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We consider the Schrödinger equation for a relativistic point particle in an external one-dimensional
δ-function potential. Using dimensional regularization, we investigate both bound and scattering states, and
we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the
pseudodifferential operator H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. Interestingly, this relatively simple system is asymptotically

free. In the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal
fixed point. Thus it can be used to illustrate nontrivial concepts of quantum field theory in the simpler
framework of relativistic quantum mechanics.

DOI: 10.1103/PhysRevD.89.125023 PACS numbers: 03.65.Pm, 03.65.Nk, 11.10.Gh, 11.80.-m

I. INTRODUCTION

The unification of quantum physics and special relativity
is achieved in the framework of relativistic quantum field
theories. In particular, in the standard model of particle
physics elementary particles are very successfully
described as quantized wave excitations of the correspond-
ing quantum fields. As such, they have qualitatively
different properties than the point particles of Newtonian
mechanics or quantum mechanics. In particular, while the
position of a quantum mechanical point particle is in
general uncertain, quantized waves do not even have a
conceptually well-defined position in space. Unlike in
quantum mechanics, in local quantum field theory a
“particle” is a nonlocal object [1–5]. It is well known that
a unification of point particle mechanics and special
relativity is problematic, even at the classical level. In
particular, Currie, Jordan, and Sudarshan proved that two
point particles cannot interact in such a way that the
principles of special relativity are respected, i.e. that the
system provides a representation of the Poincaré algebra
[6]. Leutwyler has generalized this result to an arbitrary
number of particles [7]. His noninteraction theorem states
that classical relativistic point particles are necessarily free,
as a consequence of Poincaré invariance. The only excep-
tion are two particles in one spatial dimension confined to
each other by a linearly rising potential. In one dimension,
the corresponding confining string has no other degrees of
freedom than the positions of its end points, which are
represented by the two point particles. While strings can

interact relativistically in higher dimensions, according to
Leutwyler’s noninteraction theorem, point particles cannot.
Hence, it is not surprising that particle physics is based on
quantum field theory rather than on relativistic point-
particle quantum mechanics. It should also be noted that,
by including the interaction in the momentum and not in the
boost operator, interesting relativistic systems with a fixed
number of interacting particles have been constructed and
investigated in detail [8–10]. However, in this case, the
coordinates and momenta of the particles do not obey
canonical commutation relations, and thus do not describe
ordinary point particles.
When studying fundamental physics, it is a big step to

proceed from nonrelativistic quantum mechanics to rela-
tivistic quantum field theory. Not only for pedagogical
reasons, it is interesting to ask whether nontrivial systems
of relativistic quantum mechanics exist. Even free quan-
tum-mechanical relativistic point particles have some
interesting properties [11–14]. Minimal position-velocity
wave packets of such particles spread in such a way that
probability leaks out of the light cone. While such a
quantum mechanical violation of causality does not happen
in relativistic quantum field theories, it would arise in a
hypothetical world of relativistic point particles [15–24].
While in quantum field theory a local Hamiltonian gives
rise to nonlocal field excitations that manifest themselves as
“particles,” in relativistic quantum mechanics local point
particles of mass m follow the dynamics of the nonlocal
Hamiltonian H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. According to Leutwyler’s

noninteraction theorem, one cannot add a potential to this
Hamiltonian without violating the principles of relativity
theory, already at the classical level. This is not surprising,
because a potential would describe instantaneous
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interactions at a distance, mediated with infinite speed. The
only exception are singular contact interactions, which are
not excluded by the classical noninteraction theorem.
Hence, there might be a quantum loophole in the theorem,
which would be worth exploring, at least for pedagogical
reasons, trying to bridge the large gap between nonrela-
tivistic quantum mechanics and relativistic quantum field
theory in studying fundamental physics.
In nonrelativistic quantum mechanics, contact inter-

actions have been studied in great detail [25–34], which
has been used to illustrate some nontrivial concepts of
quantum field theories in the simpler context of non-
relativistic quantum mechanics. In this paper we endow
the Hamiltonian H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
for a single free relativ-

istic point particle in one spatial dimension with a contact
interaction potential λδðxÞ. We can imagine that such a
potential is generated by a second particle of infinite mass.
Once this case is fully understood, as a next step one can
then consider two relativistic particles of finite mass, and
ask whether a contact interaction leads to a nontrivial
representation of the Poincaré group, thus providing a
quantum mechanical loophole in the classical non-
interaction theorem. In this paper, we do not yet address
that question and limit ourselves to a single particle
in the external one-dimensional δ-function potential.
Remarkably, already this relatively simple problem pro-
vides interesting insights into some qualitative differences
between relativistic and nonrelativistic quantum mechan-
ics. While the simple δ-function potential provides a
standard textbook problem, a nonrelativistic particle mov-
ing in one spatial dimension allows more general contact
interactions. It can actually distinguish a four-parameter
family of such interactions. This follows from the theory of
self-adjoint extensions [35,36] of the local free-particle

kinetic energy Hamiltonian H ¼ p2

2m [29,37–41]. There is a
four-parameter family of self-adjoint extensions character-
ized by the boundary condition for the wave function at the
contact point,�

ΨðεÞ
∂xΨðεÞ

�
¼ expðiθÞ

�
a b
c d

��
Ψð−εÞ
∂xΨð−εÞ

�
: ð1:1Þ

Here ε → 0, a; b; c; d ∈ R with ad − bc ¼ 1, and
θ ∈� − π

2
; π
2
�. The five parameters a; b; c; d; θ with the

constraint ad − bc ¼ 1 provide a four-parameter family
of self-adjoint extensions of the nonrelativistic free-particle
Hamiltonian, and thus a four-parameter family of quantum-
mechanical contact interactions. The standard contact
interaction potential λδðxÞ just corresponds to a¼ d¼ 1,
b ¼ 0, c ¼ 2mλ, and θ ¼ 0. The most general contact
interaction does not respect parity symmetry, which
requires a ¼ d and θ ¼ 0. Still, in the nonrelativistic case,
this leaves a two-parameter family of parity-invariant
contact interactions. A free particle with a generalized
energy-momentum dispersion relation H ¼ P

N
n¼0 cnp

n

even allows an N2-parameter family of self-adjoint exten-
sions. For very high momenta p, the energy of such a
particle increases as pN , which for N > 2 allows the
resolution of further details of a contact point than for
the standard nonrelativistic dispersion relation with N ¼ 2.
If one thinks of the relativistic energy-momentum
dispersion relation H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
as a power-series

expansion in p2 with N → ∞, in the relativistic case one
might perhaps expect an infinite number of self-adjoint
extension parameters, and thus an infinite variety of contact
interactions, e.g. represented by the δ-function potential
and all its derivatives. However, the opposite is true. At
large momentum p, the relativistic energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
only

increases as jpj, which provides less short-distance reso-
lution than the nonrelativistic p2. Indeed, there is just a one-
parameter family of self-adjoint extensions of the relativ-
istic free-particle Hamiltonian H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, which can

be characterized by the parameter λ in the contact inter-
action potential λδðxÞ. This follows from the self-adjoint
extension theory of so-called pseudodifferential operators,
which includes the nonlocal Hamiltonian H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
[42]. This theory also predicts that in higher dimensions,
relativistic point particles are completely unaffected by
contact interactions and thus remain free. This is again in
contrast to the nonrelativistic case, in which there is a one-
parameter family of contact interactions both in two and in
three spatial dimensions [29].
As a result of Leutwyler’s noninteraction theorem as well

as of the theory of self-adjoint extensions of the pseudo-
differential operator H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, relativistic quantum

mechanics is a rather narrow subject. In particular, for a
single particle one is limited to the simple δ function or to a
linear confining potential. In this context, it is important to
point out that the Klein-Gordon and Dirac equations do not
belong to relativistic quantum mechanics, but to quantum
field theory. In particular, it is well known that these
equations do not allow a consistent single-particle inter-
pretation, because they address the physics of both
particles and antiparticles. The relativistic point particle
Hamiltonian H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, on the other hand, is con-

cerned just with particles. The problem of the relativistic
δ-function potential has already been investigated in the
mathematical literature as an application of the theory of
self-adjoint extensions of pseudodifferential operators [42].
Here we address the problem using more traditional tools of
theoretical physics. Unlike in the nonrelativistic case, the
relativistic δ-function potential gives rise to ultraviolet
divergences which we regularize and renormalize using
dimensional regularization [43–46]. It is reassuring that the
results that we obtain are indeed consistent with those
obtained by the self-adjoint extension theory of Ref. [42].
Here we study the system in great detail, and address
various interesting physics questions, including strong
bound states with a binding energy that exceeds the rest
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mass of the bound particle. Remarkably, this relatively
simple quantummechanical model shares several nontrivial
features with relativistic quantum field theories. In particu-
lar, just like QCD [47], it is asymptotically free [48,49].
In two spatial dimensions, a nonrelativistic δ-function

potential must also be renormalized [25–34]. While this
system is classically scale invariant, at the quantum level it
dynamically generates a bound state via dimensional
transmutation, and it has scattering states which display
asymptotic freedom. Hence, it can be used to illustrate
these nontrivial features, which are usually encountered in
quantum field theory, in the framework of nonrelativistic
quantum mechanics. However, this theory cannot be
obtained as the nonrelativistic limit of a relativistic
theory. In this paper, we show that asymptotic freedom
and dimensional transmutation already arise in one-
dimensional relativistic point particle quantum mechanics
with a δ-function potential. Furthermore, in the massless
limit the system is scale invariant, at least at the classical
level. However, just like in QCD, scale invariance is
anomalously broken at the quantum level. The system
then undergoes dimensional transmutation and generates a
mass scale nonperturbatively. Unlike QCD, in the massless
limit the relativistic quantum mechanical model even has a
free infrared conformal fixed point. Although actual
elementary particles are quantized waves rather than
point-like objects, addressing these topics in relativistic
point particle quantum mechanics makes them more easily
accessible than just studying them in the standard context
of relativistic quantum field theories.
The rest of this paper is organized as follows. In Sec. II, we

consider the bound state problem and use the bound-state
energy to define a renormalization condition. In Sec. III, we
derive the relativistic probability current density and show
explicitly that it is conserved. In Sec. IV, we address the
scattering states and we show that the energy-dependent
running coupling constant is finite after renormalization.
Reflection and transmission amplitudes, as well as the
scattering phase shift, the scattering length, and the effective
range are derived in Sec. V. In Sec. VI, we investigate the
energy dependence of the running coupling constant and its
β function, and we show that the theory is asymptotically
free. In Sec. VII, we study ultra-strong bound states and the
corresponding scattering states. Section VIII analyzes the
massless limit, in which the system undergoes dimensional
transmutation, and develops an infrared conformal fixed
point. Finally, Sec. IX contains our conclusions.

II. DIMENSIONAL REGULARIZATION AND
RENORMALIZATION OF A BOUND STATE

Let us consider the relativistic time-independent
Schrödinger equation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
ΨðxÞ þ λδðxÞΨðxÞ ¼ EΨðxÞ: ð2:1Þ

In momentum space

ΨðxÞ ¼ 1

2π

Z
dp ~ΨðpÞ expðipxÞ;

Ψð0Þ ¼ 1

2π

Z
dp ~ΨðpÞ;

ð2:2Þ

and the Schrödinger equation takes the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
~ΨðpÞ þ λ

2π

Z
dp0 ~Ψðp0Þ ¼ E ~ΨðpÞ; ð2:3Þ

such that for a bound state

~ΨBðpÞ ¼
λΨBð0Þ

EB −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p : ð2:4Þ

Integrating this equation over all momenta, we obtain the
gap equation

ΨBð0Þ ¼
1

2π

Z
dp ~ΨBðpÞ

¼ λΨBð0Þ
1

2π

Z
dp

1

EB −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ⇒

1

λ
¼ 1

2π

Z
dp

1

EB −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ; ð2:5Þ

which determines the bound state energy EB. The resulting
integral is logarithmically ultraviolet divergent and must
hence be regularized. We do this by using dimensional
regularization, i.e. by analytically continuing the spatial
dimension toD ¼ 1þ ε ∈ C and by finally taking the limit
ε → 0. While the coupling constant λ is dimensionless in
one dimension, in D dimensions the prefactor of the δ
function has dimension ðmassÞ1−D. In order to renormalize
the bare coupling, we let it depend on the cutoff, and we
replace λ by λðεÞm−ε. In order to keep λðεÞ dimensionless,
we have factored out the dimensionful term m−ϵ ¼ m1−D,
using the particle mass m as the renormalization scale. The
regularized gap equation then takes the form

mD−1

λðεÞ ¼ 1

ð2πÞD
Z

dDp
1

EB −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ¼ IðEBÞ: ð2:6Þ

For a bound state EB < m, and we expand the integrand in
powers of EB=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, such that

IðEBÞ ¼ −
πD=2D

ΓðD=2þ 1Þ

×
Z

∞

0

dp
pD−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p X∞
n¼0

�
EBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p �

n
: ð2:7Þ

While all higher-order terms are finite, the leading term
(with n ¼ 0) is logarithmically ultraviolet divergent. All
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terms can be integrated separately, and then be resummed,
which in the limit ε → 0 yields

IðEBÞ ¼ mε

�
1

πε
þ γ − logð4πÞ

2π

−
EB

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

B

p �
π þ 2 arcsin

EB

m

��
: ð2:8Þ

Here γ ≈ 0.5772 is Euler’s constant. For an ultra-strong
bound state with energy EB < −m the series from above
diverges. Still, the result can be obtained by directly
integrating the convergent expression

1

2π

Z
dp

�
1

EB −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p �

¼ EB

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
B −m2

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
B −m2

p
EB

: ð2:9Þ

As a renormalization condition, we now hold the binding
energy EB fixed in units of the mass m, such that the
running bare coupling is given by

1

λðεÞ¼
1

πε
þ γ− logð4πÞ

2π
−

EB

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−E2

B

p �
πþ2arcsin

EB

m

�

¼ 1

πε
þ γ− logð4πÞ

2π
þ 1

λðEBÞ
; ð2:10Þ

where λðEBÞ is a renormalized coupling defined at the scale
EB. Eliminating the terms 1=πεþ ½γ − logð4πÞ�=2π in the
definition of the renormalized coupling corresponds to the
modified minimal subtraction scheme that is commonly
used in quantum field theory. Let us consider the
nonrelativistic limit, in which the binding energy ΔEB ¼
EB −m is small compared to the rest mass. In that case, the
renormalized coupling is given by

1

λðEBÞ
¼ −

EB

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

B

p �
π þ 2 arcsin

EB

m

�

→ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
−2ΔEB

r
: ð2:11Þ

Interestingly, for the nonrelativistic contact interaction
λδðxÞ, which does not require renormalization, for
λ < 0 the bound state energy is given by ΔEB ¼
−mλ2=2 such that 1=λ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m=2ΔEB

p
. Hence, in the

nonrelativistic limit the renormalized coupling reduces
to λðEB → mÞ ¼ λ.
Let us now determine the bound state wave function in

coordinate space

ΨBðxÞ ¼
A
2π

Z
dp

expðipxÞ
EB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p : ð2:12Þ

The integration can be extended to the closed contour Γ
illustrated in Fig. 1. For 0 < EB < m, the integrand has a
pole at p ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

B

p
, which is enclosed by Γ, as well as

a branch cut along the positive imaginary axis starting at
p ¼ im. The wave function then takes the form

ΨBðxÞ ¼ A

�
1

π

Z
∞

m
dμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
E2
B −m2 þ μ2

expð−μjxjÞ

þ EB expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

B

p
jxjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − E2
B

p �
: ð2:13Þ

The integral results from the two contributions along the
branch cut, while the last term is the residue of the pole at
p ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

B

p
. As illustrated in Fig. 2, the wave function

is logarithmically divergent at the origin. This short-
distance divergence is unaffected by the renormalization.
In particular, the singularity of the wave function is
integrable and it is thus normalizable in the usual sense.

A B

C

DE

F

ε

08 8-

im

o

R

i(m2-EB
2)

1/2

o

08 8-
o

o

A B

R

i(-2m∆EB)
1/2

FIG. 1 (color online). Integration contours for the determination
of the wave function of the bound state. In the relativistic case
(top panel), there is a branch cut along the positive imaginary
axis, starting at p ¼ im. In addition, for 0 < EB < m, there is a
pole at p ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

B

p
. In the nonrelativistic case (bottom

panel), there is still a pole, but no branch cut.
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Alternatively, the bound state wave function can be
expressed in terms of Bessel functions

ΨBðxÞ ¼
Affiffiffi
π

p
X∞
n¼0

�
EB

m

�
n
�
mjxj
2

�
n=2 Kn=2ðmjxjÞ

Γðnþ1
2
Þ : ð2:14Þ

The normalization constant is most easily determined in
momentum space

jAj2
2π

Z
dp

1

ðEB−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
Þ2
¼ 1⇒

2π

jAj2¼
2EB

m2−E2
B
þ m2

ðm2−E2
BÞ3=2

�
πþ2arcsin

EB

m

�
: ð2:15Þ

For the nonrelativistic δ-function potential, the wave
function is finite at the origin and given by

ΨBðxÞ ¼
ffiffiffi
ϰ

p
expð−ϰjxjÞ; ΔEB ¼ −

ϰ2

2m
: ð2:16Þ

In the nonrelativistic limit, the relativistic wave function of
Eq. (2.13) reduces to

ΨBðxÞ ¼
ffiffiffi
ϰ

p �
ϰ

mπ

Z
∞

m
dμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
μ2 − ϰ2

expð−μjxjÞ

þ expð−ϰjxjÞ
�
: ð2:17Þ

Since ϰ=m → 0 in the nonrelativistic limit, it indeed reduces
to the nonrelativistic wave function of Eq. (2.16). However,
the divergence of the relativistic wave function persists for
any nonzero value of ϰ=m. As we discussed in the
Introduction, a nonrelativistic contact interaction is charac-
terized by a four-parameter family of self-adjoint extensions,
while in the relativistic case there is only a one-parameter
family (parametrized by λ). The other nonrelativistic contact
interactions cannot be obtained by taking the nonrelativistic
limit of a relativistic theory.
Finally, let us also consider the strong bound states, for

which the bound state energy EB < 0, i.e. the binding
energy ΔEB ¼ EB −m even exceeds the rest mass. In that
case, the “pole” at p ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

B

p
has a vanishing residue

and hence does not contribute to the result. The wave
function of a strong bound state then takes the form

ΨBðxÞ ¼
A
π

Z
∞

m
dμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
E2
B −m2 þ μ2

expð−μjxjÞ; EB < 0:

ð2:18Þ
The wave functions for a bound state with EB ¼ m=2 and
for a strong bound state with energy EB ¼ −m=2 are
illustrated in Fig. 2. One would think that a relativistic
system should not have negative total energy. In fact, the
total energy should at least be as large as the positive rest
mass of the system. In our case, translation invariance is
explicitly broken by the contact potential, which means that
the previous argument is not applicable here. One may
think of the contact interaction as being generated by an
infinitely heavy second particle located at x ¼ 0. When the
infinite mass of this particle is included in the total energy,
it is indeed positive.

III. THE RELATIVISTIC
PROBABILITY CURRENT

In the nonrelativistic Schrödinger equation, probability is
conserved because of the continuity equation

∂tρðx; tÞ þ ∂xjðx; tÞ ¼ 0; ð3:1Þ
which relates the probability density ρðx; tÞ ¼ jΨðx; tÞj2
to the probability current density jðx; tÞ ¼
1

2mi ½Ψðx; tÞ�∂xΨðx; tÞ − ∂xΨðx; tÞ�Ψðx; tÞ�. While in the
Dirac and Klein-Gordon equations, probability conserva-
tion is violated due to the presence of antiparticles, in the
relativistic Schrödinger equation discussed here, there are
no antiparticles and the continuity equation (3.1) still holds
with the usual probability density ρðx; tÞ ¼ jΨðx; tÞj2,

-5 -4 -3 -2 -1 0 1 2 3 4 5
x m

-5 -4 -3 -2 -1 0 1 2 3 4 5
x m

Ψ
Β

(x
)

E
B
=m /2

Ψ
Β

(x
)

E
B
= -m /2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

FIG. 2 (color online). Bound state wave function in coordinate
space for an ordinary bound state with Eb ¼ m=2 (top panel), and
for a strong bound state with Eb ¼ −m=2 (bottom panel).
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however, with the modified relativistic probability current
density, whose leading terms are

jðx; tÞ ¼ 1

2mi
½Ψðx; tÞ�∂xΨðx; tÞ− ∂xΨðx; tÞ�Ψðx; tÞ�

þ 1

8m3i
½Ψðx; tÞ�∂3

xΨðx; tÞ− ∂xΨðx; tÞ�∂2
xΨðx; tÞ

þ ∂2
xΨðx; tÞ�∂xΨðx; tÞ− ∂3

xΨðx; tÞ�Ψðx; tÞ�þ � � � :
ð3:2Þ

In momentum space the divergence ∂xjðx; tÞ takes the
compact form

p~jðp; tÞ ¼ 1

2π

Z
dq ~Ψð−q; tÞ�

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þm2

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q i
~Ψðp − q; tÞ: ð3:3Þ

This expression trivially generalizes to an arbitrary energy-
momentum dispersion relation EðpÞ and yields

~jðp; tÞ ¼ 1

2π

Z
dq ~Ψð−q; tÞ� 1

p
½Eðp − qÞ

− EðqÞ� ~Ψðp − q; tÞ: ð3:4Þ
For a general dispersion relation, the bound state wave
function in momentum space takes the form

~ΨBðpÞ ¼
A

EB − EðpÞ : ð3:5Þ

The divergence of the probability density then automati-
cally vanishes because

p~jðpÞ ¼ jAj2
2π

Z
dq

1

EB − EðqÞ
× ½Eðp − qÞ − EðqÞ� 1

EB − Eðp − qÞ

¼ jAj2
2π

Z
dq

�
1

EB − Eðp − qÞ −
1

EB − EðqÞ
�

¼ 0: ð3:6Þ

IV. DIMENSIONAL REGULARIZATION AND
RENORMALIZATION OF SCATTERING STATES

Let us now consider the scattering states. First of all, the
states of odd parity, which vanish at the origin, are
unaffected by the δ-function potential. Hence, we limit
ourselves to stationary scattering states of even parity,
which we parametrize as

~ΨEðpÞ ¼ δðp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
Þ þ δðpþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
Þ

þ ~ΦEðpÞ: ð4:1Þ

Later we will combine scattering states of even and odd
parity in order to extract the reflection and transmission
amplitudes. Inserting the ansatz from above in Eq. (2.3), we
obtain

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
− E

�
~ΦEðpÞ þ

λ

π
þ λ

2π

Z
dp0 ~ΦEðp0Þ ¼ 0 ⇒

~ΦEðpÞ ¼
λ

π

1þ πΦEð0Þ
E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p : ð4:2Þ

Integrating Eq. (4.2) over all momenta, one finds

ΦEð0Þ ¼
1

2π

Z
dp ~ΦEðpÞ

¼ λ

π
½1þ πΦEð0Þ�

1

2π

Z
dp

1

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p : ð4:3Þ

Again, by replacing λ with λðεÞm−ε, and by using dimen-
sional regularization, we then obtain

ΦEð0Þ ¼
1

π

λðεÞm−εIðEÞ
1 − λðεÞm−εIðEÞ : ð4:4Þ

For positive energy E the integral takes the form

IðEÞ ¼ mε

�
1

πε
þ γ − logð4πÞ

2π

þ E

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p

E

�
: ð4:5Þ

Using Eq. (2.6), the function ~ΦEðpÞ then results as

~ΦEðpÞ ¼
λðE;EBÞ

π

1

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ; ð4:6Þ

with the energy-dependent running coupling constant
(again renormalized at the scale EB) given by

λðE;EBÞ ¼
1

IðEBÞ − IðEÞ

¼ −
�

E

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p

E

þ EB

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

B

p �
π þ 2 arcsin

EB

m

��
−1
:

ð4:7Þ

Remarkably, using Eqs. (2.8) and (4.5), the ultraviolet
divergences of IðEÞ and IðEBÞ cancel, such that the running
coupling constant is finite when we take the limit ε → 0.
In order to investigate whether the resulting system is

self-adjoint, let us now check the orthogonality of the
various states. First, we calculate the scalar product of the
bound state and the scattering states
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hΨBjΨEi ¼
1

2π

Z
dp

1

EB −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ½δðp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
Þ þ δðpþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
Þ þ ~ΦEðpÞ�

¼ 1

πðEB − EÞ þ
1

πðIðEBÞ − IðEÞÞ
1

2π

Z
dp

1

EB −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p 1

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p : ð4:8Þ

The integral results in

1

2π

Z
dp

1

EB −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p 1

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ¼ 1

E − EB

1

2π

Z
dp

�
1

EB −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p −
1

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p �

¼ IðEBÞ − IðEÞ
E − EB

; ð4:9Þ

such that indeed hΨBjΨEi ¼ 0. This is also the case for a strong bound state with EB < 0, and even for an ultra-strong
bound state with EB < −m. Next we investigate the orthogonality of the scattering states

hΨE0 jΨEi ¼
1

π
δð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 −m2

p
Þ þ λðE;EBÞ

π2ðE − E0Þ þ
λðE0; EBÞ
π2ðE0 − EÞ

þ λðE;EBÞλðE0; EBÞ
π2

1

2π

Z
dp

1

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p 1

E0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
¼ 1

π
δðk − k0Þ þ 1

π2ðE − E0Þ
�

1

IðEBÞ − IðEÞ −
1

IðEBÞ − IðE0Þ
�

þ 1

π2
1

IðEBÞ − IðEÞ
1

IðEBÞ − IðE0Þ
IðE0Þ − IðEÞ

E − E0

¼ 1

π
δðk − k0Þ: ð4:10Þ

Here we have introduced k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
and

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 −m2

p
. The orthogonality of the various states

shows explicitly that, after regularization and renormaliza-
tion, the resulting Hamiltonian is indeed self-adjoint.

The contour for the determination of the scattering wave
function in coordinate space is illustrated in Fig. 3. In
addition to the branch cut, there are two poles on the real
axis at p ¼ �k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
, which give rise to ingoing

and outgoing plane waves. When these poles are avoided
by the contour, one obtains the contribution ~ΦEðxÞ to the
total scattering wave function. The even-parity stationary
scattering wave function in coordinate space

ΨEðxÞ ¼ AðkÞ
�
cosðkxÞ þ λðE;EBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

k
sinðkjxjÞ

−
λðE;EBÞ

π

Z
∞

m
dμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
μ2 þ k2

expð−μjxjÞ
�
;

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; ð4:11Þ

is illustrated in Fig. 4. Like the bound state wave function, it
is logarithmically divergent at the origin.
Let us again consider the nonrelativistic limit by con-

sidering small scattering energies, such that ΔE ¼ E−
m ≪ m, while also maintaining a small bound state energy
jΔEBj ¼ jEB −mj ≪ m. In this case, the running coupling
constant reduces to

A B

C

DE

F

ε

08 8-

im

o

o o

ε ε

R

p=-(E
2
-m

2
)
1/2

p=(E
2
-m

2
)
1/2

o

FIG. 3 (color online). Integration contour for the determination
of the wave function of the scattering states with E > m. There is a
branch cut along the positive imaginary axis, starting at p ¼ im. In
addition, there are two poles on the real axis at p ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
.
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λðE;EBÞ → −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2ΔEB

m

r
¼ λ; ð4:12Þ

where λ is indeed the energy-independent coupling con-
stant of the nonrelativistic theory. As for the bound state
wave function, the branch-cut contribution vanishes in the
nonrelativistic limit, such that one recovers the nonrelativ-
istic even-parity scattering wave function

ΨEðxÞ ¼ AðkÞ
�
cosðkxÞ þ λm

k
sinðkjxjÞ

�
: ð4:13Þ

Here k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mΔE

p
. It should be noted that the logarithmic

divergence at the origin still persists for all nonzero values
of ΔE ¼ k2=2m.

V. REFLECTION AND TRANSMISSION
AMPLITUDES

Let us now construct reflection and transmission ampli-
tudes by superimposing the nontrivial even-parity scatter-
ing states ΨEðxÞ with the trivial odd-parity scattering states
B sinðkxÞ. We will now adjust the amplitudes AðkÞ and B of
the even and odd scattering states such that the wave
function takes the form

ΨIðxÞ ¼ expðikxÞ þ RðkÞ expð−ikxÞ
þ CðkÞλðE;EBÞχEðxÞ; ð5:1Þ

in region I to the left of the contact point, i.e. for x < 0. In
region II, for x > 0, on the other hand, we demand

ΨIIðxÞ ¼ TðkÞ expðikxÞ þ CðkÞλðE;EBÞχEðxÞ: ð5:2Þ

Here

χEðxÞ ¼
1

π

Z
∞

m
dμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
μ2 þ E2 −m2

expð−μjxjÞ; ð5:3Þ

is the branch-cut contribution, which arises only in the
relativistic case. Away from the contact point x ¼ 0, this
contribution decays exponentially and thus has no effect on
the scattering wave function at asymptotic distances. After
a straightforward calculation one obtains

AðkÞ ¼ −CðkÞ ¼ k

kþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
λðE;EBÞ

; B ¼ i;

ð5:4Þ
which leads to the reflection and transmission amplitudes

RðkÞ ¼ −
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
λðE;EBÞ

kþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
λðE;EBÞ

;

TðkÞ ¼ k

kþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
λðE;EBÞ

; ð5:5Þ

which obey 1þ RðkÞ ¼ TðkÞ. Using Eq. (4.7), it is
straightforward to convince oneself that RðkÞ and TðkÞ
have a pole at k ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

B

p
, which corresponds to the

bound state with energy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
¼ EB. The S matrix is

given by

SðkÞ ¼ RðkÞ þ TðkÞ ¼ k − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
λðE; EBÞ

kþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
λðE;EBÞ

¼ expð2iδðkÞÞ; ð5:6Þ

which determines the scattering phase shift

tan δðkÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
λðE;EBÞ

k
; E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
:

ð5:7Þ

In Ref. [42], the problem has been investigated using the
self-adjoint extension theory of the pseudodifferential
operator

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, which led to the same expression

for the Smatrix. This shows that dimensional regularization
yields results that are consistent with the more abstract
mathematical approach. We go significantly beyond the
results of Ref. [42] by addressing numerous additional
physics questions.
In three dimensions, it is common to consider the low-

energy effective-range expansion, which corresponds to
k cot ~δðkÞ ¼ −1=a0 þ 1

2
r0k2, where a0 is the scattering

length and r0 is the effective range. The one-dimensional
scattering phase shift ~δðkÞ measures the phase of the
outgoing scattering wave relative to a sine wave that
vanishes at the origin. In our one-dimensional problem,
there is no scattering in the odd-parity sine-wave channel.
The nontrivial one-dimensional scattering phase δðkÞ

-4 -2 0 2 4
x m

Ψ
Ε(x

)

E=2m

E
B
=m/2

-0.5

0

0.5

1

1.5

FIG. 4 (color online). Even-parity stationary scattering wave
function in coordinate space for E ¼ 2m and EB ¼ m=2. Like the
wave function of the bound state, the scattering wave function
also diverges logarithmically at the origin.
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measures the phase of the outgoing scattering wave relative
to a cosine wave that has a maximum at the origin. Hence,
compared to the one-dimensional case, δðkÞ corresponds to
~δðkÞ þ π

2
, such that cot ~δðkÞ corresponds to − tan δðkÞ.

Hence, in our one-dimensional case, the effective-range
expansion takes the form

−k tan δðkÞ ¼ −
1

a
þ 1

2
r0k2 þ � � � : ð5:8Þ

This yields the scattering length a0 and the effective range
r0 as

a0¼
1

m

�
1

π
−

1

λðEBÞ
�
; r0¼−

1

a0m2
þ 2

3πa20m
3
: ð5:9Þ

Here λðEBÞ < 0 is the renormalized coupling constant
defined in Eq. (2.11). When there is a bound state, the
scattering length is positive, and it diverges when the bound
state approaches zero energy. In the absence of a bound
state, the scattering length would become negative. The
scale of r0 is set by the Compton wavelength 1=m, while its
particular value is also influenced by the scattering length
through the dimensionless combination am. The effective
range vanishes in the nonrelativistic limit am → ∞, as one
might naively expect for a contact interaction, but is
nonzero in the relativistic case. This is due to the non-
locality of the Hamiltonian

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, which senses the

contact interaction already from some distance r0. The
phase shift δðkÞ is illustrated in Fig. 5. It varies between
δð0Þ ¼ π

2
and δð∞Þ ¼ 0. This is consistent with the

one-dimensional version of Levinson’s theorem, which
identifies the number of bound states as n ¼ 2½δð0Þ −
δð∞Þ�=π [50,51].
In the nonrelativistic limit, λðE;EBÞ again reduces to the

energy-independent coupling λ of the nonrelativistic theory,
such that we indeed recover the nonrelativistic textbook
results

RðkÞ ¼ −
imλ

kþ imλ
; TðkÞ ¼ k

kþ imλ
;

SðkÞ ¼ k − imλ

kþ imλ
: ð5:10Þ

These quantities have a pole at k ¼ −imλ, which
determines the nonrelativistic bound state energy
ΔEB ¼ k2=2m ¼ −mλ2=2. The scattering phase shift
δðkÞ is then given by

tan δðkÞ ¼ −
mλ

k
; ð5:11Þ

which yields the scattering length a0 ¼ −1=ðmλÞ and the
effective range r0 ¼ 0.

VI. RUNNING COUPLING CONSTANT, β
FUNCTION, AND ASYMPTOTIC FREEDOM

Until now, we have introduced the coupling λðEBÞ of
Eq. (2.11), which is renormalized at the bound state energy,
as well as the energy-dependent running coupling λðE;EBÞ
of Eq. (4.7), which again uses EB as the renormalization
condition, and enters the reflection and transmission
amplitudes in the same way as the energy-independent
coupling λ in the nonrelativistic case. Let us now inves-
tigate the dependence of the running coupling λðE;EBÞ on
the scattering energy E, which is illustrated in Fig. 6.
At high energies, λðE;EBÞ vanishes logarithmically, thus

indicating that the scattered particle becomes free in the
infinite-energy limit. In particle physics, e.g. in QCD, this
behavior is known as asymptotic freedom. The exact
nonperturbative expression for the β function takes the
form

0 2 4 6 8 10
k/m

δ(
k)

E
B= -0.99 m

E
B=0

E
B=0.99 m

0

0.5

1

1.5

2

FIG. 5 (color online). Phase shift δðkÞ as a function of the wave
number k, for three different values ofEB=m ¼ 0.99, 0, and−0.99.
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log(E/ m)

λ(
E

,E
B

)

E
B
=0.99 m

-0.16

-0.12

-0.08

-0.04

0

FIG. 6 (color online). Running coupling λðE; EBÞ as a function
of the scattering energy E, for EB ¼ 0.99m.
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βðλðE;EBÞÞ ¼ E
∂jλðE;EBÞj

∂E
¼ −

λðE;EBÞ2
π

þ λðE;EBÞ2ϵ2
1 − ϵ2

×

�
1

λðEBÞ
−

1

λðE;EBÞ
−
1

π

�
: ð6:1Þ

Since λðE;EBÞ itself is negative, it is natural to use
jλðE;EBÞj to define the β function. In the above expression,
ϵ ¼ m=E ∼ 2 expð−π=jλðE; EBÞjÞ is nonperturbative and
exponentially suppressed for small λðE;EBÞ. This implies
that, to all orders in perturbation theory, the β function is
given by its one-loop expression −λðE;EBÞ2=π. The factor
1=π plays the role of the one-loop coefficient β0.
Nonperturbative corrections enter through ϵ, and become
noticeable only at low energies. For asymptotically large
energies, the β function behaves as

βðλðE;EBÞÞ→−
π

ðlogðE=mÞÞ2 →−
λðE;EBÞ2

π
< 0: ð6:2Þ

It vanishes at λðE; EBÞ → 0, which corresponds to an
ultraviolet fixed point. The negative sign of the β function

again signals asymptotic freedom. In Fig. 7, the β function
is illustrated for different values of EB=m, which influences
the behavior only far away from the ultraviolet fixed point
at λðE; EBÞ ¼ 0.
Another zero of the β function would require

ϵ2
�

1

λðEBÞ
−

1

λðE;EBÞ
�

¼ 1

π
⇒

E
m

¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p

E
;

ð6:3Þ

provided that ϵ ¼ m=E ≠ 1. However, the above condition
is satisfied only for E ¼ m, and hence, in this case, no other
fixed point exists. As we will see in Sec. VII, in the
massless case, m ¼ 0, there is an additional infrared
conformal fixed point.

VII. ULTRA-STRONG BOUND STATES AND
REPULSIVE SCATTERING STATES

Until now, we have used the expression of Eq. (2.8) for
IðEBÞ, and thus we have implicitly assumed that jEBj < m.
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E
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B
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FIG. 7 (color online). The β function βðλðE;EBÞÞ as a function of the running coupling jλðE;EBÞj for three values of EB=m ¼ 0.99, 0,
and −0.99. The end points of the curves correspond to the maximal value of jλðm;EBÞj, which is assumed in the low-energy limit
E → m. Note the different scales on the axes, which result from the very different ranges over which λðE;EBÞ is varying.
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This includes the case of strong bound states with
−m < EB < 0, but it excludes ultra-strong bound states
with energies EB < −m. We again point out that the strong
and ultra-strong bound states are not necessarily tachyonic,
because the δ-function potential can be attributed to a
hypothetical infinitely heavy particle. Hence, the total rest
energy of the system always remains positive. For EB <
−m one must use the expression of Eq. (2.9) for IðEBÞ, with
interesting consequences for the bound- and scattering-
state wave functions. First of all, it should be pointed out
that the various states are still mutually orthogonal, such
that the Hamiltonian remains self-adjoint, even in the
presence of an ultra-strong bound state. This is easy to
see, because the orthogonality relations (4.8) and (4.10) do
not depend on the explicit form of IðEBÞ.
Let us first consider the extreme limit EB → −∞. In this

case, the running coupling constant takes the form

λðE;EBÞ → −
�

E

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p

E

−
1

π
log

�
−2EB

m

��
−1
: ð7:1Þ

For small nonrelativistic energies ΔE ¼ E −m ≪ m, this
reduces to

λ →
π

logð−2EB=mÞ > 0: ð7:2Þ

Remarkably, this λ actually plays the role of the strength of
the repulsive contact interaction λδðxÞ in the nonrelativistic
theory. In other words, despite the fact that there is an
infinitely strongly bound state, the low-energy scattering
states approach those of the nonrelativistic repulsive
potential λδðxÞ, for which there is no bound state at all.
In fact, in the limit EB → −∞, the probability density of the
relativistic ultra-strong bound state degenerates to a δ
function. Because the scattering states still are logarithmi-
cally divergent at the origin, this is not in contradiction with
orthogonality in the nonrelativistic limit. Figure 8 compares
the even-parity scattering wave functions at low energy in
the relativistic and nonrelativistic cases, which indeed
coincide, except in the ultimate vicinity of the contact
point. This indeed makes sense, because the short-distance
behavior of the relativistic and the nonrelativistic theories
are fundamentally different. We conclude that the relativ-
istic contact interaction always produces a bound state.
Remarkably, when this bound state becomes ultra-strong
(with EB → −∞), it decouples from the scattering states,
which behave as if the contact interaction was repulsive.
Let us now discuss the case −∞ < EB < −m. In this

case, the running coupling constant is given by

λðE;EBÞ ¼ −
�

E

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p

E

−
EB

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
B −m2

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
B −m2

p
EB

�−1
: ð7:3Þ

At low energies m < E < −EB, the running coupling
λðE;EBÞ > 0 is repulsive, it diverges at E ¼ −EB, and
becomes attractive [i.e. λðE;EBÞ < 0] at high energies
E > −EB. The phase shift δðkÞ, illustrated in Fig. 9, goes
through a resonance at E ¼ −EB with δð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
B −m2

p
Þ ¼ π

2
.

Since we still have δð0Þ ¼ π
2
, this behavior is still

consistent with the one-dimensional version of
Levinson’s theorem.
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FIG. 8 (color online). Even-parity low-energy scattering wave
function (with energy E ¼ 1.01m) in the presence of an ultra-
strong bound state with EB ¼ −30m, compared to the corre-
sponding nonrelativistic wave function (with λ ¼ 1.0168). The
panel on the bottom zooms into the region around the contact
point x ¼ 0, in which the relativistic wave function is logarithmi-
cally divergent, while the nonrelativistic wave function remains
finite.
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VIII. THE MASSLESS CASE

Let us also consider the massless case m ¼ 0. Since λ is
dimensionless, the system is then scale invariant, at least at
the classical level. For m ¼ 0, we are automatically limited
to ultra-strong bound states (with EB < −m). The bound-
state energy EB is a scale generated nonperturbatively at the
quantum level, in a similar way as the proton mass is
generated in massless QCD. Scale invariance is then
anomalously broken and a scale, in this case EB, emerges
by dimensional transmutation. All physical quantities can
then be expressed in units of this scale.
First, let us consider the bound state wave function in

momentum space

~ΨBðpÞ ¼
ffiffiffiffiffiffiffiffiffi
π

−EB

r
1

EB − jpj : ð8:1Þ

In coordinate space, it takes the form

ΨBðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

−πEB

s Z
∞

0

dμ
μ

μ2 þ E2
B
expð−μjxjÞ; ð8:2Þ

which is illustrated in Fig. 10. As usual, the wave function
diverges logarithmically at x ¼ 0, but is still square
integrable. Next, we consider the even-parity scattering
state (with E ¼ k)

ΨEðxÞ ¼ AðkÞ
�
cosðkxÞ þ λðE;EBÞ sinðkjxjÞ

−
λðE;EBÞ

π

Z
∞

0

dμ
μ

μ2 þ k2
expð−μjxjÞ

�
: ð8:3Þ

Two scattering wave functions, one for m < E < −EB and
one for E > −EB, are shown in Fig. 11.
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FIG. 9 (color online). Phase shift δðkÞ as a function of the wave
number k for EB ¼ −2m. The phase shift goes through a
resonance at E ¼ −EB with δðkÞ ¼ δð
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FIG. 10 (color online). Bound state wave function in the
massless case.
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FIG. 11 (color online). Scattering wave functions in the
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1.5jEBj > −EB (bottom panel).
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The resulting reflection and transmission amplitudes as
well as the S matrix are then given by

RðkÞ ¼ −
iλðE;EBÞ

1þ iλðE;EBÞ
; TðkÞ ¼ 1

1þ iλðE; EBÞ
;

SðkÞ ¼ 1 − iλðE;EBÞ
1þ iλðE;EBÞ

: ð8:4Þ

In the massless case, one obtains

tan δðkÞ ¼ −λðE;EBÞ ¼
π

logð−E=EBÞ
¼ π

logðk=jEBjÞ
:

ð8:5Þ

The β function then reduces to

βðλÞ ¼ E
∂jλðE;EBÞj

∂E ¼ −
π

ðlogð−E=EBÞÞ2
¼ −

λðE;EBÞ2
π

;

ð8:6Þ

which is now valid even at low energies. The running
coupling and the β function are shown in Fig. 12.
Remarkably, the running coupling vanishes not only at
high, but also at low energies. In fact, the theory has both an
ultraviolet and an infrared fixed point. At the ultraviolet
fixed point, λðE;EBÞ approaches 0 from below, as E → ∞,
while at the infrared fixed point, λðE;EBÞ approaches 0
from above, as E → 0. Both fixed points are described by
the same zero of the β function of Eq. (8.6).
This situation resembles the one of an asymptotically

free non-Abelian gauge theory near the so-called conformal
window, which is relevant in the context of walking
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FIG. 12 (color online). Top panel: The running coupling
λðE;EBÞ as a function of the energy E in the massless case.
The coupling goes to zero both at high and at low energies.
Bottom panel: The β function βðλðE;EBÞÞ as a function of the
scattering energy E (in units of jEBj) in the massless limit.
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FIG. 13 (color online). Top panel: Even-parity scattering wave
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very close to the infrared conformal fixed point, as a function of
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E ¼ 2jEBj=10, further away from the conformal fixed point,
show a visible deviation from scale invariance.
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technicolor theories [52–57]. Another system of this kind -
is the two-dimensional Oð3Þ model at vacuum angle
θ ¼ π [58,59], whose low-energy effective theory is the
conformal k ¼ 1 Wess-Zumino-Novikov-Witten model
[60–62]. Such theories also have both an ultraviolet and
an infrared fixed point. While the theory is scale invariant at
very low energies, scale invariance is still explicitly
violated, via dimensional transmutation, at a nonperturba-
tively generated higher energy scale. Thanks to asymptotic
freedom, this scale is exponentially small compared to the
ultimate ultraviolet cutoff (which can thus be sent to
infinity). In our model, the energy EB < 0 of the bound
state sets the nonperturbatively generated energy
scale, which still affects the scattering states at high
energies E > −EB. Low-energy scattering states (with
0 < E ≪ −EB) are governed by the infrared fixed point
and can thus be mapped into each other by scale trans-
formations, as illustrated in Fig. 13.

IX. CONCLUSIONS

We have investigated contact interactions in one-
dimensional relativistic quantum mechanics. In contrast
to the nonrelativistic case, there is only a one-parameter
family of self-adjoint extensions of the pseudodifferential
operator H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, which is characterized by the

contact potential λδðxÞ. Remarkably, this simple potential
gives rise to rather rich physics. First of all, unlike in the
nonrelativistic case, the δ-function potential requires regu-
larization and subsequent renormalization, which we have
performed using dimensional regularization. Indeed, using
this physics approach, we obtained results that are con-
sistent with the more abstract mathematical theory of self-
adjoint extensions of pseudodifferential operators. That
theory also implies that there are no nontrivial relativistic
contact interactions in more than one spatial dimension.
This is again in contrast to the nonrelativistic case, in which
there is a one-parameter family of nontrivial contact
interactions both in two and three spatial dimensions. In
four and more spatial dimensions, on the other hand, there
are no nontrivial self-adjoint extensions of the nonrelativ-
istic free-particle Hamiltonian. It is interesting to inves-
tigate contact interactions in higher dimensions also using
dimensional regularization. This has already been done in
the nonrelativistic case. While dimensional regularization
provides results that are consistent with the self-adjoint
extension theory in two and three spatial dimensions, in
contrast to the theory of self-adjoint extensions, it seems to
lead to nontrivial contact interactions in higher dimensions
[34]. However, it turns out that the resulting Hamiltonian is
not self-adjoint and thus not physically meaningful. In this
sense, dimensional regularization actually fails to produce

the correct result. We suspect that the same may happen in
the relativistic case, already in two and three spatial
dimensions, which might be worth investigating.
As we discussed before, the external δ-function potential

can be attributed to an infinitely heavy particle. It is
interesting to ask whether this second particle can be
treated fully dynamically, by giving it a finite mass.
Only then may the system become Poincaré invariant,
because translation invariance is no longer explicitly
broken by the position of the external contact interaction.
Leutwyler’s noninteraction theorem suggests that Poincaré
invariance is incompatible with interacting point particles.
However, since the theorem operates at the classical level,
and does not apply to quantum mechanical point inter-
actions, there may be a quantum loophole that would be
worth exploring. For the fully dynamical two-particle
problem, the question arises whether both a self-adjoint
Hamiltonian and a self-adjoint boost operator can be
constructed, which obey the commutation relations of
the Poincaré algebra together with the operator of the total
momentum P. If so, the two-particle system will have a
total energy E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
, whereM is the rest energy of

the system. In such a system, one could also investigate the
Lorentz contraction of a moving wave packet, which, until
now, has been investigated for free particles only [14].
Although we know that nature makes relativistic “particles”
as nonlocal quantized field excitations, at least for peda-
gogical reasons, it is interesting to explore the alternative
possibilities of local relativistic point particles. Based on
the noninteraction theorem, such alternatives are expected
to be very limited, which, in turn, underscores the strengths
of relativistic quantum field theories.
As we have shown, asymptotic freedom, dimensional

transmutation, and an infrared conformal fixed point in the
massless limit, already arise in one-dimensional relativistic
point particle quantum mechanics with a δ-function poten-
tial. This allowed us to illustrate nontrivial quantum field-
theoretical phenomena as well as techniques including
dimensional regularization and renormalization, avoiding
the technical complications of quantum field theory. We
conclude this paper by expressing our hope that the
relatively simple system that we have investigated here
will help to bridge the large gap that separates nonrelativ-
istic quantum mechanics from relativistic quantum field
theory in the teaching of fundamental physics.
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