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This is the eighth paper in the series devoted to the systematic study of effective theories. Below, I
discuss the renormalization of the one-loop two-leg functions in multicomponent effective scalar theory. It
is shown that only a part of numerous contributions that appear in the general expression for a two-leg
graph can be considered as the true self-energy function. This part is completely fixed by the values of
minimal coupling constants; it is the only one that should be taken into account in the conventional process
of the summation of Dyson’s chain that results in explicit expression for the full propagator. The other parts
provide the well-defined finite corrections for the graphs with the number of legs n > 2. It is also shown
that there is no need to attract the renormalization prescriptions for the higher derivatives of the two-leg
function on the mass shell; the requirements of finiteness and diagonability turn out to be quite sufficient.
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I. INTRODUCTION

First of all, it is necessary to recall the definition of the
term “effective theory” suggested in Ref. [1] and used
throughout the paper. The theory is called effective if the
corresponding Hamiltonian in the interaction picture con-
tains all the local monomials consistent with a given linear
symmetry.1 In Ref. [2], the definition of the effective
scattering theory was given: this is just an effective theory
only designed for calculating the S matrix (not the Green
functions). As pointed out in Ref. [3], the Green functions,
as well as the effective Lagrangian, depend on the infinite
set of redundant parameters2 (see, e.g., Ref. [4]), while the
S-matrix elements only depend on the essential parameters.
What is important is that when the essential parameters are
concentrated in a certain area it looks possible to construct
the renormalizable S matrix (see Ref. [3] and also Ref. [5]).
For this reason, I find it interesting to make an attempt to
construct the iteration scheme suitable for the effective
scattering theory. Such a scheme should result in finite
expressions for the S-matrix elements at every step of the
iteration procedure. The finiteness of the Green functions
(off the mass shell) is not required; only the finiteness of
their residues at p2

i → m2
i is required.

The obvious problem emerging immediately with this
way is that of the two-point Green function (self-energy). In
contrast to the S-matrix elements, we need to know this
function off the mass shell. One more problem manifests
itself when one performs the conventional Dyson summa-
tion of the chain of two-point functions to obtain the full
propagator. The point is that the result demonstrates the

obvious contradiction with the limitation imposed by the
famous Källen—Lehmann representation. Besides, when
inserted in the external line of a Green function, the two-leg
graph of the effective theory brings unwanted poles, which
makes the physical interpretation contradictory. At last, the
presence of many similar particles3 in a theory makes the
problem of diagonalization difficult.
The present paper is devoted to a discussion of the

above-mentioned problems in the framework of multi-
component effective scalar theory. I use (and explain when
necessary) the terminology from our previous publications
(see Refs. [1,2] and references therein).
Three notes are in order. First, it is implied that in the

theory considered below there are no massless particles.
This eliminates infrared problems. Second, as usual, the
diverging integrals are considered regularized by a one-
parametric cutoff. At last, I only consider the case of space-
time dimension D ¼ 4.
Below, I often use the following commonly accepted

abbreviations: one-particle-irreducible (1PI), one-particle-
reducibile (1PR), Lehman—Simanzik—Zimmerman (LSZ),
and renormalization prescription (RP).

II. PRELIMINARY NOTES

First of all, it is necessary to remind the reader of some
results obtained in the previous papers (see Refs. [1,2,9,10])
and the terminology introduced therein. For simplicity, I
consider here only the case of scalar theories. I refer the
reader to the above-cited papers for more detailed discussion
and the relevant figures.
References [1] and [2] considered the phenomenon of

disappearance of the pole associated with the propagator
line of a particle with mass m and momentum p in the
S-matrix graph due to the presence of “killing” factors

*vvv@AV2467.spb.edu
1This is just a slight modification of the definition suggested in

Ref. [6].
2This is just because an infinite set of different Lagrangians

may result in the same S matrix; see, e.g., Refs. [7,8]. 3Particles with identical quantum numbers except mass.
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[those proportional to ðp2 −m2Þ] in adjacent vertices and
the corresponding confluence of these latter ones. This
phenomenon is called the reduction of a line. The vertex is
called minimal with respect to its line p if it does not
contain the corresponding killing’ factor ðp2 −m2Þ. The
line p of a graph is calledminimal if it cannot be reduced or,
equivalently, if the adjacent vertex (or both adjacent
vertices if the line is inner) is minimal with respect to it.
The graph may be called minimal4 if all its external lines are
minimal. Clearly, the reduction of all internal lines of the
minimal graph results in the new graph that is built entirely
of minimal vertices each of which is minimal with respect
to all its lines. Note that the analytic expressions that
correspond to the graphs under consideration (the original
and reduced) are identical.
It can be easily understood that an arbitrary graph

that provides the nonzero contribution to the S matrix is
minimal, and hence it can only depend on the minimal
parameters (coupling constants at the minimal vertices).
This means that the set of essential parameters only
contains the minimal coupling constants. This set is much
more narrow as compared to the total number of coupling
constants (minimal plus nonminimal) of the effective
theory. Nevertheless, it is still infinite. This follows from
the fact that all the vertices of the form gnϕnðxÞ ðn ¼
5; 6;…Þ are minimal. The theories that contain vertices of
these types (n ≥ 5) are nonrenormalizable. This means that
one needs to attract an infinite number of counterterms
constructed from the field and its derivatives of arbitrary
order to eliminate the occurrence of infinities in S-matrix
elements, and hence it is necessary to formulate an infinite
number of corresponding RPs including those fixing the
finite parts of nonminimal parameters. It turns out that the
renormalization of the S-matrix graph constructed from
the minimal vertices, in principle, might introduce depend-
ence on nonminimal parameters. This contradicts what is
written above. Is there any way out of this contradiction? I
think the answer is yes. It is necessary to reconstruct the
renormalization procedure in such a way that the need to fix
the nonminimal counterterms would not appear at all.
Surely, this might be only possible if the nonminimal
coupling constants are certain functions of the minimal
ones. In other words, the renormalizability of the effective
scattering theory requires the existence of certain compli-
cated symmetry that establishes linkage between the values
of different coupling constants. In this case, it looks like the
number of independent essential constants in the effective
theory with a single scalar particle should be three: two
minimal coupling constants g3 and g4 and the physical
mass m. To check/prove this guess, it is necessary to
construct the explicit form of the corresponding symmetry
relations:

Fðm2; g3; g4;…Þ ¼ 0:

Here, I imply that the set of arguments of the function F
contains all parameters that appear in the basic Lagrangian
(both minimal and nonminimal).
In this paper, I make the very first step toward con-

structing the relevant renormalization procedure. I follow
the conventional logical scheme. First of all, one needs to
perform the renormalization of 1PI one-loop n-leg graphs
for n ¼ 1; 2; 3; …. Then, these renormalized (finite)
graphs can be considered subgraphs in the structure of
1PI two-loop n-leg graphs, which, in turn, must be
renormalized, and so on. The new feature that manifests
itself in the case of the effective theory is the emergence of
the possibility to introduce two different definitions of one-
particle irreducibility—the graphical or the analytical 1PI.
This problem is discussed in Sec. IV

III. MOST GENERAL FORM OF LOCAL
VERTICES

Let us first consider the simplest effective theory, that
containing only one real scalar field ϕðxÞ:

ϕðxÞ ¼ 1

ð2πÞ3
Z

d3p
2p0

½aþðpÞ expðipxÞ þ H.c.�.

The creation and annihilation operators fulfill the conven-
tional commutation relation

½a−; aþ�− ¼ ð2πÞ32p0δðp − qÞ:

Here, p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, andm stands for the physical mass.

Note that I rely upon the renormalized perturbation
scheme with on-mass-shell renormalization prescriptions.
R operation is precisely that described in Ref. [11] (see
also Ref. [12]).
The full interaction Hamiltonian density of the effective

theory is the sum of an infinite number of local terms of the
form

HðxÞ ¼
X∞
n¼0

½HnðxÞ þ Cn�; ð1Þ

where HnðxÞ is an infinite sum of all Lorentz-invariant n-
leg local vertices constructed from the field and its
derivatives of various orders. Cn stands for the full sum
of n-leg counterterms.
To present Hn in explicit form, it is necessary to

introduce a contracted notation for the field derivatives
of various orders. Let us define

∂ ½s� ¼def ∂μ1…∂μs :

The most general triple interaction Hamiltonian density
may be written as an infinite sum of local terms of the form

4This notion will be further refined when we consider the
four-leg graphs.
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H3 ¼
1

3!

X
s¼0

~Djk;s∶ϕð∂ ½s�ϕjÞð∂ ½s�ϕkÞ∶; ð2Þ

where ∶…∶ denotes the normal product,

ϕi ¼def Kiϕ; K ¼def − ð∂μ∂μ þm2Þ; Ki ¼def K…K|fflffl{zfflffl}
i times

;

and ~Djk;s are real (dimensional) coupling constants. In
Eq. (30), there are no derivatives acting on the field ϕa
because one can make use of the integration by parts.
For the following, we do not need to know the form of

vertices with l > 3 lines. Nevertheless, it may be useful to
show how one can write down, say, the vertex with four
lines:

H4 ¼
1

4!

X∞
ijk

X∞
s1s2s3

~Dijk;s1s2s3∶ϕð∂ ½s1�∂ ½s2�ϕiÞð∂ ½s2�∂ ½s3�ϕjÞ

× ð∂ ½s3�∂ ½s1�ϕ
kÞ∶:

The generalization for the case of l > 4 lines is
straightforward.
In momentum space, the Feynman rules needed to write

down the two-leg graphs are constructed from the elements
of bare propagator π,

πðpÞ ¼ 1

p2 −m2
¼def 1

κp
;

and the vertices of the form

Vðκ1; κ2; κ3Þ ¼ ið2πÞ4δðk1 þ k2

þ k3Þ
X∞
i;j;k¼0

Dijkðκ1Þiðκ2Þjðκ3Þk ð3Þ

(recall that we only consider the one-loop two-leg graphs).
Here and below,

κi ≡ ðk2i −m2Þ;

and Dijk are just certain sums constructed from the above-
introduced coupling constants ~Djk;s and masses.

IV. ONE-LOOP TWO-LEG FUNCTION,
SELF-ENERGY, AND IRREDUCIBILITY

Using the above-given form (3), one can construct the
most general expression for the one-loop two-point func-
tion that is conventionally called self-energy. It reads5

Sðp2Þ ¼
X∞

ijklmn¼0

DijkDlmnκipκ
l
q

Z
dr dtδðpþ r − tÞ

× δðqþ t − rÞκjþn−1
t κkþm−1

r þ Cðp2;ΛÞδðpþ qÞ:
ð4Þ

Here, Cðp2;ΛÞ stands for the counterterm series

Cðp2Þ ¼
�
C½log�ðp2Þ · logΛþ

X∞
n¼0

C½n�ðp2ÞΛ2n

�
; ð5Þ

where Λ is the cutoff parameter and every C½x�ðp2Þ ðx ¼
log; 0; 1;…Þ is a power series in p2:

C½x�ðp2Þ ¼
X∞
n¼0

c½x�n p2n:

Recall that in effective theory all the types of two-leg
counterterms are presented in Eq. (5). The counterterms of
the types C½x�ðp2Þ ðx ¼ log; 1; 2;…Þ are needed to remove
infinities, while C½0�ðp2Þ are used for the finite renormal-
ization required by RPs.
It can be easily shown that the sum (4) contains only one

nontrivial integral (it corresponds to jþ n ¼ kþm ¼ 0):

I0;0 ¼
Z

dr dt
κrκt

δðpþ r − tÞδðqþ t − rÞ

≡ δðpþ qÞ½Jðp2Þ þ a1logΛþ a2�: ð6Þ

All the other integrals diverge like the powers of Λ. In
Eq. (6), a1 and a2 are just arbitrary constants (depending on
m2), while the integral

Jðp2Þ≡ −
Z

dr
p2 þ 2rp

ðr2 −m2Þ2 · ½ðrþ pÞ2 −m2� ð7Þ

is finite.
Clearly, all the diverging terms (as well as a1 and a2)

can be absorbed by the yet unfixed counterterm coefficients

c½x�n ðx ¼ log; 1; 2;…Þ, and the expression (4) can be
rewritten as

Sðp2Þ ¼
X∞
il¼0

Di00Dl00κipκ
l
pJðp2Þ þ

X∞
n¼0

cnðp2Þn: ð8Þ

Here, cn are the new (finite) counterterm coefficients to be
fixed with the help of renormalization prescriptions. Let us
present Eq. (8) in the form most suitable for the following
analysis. For this, it is convenient to reorder the terms in
both sums as follows:

5For the following discussion, factors i
ð2πÞ4 are not essential and

are therefore omitted. Both external momenta are considered
incoming.
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Sðp2Þ ¼
X∞
i¼0

GiJðp2Þκpi þ
X∞
i¼0

~di κpi: ð9Þ

Here,

Gi ¼
Xi

k¼0

Dk00Dði−kÞ00; ð10Þ

and the coefficients ~di (free parameters) are certain combi-
nations of cn and various degrees of m2.
The problem is that the number of unknown parameters

~di ði ¼ 0; 1; 2;…Þ in our theory is actually infinite, while
we have only two physically motivated restrictions that can
be used to fix them. They are

Sðp2Þjp2¼m2 ¼ 0 ð11Þ

(which fixes the pole position of the two-leg Green
function) and

∂
∂p2

Sðp2Þ
����
p2¼m2

¼ 0 ð12Þ

(which fixes the true normalization of the wave function).
Let us try to fulfill formally these restrictions and analyze
the results. Substituting Eq. (9) in Eq. (11), we obtain

~d0 ¼ −G0Jðm2Þ: ð13Þ

Then, from Eq. (12), it follows that

~d1 ¼ G0J0ðm2Þ − G1Jðm2Þ: ð14Þ

So, the counterterm coefficients ~di with i ≥ 2 remain
unfixed (recall that they are certainly nonzero).
Here is a point to recall that both the requirements (11)

and (12) are based on the result of the formal computation
of the full propagator Pðp2Þ by way of summing Dyson’s
chain constructed from an infinite number of links (two-leg
insertions) connected with one another by the simple
propagator.6 Every link is considered as the 1PI full
two-leg function S (conventionally called “self-energy”):

Pðp2Þ ¼ π þ πSπ þ πSπSπ þ… ¼formally 1

1 − πS

¼ 1

p2 −m2 − S
: ð15Þ

The result in the rhs of Eq. (15) is only valid under the
condition that7

jπðp2ÞSðp2Þj < 1: ð16Þ

In familiar renormalizable theories, this limitation is
certainly fulfilled. That is why in such a case the condi-
tions (11) and (12) can be used as legitimate RPs. However,
this is not true in the case of the effective theory. To show
this, let us make use of the requirement that follows8 from
Eq. (16):

Sðp2Þjp2→∞ ≤ Oðp2Þ: ð17Þ

If this limitation is broken, the use of RPs (11) and (12) as
the normalizing conditions for the two-leg function turns
out groundless.
There is a different argumentation (not based on the full

summing of Dyson’s chain) in favor of using those RPs for
the normalization of the two-leg function. It is based on the
quite natural requirement: neither the pole location nor the
residue should be changed by the higher orders of the loop
expansion. This argumentation is no less correct than that
discussed above. The problem is that in the effective theory
the straightforward use of RPs (11) and (12) looks a bit
naive since it certainly leads to an unsatisfactory result.
Note that the expression (14) requires attracting the RP

for the nonminimal parameter

G1 ¼ 2D000D100: ð18Þ

It can be shown that the renormalization of three-leg one-
loop graphs would, in turn, require fixing the parametersGi

with i ¼ 2, 3, …. This contradicts what was written in
Ref. [1] (and compactly recalled in Sec. II). Similarly, as
has been shown above, the direct summing of Dyson’s
chain leads to contradiction with the Källen—Lehmann
representation.
I think the reason for these contradictions lies in

erroneous (naive) identification of the full expression for
the one-loop two-leg function with the expression for the
one-loop self-energy function that should appear in correct
representation of the two-leg Green function in the area
close to the pole position. Such an approach seems to me
too forthright.
The physically motivated form for the expression of the

two-leg Green function reads

6I would like to stress that at this point it is tacitly implied that
every interim propagator is really presented it the chain. This is
not always the case in the effective theory just because some of
them might be “killed” by the corresponding factors stemming
from the adjacent vertices. For this reason, it turns out to be
possible to rely upon the alternative definition for the notion 1PI.

7The violation of this condition was a key point that allowed
Veltman (see Ref. [13]) to obtain his famous conclusions
concerning the description of unstable particles in the frame-
work of quantum field theory.

8In fact, this is just a version of the wel-known consequence
of Källen—Lehmann representation (see Chapter 10.7 in the
monograph [4]).
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G2ðp2Þ ¼ 1

p2 −m2 − Σðp2Þ þQðp2Þ; ð19Þ

where Qðm2Þ ¼ 0 and Σðp2Þ meets the conditions (11),
(12), and (16). This form is no less grounded than Eq. (15);
at the same time, it does not lead to the above-mentioned
contradictions. One can rewrite Eq. (19) as follows:

G2ðp2Þ ¼ π½1þ Σπ þ ΣπΣπ þ…� þQðp2Þ: ð20Þ

The form (20) gives us a hint as to what part of the full
expression (9) for the two-leg function should be consid-
ered as the true self-energy Σðp2Þ. First, to avoid too rapid a
growth, this part should not require the counterterms ~di
with i > 1 [see Eq. (9)]. Second, to avoid the necessity of
attracting the nonminimal RPs, it should only contain the
constants G0; the appearance of Gi with i ≠ 0 is inadmis-
sible. At last, the true self-energy function Σðp2Þ must be
normalized as follows:

8><
>:

Σðp2Þjp2¼m2 ¼ O;

∂
∂p2 Σðp2Þ

����
p2¼m2

¼ O:
ð21Þ

Taking all this into account, one can present the one-loop
two-leg function (9) as follows:

SðκpÞ ¼ G0J̄ðκpÞ þ d0 þ κpd1 þ
X∞
j¼1

κjpGjJ̄ðκpÞ

þ
X∞
j¼2

κjpdj: ð22Þ

Here, J̄ðκpÞ stands for the normalized integral (7)

J̄ðκpÞ≡ Jðp2Þ − Jðm2Þ; ð23Þ

and

d0 ¼ 0; d1 ≡ −G0J0ð0Þ; dj ≡ ~dj þ Jð0Þ;
ðj ≥ 2Þ: ð24Þ

Note that the counterterm coefficients dj ðj ¼ 2; 3;…Þ
remain unfixed.
Now, we can rewrite the expression (22) as follows:

SðκpÞ ¼ ΣðκpÞ þ
X∞
j¼0

κjpRjðκpÞ þ
X∞
j¼2

κjpbj: ð25Þ

Here,

RjðκpÞ≡GjJ̄ðκpÞ; ð26Þ

while

ΣðκpÞ≡G0ðJ̄ðκpÞ − κpJ̄0ðκpÞÞ ð27Þ

is exactly what I call the “true self-energy function” (TSE).
This function meets the conditions (21) and (17); when
used in Eq. (19), it does not lead to any contradiction with
the Källen—Lehmann representation. Surely, those con-
ditions only fix the first item in Eq. (25). They do not allow
us to fix completely the form (8) because, first, the second
item depends on the nonminimal parameters Gi ði ¼
1; 2;…Þ and, second, the last one contains the higher
counterterms di with i ¼ 2, 3, …. Nevertheless, as will be
shown below, the form (25) turns out quite sufficient for
computing the one-loop dressed lines in graphs of the
effective scattering theory.9

It is pertinent to note that the compliance of the TSE
function with the conditions (21) and (17) automatically
entails the conditions (11) and (12) for the full one-loop
two-leg function SðκpÞ. From this, it follows that the
insertion of SðκqÞ in the external line of the arbitrary S-
matrix graph (see Fig. 1) can be neglected; such insertions
make no influence on the amplitudes of physical processes.
Now, we should consider the effect caused by the

insertion of SðκrÞ in the internal line (see Fig. 2).
From the fact that both the second and third items in

Eq. (25) are nonminimal, it follows that this effect leads to
the disappearance of the corresponding propagator (or both
propagators) and the emerging of two kinds of new n-leg
vertices with n ≥ 3. In terms of equations, it looks as
follows. Let V1ðp1;…; pm; rÞ and V2ðq1;…; qn; rÞ be the
original (basic) vertices with mþ 1 and nþ 1 lines,
respectively.10 Further, let r be the line that connects them
with one another. Inserting SðqÞ in this line results in the
graph Γ that can be written as follows (the common delta
function is taken into account and then omitted, so
r ¼ p1 þ � � � þ pm ¼ q1 þ � � � þ qn):

FIG. 1. One-loop insertion in the external line.

9Recall that we are only interested in the renormalization of
S-matrix elements; the Green functions may contain infinite
terms, which make no influence on the amplitudes of physical
processes.

10Both l, m ≥ 2 because the line in question is internal.
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Γðp1;…; pm; q1;…; qnÞ

¼ V1ðp1;…; pm; rÞ
1

κr
SðrÞ 1

κr
V2ðq1;…; qn; rÞ: ð28Þ

According to the conventional definition,11 this is the 1PR
graph. However, as will become clear below, one can
introduce the alternative (“analytical”) definition of what is
irreducibility [graphical 1PI (G1PI) and (A1PI)].
Let us substitute in Eq. (28) the explicit expression (25).

This gives [with account taken of Eq. (18)]

Γðp;qÞ¼V1ðpÞ
1

κr

�
ΣðκrÞþ

X∞
j¼1

κjrRjðκrÞþ
X∞
j¼2

κjrbj

�
1

κr
V2ðqÞ

¼V1ðpÞ
1

κr
ΣðκrÞ

1

κr
V2ðqÞþ

X∞
j¼2

bj½V1ðpÞκjrV2ðqÞ�

þ
X∞
j¼2

GjJ̄ðκpÞ½V1ðpÞκj−2r V2ðqÞ�

þD000D100½V1ðpÞJ̄ðκpÞV2ðqÞ�
1

κr

þ 1

κr
D000D100½V1ðpÞJ̄ðκpÞV2ðqÞ�: ð29Þ

Let us analyze this result term by term.
In the left side of Eq. (29), we have the G1PR graph for

the process m → n with the one-loop dressed internal line.
In contrast, in the rhs, we have a sum of graphs that
describe the same process, and only a part of these graphs
look reducible, while the others look irreducible. It is this
point where the difference between two notions (G1PI and
A1PI) manifests itself clearly. In conventional renormaliz-
able theories, there is no difference between G1PI and A1PI
just because such theories do not contain the nonminimal
vertices.
The first item in the rhs of Eq. (29) is just a familiar graph

of the theory in which the one-loop line dressing is
implemented by the vertices g3=3! · ϕ3. The second item
presents the sum of local vertices of the counterterm type (it
has the loop index l ¼ 1) with ðmþ nÞ lines. These vertices
can be absorbed by (or, equivalently, combined with) the

corresponding counterterms initially presented in the full
Hamiltonian (1). Those resultant conterterms should be
fixed on the next steps of the renormalization procedure
[one-loop renormalization of the graphs with ðmþ nÞ
external lines]. At the moment (and for the future), they
should be simply discarded.
The third item in the rhs of Eq. (29) is a new element that

has no analog in renormalizable theories. It can be treated
as the nonlocal vertex12 with n ≥ 4 lines and the loop index
l ¼ 1. When renormalizing the one-loop graphs with n ≥ 4
legs, these elements should be taken into account on the
same footing as the ordinary counterterms.
At last, the fourth and fifth items together. See the last

two lines of Eq. (29) show that it emerges one more type of
countervertex with n ≥ 3 legs. The role of the counter-
vertex with three legs will be demonstrated in the next
paper devoted to the renormalization of the three-leg
function.
I would like to note that Σðp2Þ only depends on the

minimal parameters. Surely, the countervertices depend on
nonminimal ones. This fact, however, does not prevent one
from computing the one-loop dressed lines with two-leg
insertions because the nonminimal parameters only may
appear in the one-loop graphs with n ≥ 3 legs. This means
that the problem of nonminimal RPs turns out to be shifted
to the next stage of the renormalization procedure. As I will
show in separate publication, the same phenomenon
happens with three-leg graphs.
It might be useful to analyze the process of reduction

of the simple (undressed) internal line.13 This point has
been discussed already in Refs. [1,2], to which I refer the
reader.
What is the meaning of the above analysis? The point is

that for the renormalization of a given graph it is necessary
(and sufficient) to renormalize all its 1PI subgraphs. In the
case in which we rely on the G1PI concept, we would need
to fix the nonminimal counterterms (just because the
subgraphs may be nonminimal). In contrast, when all
the lines of the graph in question have been reduced
(the graph is made minimal), all its subgraphs turn out
minimal, and one only needs to fix the minimal counter-
terms. This confirms the general logical line described in
Refs. [1,2].
One more note seems to be pertinent. The dressing of a

line by the completely reduced two-leg graphs is nothing
but the summing of Dyson’s chain constructed from the
minimal full two-leg insertions Σ∞ðp2Þ.

FIG. 2. One-loop insertion in the internal line.

11In what follows, I call the conventional definition of one-
particle irreducibility the “graphical 1PI.”

12I call these elements “countervertices.” It is important to note
that the countervertices have the opposite sign as compared to the
ordinary ones. This is due to the factors i presenting in both
vertices V1 and V2.

13Recall that there is no need to consider the reduction of
external lines because in nontrivial S-matrix graphs all the
external lines are minimal.
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V. DIAGONALIZATION PROBLEM

In this section, I consider the more general case, namely,
the multicomponent effective scalar theory. This is because
I need to point out the solution to another problem
mentioned in Sec. I, namely, the problem of diagonalization
(or, equivalently, the mixing problem).
Let us consider the multicomponent effective scalar

theory that describes the interaction of a set (possibly
infinite) of fields ϕk ðk ¼ 1; 2;…Þ,

ϕcðxÞ ¼
1

ð2πÞ3
Z

d3p
2p0

½aþc ðpÞ expðipxÞ þ H.c.�;

with the conventional commutation relations

½a−r ðpÞ; aþk ðqÞ�− ¼ ð2πÞ32p0δrkδðp − qÞ

(p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

k

q
). Here,ma stands for themass parameter

of the particle a; this parameter is just the real part of
the pole position of the full propagator. It is implied that
mk ≠ mp when k ≠ p.
The full interaction Hamiltonian density of this theory

reads:

HðxÞ ¼
X∞
n¼0

½HnðxÞ þ Cn�;

where HnðxÞ is (just as above) an infinite sum of all
Lorentz-invariant monomials constructed from the fields
and their derivatives of arbitrary orders, and Cn stand for
the counterterms.
The most general triple interaction Hamiltonian density

may be written as

H3 ¼
1

3!

X
abc

X
s¼0

~Djk;s
abc∶ϕað∂ ½s�ϕj

bÞð∂ ½s�ϕk
cÞ∶; ð30Þ

where ∶…∶ denotes the normal product,

ϕi
a¼defKi

aϕa; Ka¼def − ð∂μ∂μ þm2
aÞ; Ki

a¼defKa…Ka|fflfflfflffl{zfflfflfflffl}
i times

;

and ~Djk;s
abc are real (dimensional) coupling constants. The

symbol
P

abc is used for the sum over the whole set of
particles under consideration.
In momentum space, the Feynman rules needed to write

down the two-leg graphs are constructed from the elements
of bare propagator, which is the diagonal matrix π,

πabðkÞ ¼ δab
1

κa
≡ δab

1

k2 −m2
a
;

and the vertices of the form

Vabcðκa; κb; κcÞ ¼ ið2πÞ4δðka þ kb þ kcÞ

×
X∞
i;j;k¼0

Dijk
abcðκaÞiðκbÞjðκcÞk: ð31Þ

Here,

κx ¼ κxðkÞ≡ k2 −m2
x;

and Dijk
abc are certain sums constructed from the coupling

constants ~Djk;s
abc and masses.

The most general expression for the one-loop two-point
function reads (both lines a and b are considered incoming)

Sabðk2aÞ ¼
X
ef

�Z
dkedkfδðka þ ke − kfÞδðkb þ kf − keÞ

×
X∞

ijk¼ 0
lmn¼0

Dijk
aefD

lmn
bfe

κiaκ
j
eκkfκ

l
bκ

m
f κ

n
e

κeκf

þ Cabefδðka þ kbÞ
�
: ð32Þ

Here, the summation
P

ef is done over the whole set of
particles that create the loop, and Cabef stands for the
counterterm series

Cabefðq2Þ ¼
�
C½log�
abefðq2Þ · logΛþ

X∞
n¼0

C½n�
abefðq2ÞΛ2n

�
;

ð33Þ

where Λ is the cutoff parameter and every C½x�
abefðq2Þ ðx ¼

log; 0; 1;…Þ is just a power series in q2.
Precisely as in Sec. III, one obtains the finite expression

for the individual items of the sum over the particle set:

Sabefðq2Þ ¼
X∞
i;l¼0

κiaκ
l
bD

i00
aefD

l00
bfeJefðq2Þ þ

X∞
p¼0

~Cp
abefðq2Þp:

ð34Þ

Here,

Jefðk2;m2
e; m2

fÞ¼def
1

2
½Fef þ Ffe�; ð35Þ

and

Ffeðk2;m2
f; m

2
eÞ

¼ −
Z

dq
k2 þ 2qk

ðq2 −m2
fÞðq2 −m2

eÞ½ðqþ kÞ2 −m2
e�
: ð36Þ

Let us present the series of finite counterterms in the
equivalent (though more complex) form that is most
suitable for subsequent calculations:
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X∞
p¼0

~Cp
abefðq2Þp ¼ q2Cabef þ

X∞
i;l¼0

Silabefκ
i
aκ

l
b: ð37Þ

Now, the expression (34) can be rewritten as follows:

Sabefðq2Þ ¼ Σabðefjq2Þ þ
X∞
i¼1

f½κiaðGi0
abefJefðq2Þ þ Si0abef�

þ ½κibðG0i
abefJefðq2Þ þ S0iabef�gþ

þ
X∞
i;l≥1

X
ef

κiaκ
l
bfGil

abefJefðq2Þ þ Silabefg: ð38Þ

Here (as in Sec. III), I have introduced the object
Σabðefjq2Þ, hereafter referred to as the self-energy
matrix14:

Σabðefjq2Þ¼defG00
abefJefðq2Þ þ S00abef þ q2Cabef: ð39Þ

To proceed further, one needs to fix the unknown
coefficients in Eq. (38). The results of the previous section
suggest that perhaps not all the coefficients are needed for
the renormalization of two-leg insertion in the lines of
S-matrix graphs. So, first, we need to understand what very
coefficients should be fixed. For this, we should turn to the
physical interpretation of the external lines of Green
function graphs.
The interpretation of a given external line of the Green

function is based on the LSZ formula. In short, the external
line a with the momentum q corresponds to the particle
with the mass parameter ma if the relevant Green function
develops the only (simple) pole at q2 ¼ m2

a. Once there is
another pole, say, at q2 ¼ m2

b (or the pole at q
2 ¼ m2

a is not
simple), the interpretation becomes ambiguous.
Let us discuss this point in the framework of the

conventional perturbation scheme. Consider the one-loop
level of a certain Green function graph with a given external
line, which we would like to interpret as that corresponding
to the particle with mass ma. The interpretation problem
appears when this graph is 1PR and the line in question (the
a-line with momentum q) contains the one-loop self-energy
insertion Sabefðq2Þ (see Fig. 1). The analytical expression
for the Green function graph (in fact, this is a sum of
individual graphs) under consideration reads

Ga… ¼ 1

q2 −m2
a

X
bef

Sabefðq2Þ
1

q2 −m2
b

Γb…; ð40Þ

where Γb… stands for the remaining (loopless) part of the
graph (the ellipsis stands for the indices corresponding to
the set of external lines). The summation indices b, e, f run
over the whole set of particles.

The form (40) [with Eq. (34) taken into account] clearly
demonstrates the presence of many poles in addition to that
at q2 ¼ m2

a. The extra poles arise from the terms with l ¼ 0
and arbitrary i in the first item of Eq. (34). Moreover, when
i ¼ l ¼ 0, the pole at p2 ¼ m2

a is of the second order. This
means that in contrast to initially suggested identification
we cannot uniquely associate the dressed external line [that
with two-leg insertion Sðq2Þ] with any concrete particle.
In the framework of the renormalized perturbation

scheme, the solution to this problem is simple. It consists
of imposing the following set of limitations15 on the
nondiagonal elements ða ≠ bÞ,

8><
>:

lim
q2→m2

a

Sabefðq2Þ ¼ O

lim
q2→m2

b

Sabefðq2Þ ¼ O;
ð41Þ

and

8><
>:

lim
q2→m2

a

Saa;efðq2Þ ¼ O

lim
q2→m2

a

∂
∂q2 Saa;efðq2Þ ¼ O

ð42Þ

on the diagonal ones. In what follows, I call these
conditions the diagonalizability requirements.
The restrictions (41) ensure that the graph (40) does

describe the interaction of the field ϕa associated with the
particle ma. The first of the restrictions (42) is nothing but
the conventional RP that fixes the valuema of the particle a
mass parameter. The second provides a guarantee that the
wave function is properly normalized. The prescriptions
(42) are also suitable when there is only one particle in a
theory. The RPs (41) and (42) are necessary to assign
meaning to the effective scattering theory.
To proceed further, let us introduce the shortened

notation:

Gil
abef ¼ Di00

aefD
l00
bfe:

Now, let us turn to the expression (38) and see what
coefficients are fixed by the conditions (41) and (42). The
conditions (41) give

S00abef ¼ − G00
abef

m2
bJefðm2

aÞ −m2
aJefðm2

bÞ
m2

b −m2
a

;

Cabef ¼ − G00
abef

Jefðm2
aÞ − Jefðm2

bÞ
m2

a −m2
b

;

S0iabef ¼ − G0i
abefJefðm2

aÞ;
Si0abef ¼ − Gi0

abefJefðm2
bÞ: ð43Þ

14Below, it will be shown that the diagonal elements of this
matrix play the role of TSE functions for the corresponding
particles.

15In the case of unstable particles, these limitations should be
imposed on the real parts; see, e.g., Ref. [14].
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Similarly, the conditions (42) give

S00aaef ¼ −G00
aaef½Jefðm2

aÞ −m2
aJefðm2

aÞ�;
Caaef ¼ −G00

aaefJefðm2
aÞ. ð44Þ

It can be easily shown that Eq. (44) follows from the two
upper lines of Eq. (43) in the limit ma → mb. This means
that the diagonal elements of self-energy matrix, indeed,
play the role of the self-energy functions corresponding to
individual particles. The above-obtained results allow one
to state that the insertion Sðq2Þ in the external line of the
S-matrix graph makes no influence on the amplitudes of
physical processes. One can simply neglect them.
The influence of Silabef on the internal line of the S-matrix

graph can be analyzed precisely in the sameway as inSec. IV.
It is obvious that the terms in the last line of Eq. (38) are

insensitive to the constraints (41) and (42). Clearly, these
terms play a role that is quite similar to that of correspond-
ing terms in the last two lines of Eq. (29). The finite two-leg
counterterms Silabef with i, l ≥ 1 should be dropped because
they are absorbed by the n-leg counterterms with n ≥ 4 that
will be fixed at the next steps of the renormalization
procedure. In contrast, the terms

X∞
i¼1

f½κiaðGi0
abefJefðq2Þ þ Si0abef�

þ ½κibðG0i
abefJefðq2Þ þ S0iabef�g

must be taken into account because they define the nonlocal
countervertices with three legs. Similarly, the terms

κiaκ
l
bG

il
abefJefðq2Þ

with i, l ≥ 1 define the nonlocal countervertices with n ≥
4 legs.
Thus, the renormalization of two-leg insertions in the

lines of the S-matrix graph of the single- and multi-
component effective scalar theories is completed. The result
of the one-loop dressing of a line is finite and only depends
onminimal parameters. This confirms the conclusionsmade
in Refs. [1,2]. It is important to stress that the problem of
dependence on nonminimal parameters turns out shifted to
the next step of the renormalization procedure. This point
will be discussed in a subsequent publication.

VI. CONCLUSION

The attractive features of the effective field theories
have been demonstrated already in many papers.16

Unfortunately, the phenomenological advantage of such
theories turns out to be strongly limited by the “problem
of couplings”: the number of unknown phenomenological
constants catastrophically increases with the number of
loops taken into account.
Meanwhile, the relations obtained in Refs. [17,18,19]

clearly demonstrate that the concept of the effective scatter-
ing theory together with the quasiparticle method (see
Refs. [20–24] result in quite reasonable sum rules (bootstrap
relations) connecting among themselves thevalues of hadron
masses and on-shell coupling constants, which are nothing
but the right sides of the renormalization prescriptions. This
means that the solution to the problem of couplings requires
developing the suitable renormalization procedure. The very
first step on this way is done in the present paper.
The main result obtained above is that there is no need to

attract the renormalization prescriptions for the higher
derivatives of the two-leg graph; it turns out to be quite
sufficient to rely upon the requirements of finiteness and
diagonalizability. Another—no less interesting—result is
the demonstration of the difference between the notions of
graphical and analytical irreducibility. In fact, this result
shows that until the complete reduction (as described in
Refs. [1,2]) of a given graph is done there is no sense in
singling out the 1PI subgraphs. This, in particular, allows
one to avoid the contradiction with limitations imposed by
the Källen—Lehmann representation. Of course, this pre-
serves the correct loop counting.
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