killing spinor
of AdS, x Q'"'1/Z, and AdS,x Q"1/Z/. In other
words, the supersymmetries are not broken by this
orbifolding.

III. PROBE MEMBRANE SOLUTIONS
IN AdS, x Q111

In this section, we will find two classes of probe M2-
brane solutions in AdS, x Q! The bosonic part of the
M?2-brane action is

Sy =T» (/ d%%—/l)[@]), (38)

where g,,, is the induced metric on the membrane, 7', is the
tension of the M2-brane:

T, = (39)

and P[Cs] is the pullback of the bulk 3-form gauge potential
to the world volume of the membrane. The gauge choice for
the background 3-form gauge potential C; in the case at
hand is

R3
Cy= T (cosh®u — 1) cosh pdt A dp A dgp. (40)

From the variation of this action, the membrane equation of
motion is

On (/=99 0, XY) Gy + 90, XN, XPT5 G oy

3~

€""P (P[H4]) (41)

Mmnp*

BEIN=2

We always use the indices from the beginning (middle) of
the alphabet to refer to the frame (coordinate) indices and
the underlined indices to refer to the target space ones. Also
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notice that ¢”*? is a tensor density on the world volume of
the membrane.

We are mainly interested in BPS M2-branes. The
supersymmetry projector equation reads

FMZ” =, (42)
with

m

1 m m
Iy = \/—__g@,X”lﬁgX”Z 0,X" ey ey €us Ui mym, » (43)

where 7, £, o are coordinates on the world volume of the
M?2-brane.

A. BPS M2-branes dual to Wilson loops revisited

In this class of solutions, the world volume of the M2-
brane has the topology AdS, x S' with AdS, € AdS, and
S' € M;. From now on, by M, we mean either Q"'' /Z, or
Q''!'1/Z}. This class includes M2-branes dual to BPS
Wilson loops in gauge theories as a special case, and this
case was studied in [18]. In that paper, the authors started
with general discussions on BPS Wilson loops in the
fundamental representation in N =2 Chern-Simons-
matter theories and the dual M2-brane solutions. They
also included M2-branes in AdS, x Q"' /Z, as one of the
explicit examples. They used a different coordinate system
for the AdS, part, and for the Q"' /Z, part they used some
results in differential geometry which appeared in their
general discussions. We will use the explicit results of
Killing spinors obtained in the previous section.

The ansatz of these solutions is

t=t, p=¢ y=w(o), ¢i=¢i(o), i=12.3, (44)
with u, ¢, 0; (i = 1,2,3) being constants. Here 7, &, o are
three coordinates on the world volume of the M2-brane. We
consider the case that o € [0,2x] is a compact direction
(i.e., we always identify ¢ + 2z with o).

The periodic conditions for the fields v, ¢; are

w(o+ 2n) = y(o) + 2an,,. (45)
b1(c+21) = (o) +2’;”‘, (46)
¢r(0+2rm) = ¢y(0) + Zﬂ—knl + 27n,, (47)
b3(0 + 211) = s (o) + 273, (48)

with n; € Z, i = 1,2,3, when M; = Q"' /Z,.
For the case that M; = Q"!"!/Z], the corresponding
conditions are
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w(o +2n) = y(o) + 27n,, (49)
2nn
¢1(oc+2x) = ¢i(0) + 3 L (50)
$2(0 +27) = ¢y (o) + 27n,, (51)
d3(0 +2n) = ¢3(0) + 27ns, (52)
withn, €Z,i=1,2,3.
Now the M2-brane action is
TMZR3 3 2
Siun = 4 d’o cosh” u cosh p
13 1 3 )12
102 2 / /
X [glzl:sm 0,9’ +E <1// + ;:cosﬁiqbi) } ,
(53)

where / means d/0o. The equation of motion for u gives
u=0, (54)

while the equation of motion from variation of 6, gives
3
sin 0;¢); <1//’ + Z cos 0;¢; — 2 cos 91'(15?) =0. (55)
=1

The equations of motion for v, ¢p; can be solved by

Y= ml//07 ¢i = m;o. (56)
We also checked that the above three equations are
equivalent to the results from the M2-brane equations of
motion given in Eq. (41).

To compute the on-shell action of the M2-brane whose
boundary at infinity is an S!, we switch to the Euclidean
AdS, with the metric:

ds3 = — (cosh? u(dp + sinh? pdy?) + du? + sinh? ud¢?).

(57)

Bl

The on-shell action of the M2-brane [Eq. (53)] now
becomes

T\nR?
SM2 = M42 /dQEAdS2d6
1 3 1 3 21172
X [§Zsin29,-m%+l—6 (m,,,—l—ZcosQ,m,-) } \
i=1 i=1
(58)
with
/dQEAdSZ :/dpdl// Sinhp. (59)
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Using the fact that ¢ € [0,27], Ty, = 1/(4°1}), and Eq. (6), we get

kN 1 3 2
Syn = 2\/ < Zsmze m? +— T <mv, + ;cos 6’,~m,-) ) /dQEAdSZ- (60)

After adding boundary terms as in Ref. [46], we get

kN 5 1 : 2
Sy = —4n 3 Zsm 0;m? +16 mw+20059imi . (61)

i=1

We now search for the BPS M2-brane in AdS, x Q'"!
among these solutions. I'};, now becomes

1 3 2 1 3 -1/2
Tyo = (E <z;/’ + Zcos Hi(f);-) + §Z Sinzeiqb;z)
1
XF01< (l[/ +ZCOSQ¢>Fn

1
+—5sin6, ¢ T's +—=sin 0,51

RS
\/ V2

1
—5 cosyr sin 033"y + ——siny sin 93¢’3F2> .

¢2 V2

(62)

We need the solutions of 'y, =5 to also satisfy the
projection conditions Eq. (34). This leads to, for each i,

sin@; =0, (63)
or
¥ =0. (64)

Now we get

3
Iy, = sgn (m,,, + Z cos Gim,-) Copg- (65)
i=1 B
The BPS condition leads to

3
Lo 417 = sgn <mv, + Z cos 9,~m,»> 7. (66)
N i=1

By using the fact that we have u = 0 on the world volume
of this M2-brane solution, it is not hard to see that the above
condition is equivalent to the condition

i=1

Fggﬂo = £no, (67)
on the M2-brane world volume. This condition is
compatible with the projection conditions Eq. (34), and
this BPS M2-brane is half-BPS with respect to the
background.

The M2-brane in AdS, x Q"' /Z, dual to the half-BPS
Wilson loop is a special solution of this class [18]. It is
given by

my =0, (0).6,) = (0.0),(0.7), (z.0), (z. 7). (68)

The result for the on-shell action is

N
= —2 e
SM2 T 3k7 (69)
when (0,,60,) = (0,0), (x,x), while in the case that
(61.6,) = (0, 7). (x,0)

The first two solutions give leading contribution to the
vacuum expectation value of Wilson loops, which reads

(W) ~ exp (2;;\/%), (71)

in the leading order of large N expansion. As mentioned in
[18], this is consistent with the result from the matrix model
computations in Ref. [34].

Similarly, among the half-BPS M2-branes in
AdS, x QV'11/Z! | the one with

61 :O,ﬂ' (72)

1
_%, m2:m3=0,

126003-5



JUN-BAO WU AND MENG-QI ZHU
is dual to half-BPS Wilson loops. For the on-shell action

N
Sy = =7 [ —, 73
M2 T 3k ( )
we get
N
~ — . 74
(W) exp(n 3k) (74)

B. The second class of solutions

Now we consider the ansatz
¢ = o, (75)
¢i = ¢i(0), (76)

with u,0; being constant. We also demand that u is
nonzero. The M2-brane action is now

w =w(o),

T\ R?
Sy = Mé /d3o- cosh p
x [cosh? uy/sinh? u + ¢ — cosh®u + 1], (77)

with the definition of ¢

2

1 . 1 3
c=3 Z sin?0?¢? + 1 <1//’ + Z cos 9,»4);) (78)
i=1 i=1
The equation of motion for u gives
cosh? u sinh u

2 cosh u sinh uy/sinh?y + ¢ + ——
Vsinh?2 u + ¢

— 3 sinh ucosh? u = 0. (79)
For nonzero u, it has two solutions:
c=1 (80)
and
3
c:—Zcosh2u+l. (81)

From now on we will consider only the first solution, which
leads to

3 3 2
2 "sin20,¢? + (q/ +) cos 9,»¢;.> —4. (82
i=1 i=1

Similar to the solutions in the previous subsection, the
equation of motion for 6; gives
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3
sin 0;¢)} <1//’ + Z cos 0;¢; — 2 cos Gigb;) =0. (83)

=1
And the equations of motion for y, ¢; can be solved by
¢i = m;o. (84)

Yy = myo,

The above equations are equivalent to the results from the
M?2-brane equations of motion given in Eq. (41).

Now we turn to discuss the BPS condition for the
M?2-branes in AdS, x Q"'!. Now I'j;, becomes

1
r p—
M2 cosh? uyV/sinh? u + ¢

. 1 3
X cosh pl“g (smh ul"i + 3 <l/// + Z ¢;>Fg
i=1

1 1
+ — Sin 91¢/1F§ + — Sin 92¢/2Fz

V2 V2
1 1

— ——cosy sin 03¢y + —=siny sin @ ’F).
\/5 "4 3¢5 8 \/5 4 3P 9

(85)
To have BPS branes, we also need for each i to have
sin@; =0 (86)
or
¢, = 0. (87)

The fact that ¢ = 1 now leads to

3
v+ Z cos O, = £2. (88)
i1

Using these results, we can get

sinh u 1
I =T, I+ Iy . 89
Mz o (cosh u 27 cosh u Q) (89)

From Eq. (33), we can get that

Lyvon=n (90)

is equivalent to
Fgg’?o = £1. (o1)

So when for each i = 1,2, 3 we have either sin9; = 0 or
¢; being constant on the world volume, the M2-branes in
this class are half-BPS. This is similar to the situation in
the previous subsection. After some calculations using the
metric in Eq. (57), we can get that the on-shell action of the
M?2-brane is
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[kN
SM2 =2 ?, (92)

with the boundary term included.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we found some BPS M2-branes in M
theory on AdS, x Q"' and its certain orbifolds. We
reproduced the M2-branes dual to BPS Wilson loops in
the fundamental representation in the field theory side. We
also studied a second class of the BPS M2-branes which
should include the M2-branes dual to vortex loops in the
field theory side. We also find the explicit solution to the
Killing spinor equations in this background.

There are several further directions that are interesting
for us. For the holographic dual to BPS Wilson loops in the
(anti)fundamental representation, one should search for
suitable D2 (D6)-brane solutions in the IIA string back-
ground obtained from the S' reduction of the above
M-theory background. On the other hand, one can try to
find a suitable M2-branes (Kaluza-Klein monopoles) sol-
ution in the M-theory background directly. To correctly
identify the dual brane solutions, we also need a more

PHYSICAL REVIEW D 89, 126003 (2014)

precise understanding of the loop operators in the field
theory side. We would also like to try to generalize our
studies here to other Sasaki-Einstein 7-manifolds. We
hope to report our progress in these directions in the
near future.
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