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We examine a quantum group extension of the standard model. The field operators of the extended
theory are obtained by replacing the field operators Ψ of the standard model by Ψ̂Dj

mm0, where Dj
mm0 are

elements of a representation of the quantum algebra SLq(2), which is also the knot algebra. The Dj
mm0 lie in

this algebra and carry the new degrees of freedom of the field quanta. The Dj
mm0 are restricted jointly by

empirical constraints and by a postulated correspondence with classical knots. The elementary fermions are
described by elements of the trefoil (j ¼ 3

2
) representation and the weak vector bosons by elements of the

ditrefoil (j ¼ 3) representation. The adjoint (j ¼ 1) and fundamental (j ¼ 1
2
) representations define

hypothetical bosonic and fermionic preons. All particles described by higher representations may be
regarded as composed of the fermionic preons. This preon model unexpectedly agrees in important detail
with the Harari-Shupe model. The new Lagrangian, which is invariant under gauge transformations of the
SLq(2) algebra, fixes the relative masses of the elementary fermions within the same family. It also
introduces form factors that modify the electroweak couplings and provide a parametrization of the
Cabbibo-Kobayashi-Maskawa matrix. It is additionally postulated that the preons carry gluon charge and
that the fermions, which are three preon systems, are in agreement with the color assignments of the
standard model.

DOI: 10.1103/PhysRevD.89.125020 PACS numbers: 14.80.-j, 12.60.-i

I. INTRODUCTION

The possibility that the elementary particles are knots has
been suggested by many authors, going back as far as
Kelvin [1]. Among the different field theoretic attempts to
construct classical knots, a model related to the Skyrme
soliton has been described by Fadeev and Niemi [2]. There
are also the familiar knots of magnetic field; and since these
are macroscopic expressions of the electroweak field, it is
natural to extrapolate from macroscopic to microscopic
knots of this same field. One expects that the conjectured
microscopic knots would be quantized, and that they would
be observed as solitonic in virtue of both their topological
and quantum stability. It is then natural to ask if the
elementary particles might also be knotted. If they are, one
expects that the most elementary particles, namely the
elementary fermions, are also the most elementary knots,
namely the trefoils. This possibility is suggested by the fact
that there are four quantum trefoils and four classes of
elementary fermions, and is supported by a unique one-to-
one correspondence between the topological description of
the four quantum trefoils and the quantum numbers of the
four fermionic classes. We have attempted to determine the
minimal restrictions on a model of the elementary particles
in the context of weak interactions if the quantum knot is
described only by its symmetry algebra SLq(2) indepen-
dent of its field theoretic origin. The use of this symmetry
algebra to define the quantum knot is similar to the use of
the symmetry algebra of the rotation group to define the
quantum spin.

II. KINEMATICS

A. The knot algebra and the quantum knot

Let

�
a b
c d

�

be a two-dimensional representation of SLq(2), the knot
algebra.
Then

ab ¼ qba bd ¼ qdb ad − qbc ¼ 1 bc ¼ cb

ac ¼ qca cd ¼ qdc da − q1cb ¼ 1 q1 ≡ q−1

(1)

where we take q real.
Let Dj

mm0 be a 2jþ 1 representation of SLq(2) [3,4].
Then

Dj
mm0 ða; b; c; dÞ
¼

X
0 ≤ s ≤ nþ
0 ≤ t ≤ n−

Aj
mm0 ðq; s; tÞδðsþ t; n0þÞasbnþ−sctdn−−t

(2)

where
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Aj
mm0 ðq; s; tÞ ¼

�hn0þi1!hn0−i1!
hnþi1!hn−i1!

�1
2 hnþi1!
hnþ − si1!hsi1!

×
hn−i1!

hn− − ti1!hti1!

and where

hni1 ¼
qn1 − 1

q1 − 1
and n� ¼ j�m n0� ¼ j�m0:

The algebra (1) is invariant under the gauge
transformations:

Uað1Þ∶ a0 ¼ eiφaa d0 ¼ e−iφad

Ubð1Þ∶ b0 ¼ eiφbb c0 ¼ e−iφbc:
(3)

Then Uað1Þ × Ubð1Þ induces on Dj
mpða; b; c; dÞ the gauge

transformation [3]

Dj
mpða0; b0; c0; d0Þ ¼ eiðφaþφbÞmeiðφa−φbÞpDj

mpða; b; c; dÞ
(4)

or

Dj0
mp ¼ Um × UpD

j
mp: (5)

If jni is a ket lying in the state space of SLq(2), we define a
quantum knot by the state function

ψDj
mm0 jni (6)

where ψ is a standard quantum mechanical state function
and

ðj;m;m0Þ ¼ 1

2
ðN;w; rþ oÞ: (7)

Here (N;w; r) are the number of crossings, the writhe, and
the rotation of the 2D projection of the corresponding
oriented 3D-classical knot. The factor 1

2
allows half integer

representations of SLq(2). Since 2m and 2m0 are of the
same parity while w and r are topologically constrained to
be of opposite parity, o is an odd integer which we set ¼ 1
for a trefoil knot [3].
The knot degrees of freedom are confined to the Dj

mm0
factor and are introduced here similarly to the way spin
degrees of freedom are introduced by adjoining a spin
factor to a state without spin. This definition of the quantum
knot allows only those selected states (j; m;m0) of the
full 2jþ 1-dimensional representation that are permitted
by the (N;w; r) spectrum of the 2D projection of the
corresponding classical knot. Equation (7) is the "corre-
spondence principle” of the model where ðj; m;m0Þ

describes the quantum knot and ðN;w; rÞ refers to the
corresponding classical knot.
Note: One counts only two classical trefoils because

classical trefoils of opposite r are not topologically differ-
ent. Their 2D projections can be distinguished, however,
and states of quantum trefoils, as here defined, with
opposite r can be distinguished by different m0.

B. The knotted standard model

To go from the standard model to the knotted standard
model we try to replace every field operator, Ψ, of the
standard model by the “knotted field operator,”
Ψj

mnðxja; b; c; dÞ, where

Ψj
mnðxja; b; c; dÞ ¼ Ψ̂j

mnðxÞDj
mnða; b; c; dÞ (8)

Since Dj
mn lies in the SLq(2) algebra, (8) adds new

degrees of freedom to the field quanta. Then after Ψ is
replaced withΨj

mn by (8) in the standard model Lagrangian,
the spacetime factor Ψ̂j

mnðxÞ will be determined by a new
Lagrangian containing form factors generated by Dj

mn.
Then Ψ̂j

mnðxÞ will have an induced but clear dependence
on (j; m; n).
Under Ua × Ub transformations of the algebra (1) the

new field operators transform, by (4), as follows:

Ψj0
mn ¼ Ψ̂j

mnðxÞDj
mnða0; b0; c0; d0Þ (9)

¼ Um × UnΨ
j
mn: (10)

For physical consistency the new field action must be
invariant under (10), since (10) can be induced by Ua × Ub
transformations that leave the defining algebra unchanged.
There are then Noether charges associated with Um and Un
that may be described as writhe and rotation charges, Qw
and Qr, since m ¼ w

2
and n ¼ 1

2
ðrþ 1Þ for trefoils.

We define

Qw ≡ −kwm
�
≡ − kw

w
2

�
(11)

Qr ≡ −krn
�
≡ − kr

1

2
ðrþ 1Þ

�
(12)

where km and kr are undetermined constants with dimen-
sions of electric charge.
We now compare the so defined Qw and Qr charges of

the four quantum trefoils with the charge and hypercharge
of the four fermion families in Table I [3].
Note that with the particular row to row correspondence,

ðf1; f2; f3Þ↔ðw; rÞ, in this table, and only for this corre-
spondence, is there proportionality between the ðt3; t0; QeÞ
and the ðQw;Qr;Qw þQrÞ columns.
To construct and interpret this table we have postulated

that k is a universal constant in the following sense:
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kw ¼ kr ¼ k (13)

and

k ¼ e
3

(14)

with the same value for all trefoils.
Then it follows from the table that the total electric

charge (Qw þQr) of each trefoil is the same as the electric
charge Qe of the corresponding family of fermions [3,5]:

Qw þQr ¼ Qe (15)

and that

Qw ¼ et3 (16)

and

Qr ¼ et0: (17)

Then (15)–(17) are in agreement with the standard model
for which

Qe ¼ eðt3 þ t0Þ: (18)

Since these relations hold for the special ðf1; f2; f3Þ↔
ðN;w; rÞ row to row correspondence in the Table I,
and only for this particular match between the trefoils
and the fermionic families, the correspondence itself, in
addition to the value of k as e

3
, is empirically fixed and

unique.
We accordingly identify the writhe charge, Qw, of the

trefoil with the isotopic charge of the standard fermion,
measured by t3, and the rotation charge, Qr, of the trefoil
with the hypercharge of the standard fermion, measured by
t0. We shall then assume that the elementary fermions are
quantum trefoils and that their total electric charge may be
written as either

Qe ¼ Qw þQr (19)

or Qe ¼ eðt3 þ t0Þ (20)

similar to the way that their total angular momentum and
magnetic moment may be written as the sum of the spin and
orbital contributions. (The correspondence goes further
since the spin and writhe are both localized: the spin is
localized on the particles, and the writhe is localized at the
crossings, while the orbital angular momentum describes
the entire orbital motion, and the knot rotation is computed
for the entire knot.)
From Table I one may also read the following relation

between the quantum trefoils of the knotmodel, asmeasured
by ðN;w; rÞ, and the fermions of the standard model, as
described by the isotopic charge and hypercharge [3,5]:

ðN;w; rþ 1Þ ¼ 6ðt;−t3;−t0Þ (21)

or by (7)

ðj; m; nÞ ¼ 3ðt;−t3;−t0Þ: (22)

The empirical correspondence between the topological
description of the four quantum trefoils and the quantum
numbers of the four families of fermions is encapsulated in
(21). Otherwise stated, there is a unique way of satisfying
(21) with the four quantum trefoils and the four classes of
fermions.

C. The Fermion-Boson interaction in the knot model

According to the rule (8) the Fermion-Boson interaction
terms of the standard action are multiplied by the form
factors

D̄j″

m″p″D
j
mpD

j0
m0p0 (23)

in passing from the standard model to the knot model. Here

Dj0
m0p0 and D̄j″

m″p″ multiply the initial and final Fermi

TABLE I. Comparison with the standard model.

Standard model Quantum trefoil model

ðf1; f2; f3Þ t t3 t0 Qe ðw; rÞ D
N
2
w
2
rþ1
2

Qw Qr Qw þQr

ðe; μ; τÞL 1
2

− 1
2

− 1
2

−e (3,2)
D

3
2
3
2
3
2

−kð3
2
Þ −kð3

2
Þ −3k

ðνe; νμ; ντÞL 1
2

1
2

− 1
2

0 ð−3; 2Þ D
3
2

− 3
2
3
2

−kð− 3
2
Þ −kð3

2
Þ 0

ðd; s; bÞL 1
2

− 1
2

1
6

− 1
3
e ð3;−2Þ D

3
2
3
2
− 1

2

−kð3
2
Þ −kð− 1

2
Þ −k

ðu; c; tÞL 1
2

1
2

1
6

2
3
e ð−3;−2Þ D

3
2

− 3
2
− 1

2

−kð− 3
2
Þ −kð− 1

2
Þ 2k

Qw ¼ −kw w
2

Qr ¼ −kr rþ1
2
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operators, respectively, while Dj
mp multiplies the mediating

boson operator of the standard model.
By Umð1Þ × Upð1Þ invariance of (23) we have

ðm;pÞ ¼ ðm″; p″Þ − ðm0; p0Þ: (24)

By (22) the empirical relations

ðm0; p0Þ ¼ −3ðt3; t0Þ0
ðm″; p″Þ ¼ −3ðt3; t0Þ″ (25)

hold for the fermion operators.
Then by (24) and (25)

ðm;pÞ ¼ −3½ðt3; t0Þ″ − ðt3; t0Þ0�: (26)

In passing from the standard model to the knotted model we
retain SUð2Þ × Uð1Þ invariance and therefore the conser-
vation of t3 and t0 separately: t″3 ¼ t03 þ t3 and t″0 ¼ t00 þ t0.
The conservation of t3 and t0 is also a consequence of the
required Uað1Þ × Ubð1Þ invariance of the action, and is
expressed by the separate conservation of the writhe and
rotation charges.
Then by (26)

ðm;pÞ ¼ −3ðt3; t0Þ (27)

for the intermediate boson as well as for the initial and final
fermions. Also since

j0 þ j″ ≥ j ≥ jj0 − j″j and j0 ¼ j″ ¼ 3

2
(28)

j is fixed by

3 ≥ j ≥ jmj: (29)

Then one has by (27)

Dj
mp ¼ D3

�30 (30)

for the charged vector bosons, where ðt; t3; t0Þ ¼ ð1;�1; 0Þ
and we set j ¼ 3. We assume a similar relation for the
neutral vector boson where ðt; t3; t0Þ ¼ ð1; 0; 0Þ.
Hence there is an empirical basis, dependent also on the

postulated symmetries, for

ðj; m;m0Þ ¼ 3ðt;−t3;−t0Þ (31)

for both the fermions and vector bosons of the knot-
ted model.
In both cases one may write for the field operator of the

knot model

Ψ̂ðt; t3; t0Þ ¼ Ψðt; t3; t0ÞDj
mm0

¼ Ψðt; t3; t0ÞD3t
−3t3−3t0 (32)

whereΨðt; t3; t0Þ is the field operator of the standard model
and in both cases we have (31).
Here Ψ means left chiral when it refers to the elementary

fermion. As in the standard model, we assume that the right
chiral field is an isotopic singlet, but in the knot extension
we assume it has the same knot factor as its left chiral
partner. The right chiral state does not satisfy (32).

D. The preon representations [4,5]

In the model that we are describing, the elementary
fermions, with t ¼ 1

2
, are the simplest quantum knots, the

trefoils, with N ¼ 3 and by (7)

j ¼ 1

2
N ¼ 3

2
ð¼3tÞ: (33)

In the same model the electroweak bosons, with t ¼ 1, are
quantum ditrefoils, with N ¼ 6 and

j ¼ 1

2
N ¼ 6

2
ð¼3tÞ: (34)

Then the elementary fermions lie in the j ¼ 3
2
representa-

tion while the electroweak bosons lie in the j ¼ 3 repre-
sentation of SLq(2).
We now consider the adjoint (j ¼ 1) representation

and the fundamental (j ¼ 1
2
) representation of SLq(2) as

defined by (2). After dropping the Aj
mm0 these are shown in

Tables II and III.
We shall refer to the members of the D

1
2 and D1

representations as fermionic and bosonic preons
respectively.
To determine (t3; t0; Q) for the fermionic and bosonic

preons we shall extend the relations empirically established
for the elementary fermions, then extended to the electro-
weak bosons, and generally expressed in D3t

−3t3−3t0 .
The results for preons are shown in Tables IV and V

where equations (18) and (22)

TABLE II. D
1
2

mm0

m0

m 1
2

− 1
2

1
2

a b
− 1

2
c d

TABLE III. D1
mm0

m0

m 1 0 −1

1 a2 ab b2

0 ac adþ bc bd
−1 c2 cd d2
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ðt; t3; t0Þ ¼ 1
3
ðj;−m;−m0Þ (22)

Q ¼ eðt3 þ t0Þ ¼ −
e
3
ðmþm0Þ (18)

are now read from right to left.
The values of ðt; t3; t0Þ in these tables have meaning for

the knot model but not for isotopic spin. In this respect the
knot model provides an extension of the isotopic spin. The
fractional values of t3 and t0 follow from (22) and measure
the writhe and rotation charges, respectively.
According to Table IV there are two preons, a and b,

charged and neutral respectively and their respective
antiparticles, d and c, with opposite charge and hyper-
charge. These preons agree with the preons proposed by
Harari and by Shupe [6,7]. We may also regard a and c and
d and b as belonging to t3 doublets.
We now show that all particles belonging to higher

representations may be regarded as built up out of preons
(a; b; c; d) insofar as the values of ðt3; t0; QÞ for all the
composite particles may be obtained by adding the
ðt3; t0; QÞ of each of the constituent preons.
We have in general by (2)

Dj
mm0 ða;b;c;dÞ¼

X
Aj

mm0 ðq;s;tÞδðsþt;n0þÞasbnþ−sctdn−−t
0≤s≤nþ 0≤ t≤n−: (35)

Denote the exponents of ða; b; c; dÞ by ðna; nb; nc; ndÞ.
These will vary from term to term but there are the
following structural constraints on the sum (35):

na þ nb þ nc þ nd ¼ 2j (36)

na þ nb − nc − nd ¼ 2m (37)

na − nb þ nc − nd ¼ 2m0: (38)

But by (21) and (22)

ðj; m;m0Þ ¼ 3ðt;−t3;−t0Þ (39)

and

ðj;m;m0Þ ¼ 1

2
ðN;w; rþ oÞ: (40)

Equations (39) and (40) are the basic empirical and
topological constraints defining the knot model. We have
shown how they hold for the j ¼ 3=2 and j ¼ 3 repre-
sentations. We now assume that they hold for all repre-
sentations allowed by the model.
We may now rewrite the structural equations (36)–(38) in

terms of ðt; t3; t0Þ or alternatively in terms of ðN;w; rÞ.
We shall also retain (18)

Q ¼ eðt3 þ t0Þ ¼ −
e
3
ðmþm0Þ

for all representations.
In terms of ðt; t3; t0; QÞ Eqs. (36), (37), and (38) become

by (39)

t ¼ 1

6
ðna þ nb þ nc þ ndÞ (41)

t3 ¼ −
1

6
ðna þ nb − nc − ndÞ (42)

t0 ¼ −
1

6
ðna − nb þ nc − ndÞ: (43)

Then

Q ¼ eðt3 þ t0Þ ¼ −
e
3
ðna − ndÞ: (44)

By Table IV Eqs. (41), (42), (43), and (44) may be written
as follows:

t ¼ nata þ nbtb þ nctc þ ndtd (45)

t3 ¼ naðt3Þa þ nbðt3Þb þ ncðt3Þc þ ndðt3Þd (46)

t0 ¼ naðt0Þa þ nbðt0Þb þ ncðt0Þc þ ndðt0Þd (47)

Q ¼ naQa þ nbQb þ ncQc þ ndQd (48)

or

TABLE IV. Fermionic preons t ¼ 1
6
.

t t3 t0 Q

a 1
6

− 1
6

− 1
6

− e
3

b 1
6

− 1
6

1
6

0

c 1
6

1
6

− 1
6

0

d 1
6

1
6

1
6

e
3

TABLE V. Bosonic preons (t ¼ 1
3
).

t3 t0
Q
e D1

mm0 t3 t0
Q
e D1

mm0 t3 t0
Q
e D1

mm0

D1
1;1 − 1

3
− 1

3
− 2

3
a2 D1

0;1 0 − 1
3

− 1
3

ac D1
−1;1

1
3

− 1
3

0 c2

D1
1;0 − 1

3
0 − 1

3
ab D1

0;0 0 0 0 adþ bc D1
−1;0

1
3

0 1
3

cd

D1
1;−1 − 1

3
1
3

0 b2 D1
0;−1 0 1

3
1
3

bd D1
−1;−1

1
3

1
3

2
3

d2
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ðt; t3; t0; QÞ ¼
X

p¼ða;b;c;dÞ
npðtp; t3p; t0p;QpÞ: (49)

If we now interpret ða; b; c; dÞ as the creation operators
for the ða; b; c; dÞ preons, then the ðna; nb; nc; ndÞ represent
the number of ða; b; c; dÞ preons respectively in each term.
Then (49) states that the composite particle on the left with
quantum numbers ðt; t3; t0; QÞ may be regarded as a
superposition of separate states, all of which have the
same ðt; t3; t0; QÞ but contain different numbers of preons
ðna; nb; nc; ndÞ with quantum numbers ðtp; t3p; t0p;QpÞ
where p ¼ ða; b; c; dÞ.
We illustrate (45), (46), (47), and (48) in Tables VI, VII,

and VIII.
These tables may be read in two ways:

(a) as describing creation operators representing the in-
ternal state of a composite particle, or

(b) as describing a product of creation operators for the
component preons.

Tables VI, VII, and VIII are computed by (35) after
dropping the Aj

mm0 .
The field operators are now expanded in the complete

polynomials Dj
mm0 expressed in terms of the preon operators

ða; b; c; dÞ. All terms in these polynomials have the same
charge and hypercharge as the composite particle on the left
side of (2). If Dj

mm0 is a monomial (like the elementary
fermions) the field operator creates a single state, but
otherwise it creates a superposition of several states.
According to Tables VI and VII the leptons are com-

posed of three a preons while the neutrinos are composed
of three c preons. The down quarks contain one a and two

b preons while the up quarks contain one c and two d
preons.
These descriptions of the elementary fermions as three

preon structures are in agreement with the Harari-Shupe
model [6,7]. In Table VIII the charged vectors are also in
agreement with the same model, but the neutral vector W3

μ

is the superposition of four states of six preons given by

D3
00 ¼ Að0; 3Þb3c3 þ Að1; 2Þab2c2dþ Að2; 1Þa2bcd2

þ Að3; 0Þa3d3

according to (2) and expressible by the algebra of (1) as a
function of the neutral operator bc.

E. The complementary models

Since ðN;w; rþ oÞ ¼ 2ðj;m;m0Þ, Eqs. (36)–(38) giv-
ing (j; m;m0) may also be read as knot relations as follows:

N ¼ na þ nb þ nc þ nd (50)

w ¼ na þ nb − nc − nd (51)

rþ o ¼ na þ nc − nb − nd: (52)

There are only three equations to determine the four
ðna; nb; nc; ndÞ. Therefore the composite particle, either
ðt; t3; t0Þ or ðN;w; rÞ, is in general a superposition of
several components with different sets of ðna; nb; nc; ndÞ.
Equation (50) states that the total number of preons

equals the number of crossings (N).
Since we assume that the preons are fermions, the knot

describes a fermion or a boson depending on whether the
number of crossings is odd or even.
The meaning of Eqs. (51) and (52) becomes clear if we

note that a and d are antiparticles with opposite charge and
hypercharge, while b and c are neutral antiparticles with
opposite values of the hypercharge.
We may therefore introduce the preon numbers

νa ¼ na − nd (53)

νb ¼ nb − nc: (54)

Then (51) and (52) may be rewritten as

TABLE VI. Preons (j ¼ 1
2
).

Q t3 t0 D3t
−3t3−3t0

a − e
3

− 1
6

− 1
6 D

1
2
1
2
1
2

∼ a

b 0 − 1
6

1
6

D
1
2
1
2−

1
2

∼ b

c 0 1
6

− 1
6

D
1
2

−1
2
1
2

∼ c

d e
3

1
6

1
6

D
1
2

−1
2
−1
2

∼ d

TABLE VII. Fermions (j ¼ 3
2
).

Q t3 t0 D3t
−3t3−3t0

l −e − 1
2

− 1
2 D

3
2
3
2
3
2

∼ a3

ν 0 1
2

− 1
2

D
3
2

−3
2
3
2

∼ c3

d − 1
3
e − 1

2
1
6

D
3
2
3
2
−1
2

∼ ab2

u 2
3
e 1

2
1
6

D
3
2

−3
2
−1
2

∼ cd2

TABLE VIII. Electroweak vectors (j ¼ 3).

Q t t3 t0 D3t
−3t3−3t0

Wþ e 1 1 0 D3
−3;0 ∼ c3d3

W− −e 1 −1 0 D3
3;0 ∼ a3b3

W3 0 1 0 0 D3
0;0 ∼ f3ðbcÞ

W0 0 0 0 0 D0
0;0 ∼ f0ðbcÞ
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νa þ νb ¼ w ¼ −6t3 (55)

νa − νb ¼ rþ o ¼ −6t0: (56)

By (55) and (56) the conservation of the preon numbers and
of charge and hypercharge is equivalent to the conservation

of the writhe and rotation which are topologically con-
served at the classical level. In this respect, these con-
servation laws may be regarded as topological.
The SLq(2) equations (50), (51), (52) hold for all

representations and therefore for preons as well as for
knots, although the preons are twisted loops rather than

FIG. 1. Q ¼ − e
6
ðwþ rþ oÞ, ðj; m;m0Þ ¼ 1

2
ðN;w; rþ oÞ.
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knots. If the indices ðN;w; rÞ for the twisted loops
interpreted as fermionic preons are determined in the same
way as for knots, one finds N ¼ 1, w ¼ �1, and r ¼ 0.
Then by (52) the odd integer, o, is for fermionic preons

o ¼ na þ nb − nc − nd: (57)

It follows that o ¼ 1 for a and b, and that o ¼ −1 for the
antiparticles, d and c.
Viewed as a knot, a fermion becomes a boson when the

number of crossings is changed by attaching or removing a
curl. This picture is consistent with the view of a curl as an
opened preon loop.
Corresponding to the representations of the four elemen-

tary fermions as three preon states, there is the comple-
mentary representation of the four trefoils as composed of
three overlapping preon loops as shown in Fig. 1.
In interpreting Fig. 1 note that the two lobes of all the

preons make opposite contributions to the rotation, r, so
that the total rotation of each preon vanishes. When the
three a preons and c preons are combined to form leptons
and neutrinos, respectively, each of the three labeled
circuits is counterclockwise and contributes þ1 to the
rotation while the single unlabeled shared circuit is clock-
wise and contributes −1 to the rotation so that the total r for
both leptons and neutrinos is þ2. For the quarks the three
labeled loops contribute −1 and the shared loop þ1 so
that r ¼ −2.
Written in termsof ðN;w; rÞ and ðN;w; rÞp Eqs. (50)–(52)

describing the composite particles are

N ¼
X
p

npNp (58a)

w ¼
X
p

npwp (58b)

~r ¼
X
p

np ~rp (58c)

where p ¼ ða; b; c; dÞ and

~r ¼ rþ o: (59)

For preons

~rp ¼ op: (60)

For the elementary fermions of the standard model

~r ¼ rþ 1: (61)

These considerations lead one to view the symmetry of
an elementary particle, defined by representations of the
SLq(2) algebra, in any of the following ways:

Dj
mm0 ¼ D3t

−3t3−3t0 ¼ D
N
2
w
2
~r
2

¼ ~DN0
νaνb (62)

where N0 is the total number of preons. The point particle-
flux loop complementary representations are related by

~DN0
νaνb ¼

X
Nwr

δðN0; NÞδðνa þ νb; wÞδðνa − νb; ~rÞD
N
2
w
2
~r
2

: (63)

Since one may interpret the elements ða; b; c; dÞ of the
SLq(2) algebra as creation operators for either preonic
particles or flux loops, the Dj

mp may be interpreted as a
creation operator for a composite particle composed of
either preonic particles or flux loops. These two com-
plementary views of the same structure may be recon-
ciled as describing N-body systems bound by a knotted
field having N crossings with the particles at the cross-
ings, as illustrated in Fig. 2 for N ¼ 3. In the limit where
the three outside lobes become infinitesimal compared to
the central circuit, the resultant structure will resemble a
three particle system tied together by a Nambu-like
string. Since the topological diagram of Fig. 2 describes
loops that have no size or shape, one needs to introduce
an explicit Lagrangian to go further.

F. Gluon charge

The previous considerations are based on electroweak
physics. To describe the strong interactions it is neces-
sary according to the standard model to introduce SU
(3). We may assume that only the a and c preons carry
gluon charge and that the b and d preons are color
singlets [8]. The a and c preon operators then appear in
triplicate as ðai; ciÞ where i ¼ ðR; Y;GÞ without chang-
ing the ða; b; c; dÞ algebra. These colored preon oper-
ators provide a basis for the fundamental representation
of SU(3) just as the colored quark operators do in
standard theory. To adapt the electroweak operators to
the requirements of gluon fields we make the following
replacements:

leptons : a3 → εijkaiajak (64)

neutrinos : c3 → εijkcicjck (65)

down quarks : ab2 → aib2 (66)

up quarks : cd2 → cid2: (67)

Here ðai; ciÞ are creation operators for colored preons.
Then the leptons and neutrinos are color singlets while
the quark states correspond to the fundamental repre-
sentations of SU(3), as required by the standard model.
The need for additional SU(3) symmetry to satisfy the

Pauli exclusion principle thus appears already at the level
of leptons (a3) and neutrinos (c3) in the SLqð2Þ preon
model. Then there is gluon charge on the a and c preons,
but not on the b and d preons. This distribution of gluon
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charge among the preons agrees with the distribution of
gluon charge among the hadrons in the standard model [8].

III. DYNAMICS

A. The knot Lagrangian

The Lagrangian of the standard model at the electroweak
level may be written as follows:

Lst ¼ −
1

4
TrWμλWμλ −

1

4
HμλHμλ þ i½L̄∇Lþ R̄∇R�

þ 1

2
∇̄φ∇φ − Vðφ̄φÞ −m

ρ
½L̄φRþ R̄ φ̄L�: (68)

To obtain the knot Lagrangian we attempt to replace every
field operator of the standard model by

Ψ → Ψ̂Dj
mm0 (69)

where the Dj
mm0 are determined empirically, as discussed in

part I, Sec. 2 B subject to the requirement that every term of
the modified Lagrangian be SUð2Þ × Uð1Þ and Uað1Þ ×
Ubð1Þ invariant.
To implement (69) we begin with

Ψðt; t3; t0Þ → Ψðt; t3; t0ÞD3t
−3t3−3t0 (70)

and

Q ¼ eðt3 þ t0Þ (71)

or

Q ¼ −
e
3
ðmþm0Þ ¼ −

e
6
ðwþ rþ 1Þ (72)

for the left chiral field, L, and for the vector bosons as
discussed in part I, Sec. 2 B.
We assume that every right chiral field, R, has the same

knot factor, Dj
mm0 , as the corresponding L field. We shall

also assume that R is an isotopic singlet, with t ¼ 0, here as
in the standard model. Then R does not and is not required
to satisfy (70). Since we shall, however, assume that

Q ¼ −
e
3
ðmþm0Þ (73)

holds for both L and R, it follows that L and R carry the
same electric charge.
If the modification of the standard model is made

according to the preceding substitutions, it will be shown
that the new Lagrangian will be Uað1Þ × Ubð1Þ invariant as
required, and all new factors and terms appearing in the
new Lagrangian will be functions of bc.
The new operator Lagrangian is then numerically valued

on eigenstates of bc and is therefore a function of βγ, the
eigenvalues of bc. In the simplest use of this model, the
physical knot Lagrangian is defined on a single eigenstate,
jni, which is identified by the empirical value of βγ, that is

FIG. 2. The preons conjectured to be present at the crossings are not shown in these figures.
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in turn determined by measurement of the physical observ-
ables from the new Lagrangian.
To obtain the knot Lagrangian the standard Lagrangian

will be replaced term by term beginning with the
mass terms.

B. The mass terms

In the standard model L and φ are isotopic doublets
while (L̄φ) and R are isotopic singlets. We retain this
isotopic structure and continue to follow the standard
model by going to the unitary gauge where φ has a single
component which is neutral. In passing to the SLq(2)
algebra we assume that φ is a SLq(2) singlet.
To obtain the mass term for the leptons, we write for the

left chiral fields

LðlÞ ¼

0
B@ ν̂L D

3
2

−3
2
3
2

l̂L D
3
2
3
2
3
2

1
CA →

�
ν̂Lc3

l̂La3

�
(74)

where
� ν
l

�
L
is the doublet of the standard model and

� ν̂L
l̂L

�
is the corresponding doublet of the knot model. In

the following equations the knot symbol, □̂, will be
dropped in some terms but should be understood. The
numerical coefficients in Dj

mm0 have been temporarily

dropped and the monomials D
3
2

−3
2
3
2

and D
3
2
3
2
3
2

have been

replaced by c3 and a3. Now, having assumed that φ is a
SLq(2) singlet and that the knot factors for R and L are the
same, one has

L̄ðlÞφlRðlÞ ¼
��

ν̄Lc̄3 l̄Lā3
�
·

�
0

ρl

��
ðlRa3Þ: (75)

Here the Higgs doublet is in the unitary gauge and ρl is its
neutral component.
Then

L̄ðlÞφlRðlÞ ¼ ρlðā3a3Þ · l̄LlR: (76)

Similarly

R̄ðlÞφ̄lLðlÞ ¼ ðā3l̄RÞ ·
��

0 ρl
�
·

�
νLc3

lLa3

��
(77)

¼ ρlðā3a3Þl̄RlL: (78)

Hence

L̄ðlÞφlRðlÞ þ R̄ðlÞφ̄lLðlÞ ¼ ρlðā3a3Þðl̄LlR þ l̄RlLÞ (79)

and

hnjL̄ðlÞφlRðlÞ þ R̄ðlÞφ̄lLðlÞjni ¼ ρlhnjā3a3jniðl̄lÞ ¼ mll̄l

(80)

where

ml ¼ ρlhnjā3a3jni (81)

and ρl is the vacuum expectation value of the Higgs that
fixes the lepton masses [multiplied by numerical factors
dropped in (74)].
In (81) ā3a3 is an operator holding for any member of the

lepton family and by the algebra (1) is expressible as a
simple polynomial in bc. We shall distinguish the three
mass states by jni, n ¼ 0; 1; 2, where jni is an eigenstate of
b and c and of the mass operator, expressed as a function of
b and c. We therefore replace the lepton contribution to the
mass term of the standard model by

X
n

hnjL̄lφlRl þ R̄lφ̄lLljni (82)

where n is summed over the three generations of leptons.
Since hnjā3a3jni depends on nwhile ρl does not depend on
n, one may compute the mass ratios mτ

mμ
and mμ

me
from (81) in

terms of the eigenvalues β and γ of b and c on the ground
state j0i[9,10].
To obtain the neutrino masses one needs a conjugate

Higgs doublet
� ρν
0

�
: Then

��
ν̄Lc̄3 l̄Lā3

�� ρν
0

��
ðνRc3Þ ¼ ρνðc̄3c3Þν̄LνR (83)

and

L̄νφνRν þ R̄νφ̄νLν ¼ mνν̄ν (84)

where

mν ¼ ρνhnjc̄3c3jni: (85)

The same discussion may be repeated for the up and
down members of the quark doublet, and summarized by
replacing the mass term of the standard model by [9,10]X

i

X
n

hnjL̄ðiÞφðiÞRðiÞ þ R̄ðiÞφ̄ðiÞLðiÞjni (86)

where n is summed over the three generations of each
family and i is summed over the four families:
i ¼ ðl; ν; u; dÞ. The quark masses obtained in same way
as (81) and (85) are

md ¼ ρdhnjb̄2ā · ab2jni (87)

and
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mu ¼ ρuhnjd̄2c̄ · cd2jni: (88)

C. The fermion-boson interaction

In the standard model this interaction is expressed by

iðL̄∇Lþ R̄∇RÞ (89)

where ∇ is the covariant derivative

∇ ¼ ∂ þW (90)

and W is the vector connection

W ¼ igðWþtþ þW−t− þW3t3Þ þ ig0W0t0: (91)

We shall describe in detail only the non-Abelian contri-
bution toW. [The Abelian ðgoÞ term may be described in a
simpler way.]
To go over to the SLq(2) model, replace (Wþ, W−, W3)

according to (70) by

ðWþD3
−30;W

−D3
30;W

3D3
00Þ (92)

and replace

ðWþtþ;W−t−;W3t3Þ (93)

in (91) by

ðWþD3
−30 · tþ;W

−D3
30 · t−;W

3D3
00 · t3Þ (94)

or by

ðWþτþ;W−τ−;W3τ3Þ (95)

where

τ� ¼ c�t�D� (96)

τ3 ¼ c3t3D3: (97)

Here the ðc�; c3Þ are undetermined constants and

Dþ ¼ c3d3ð≡D3
−30=A

3
−30Þ (98)

D− ¼ a3b3ð≡D3
30=A

3
30Þ (99)

D3 ¼ f3ðbcÞð≡D3
00Þ: (100)

In defining Dþ and D− we may set

d ¼ ā c ¼ b̄

i.e., we may identify the creation operators for the d and c
preons with the creation operators for the antiparticles

of the a and b preons, respectively, in agreement with
Table V.
Then

D− ¼ D̄þ:

The A3
�30 numerical factors are absorbed in the c�. The

ðc�; c0Þ will be empirically determined in the next
section 10.
The non-Abelian contribution to the covariant derivative

in the knot model is now

∇ ¼ ∂ þ igðWþτþ þW−τ− þW3τ3Þ (101)

and the non-Abelian part of the fermion-boson interaction
in the knot Lagrangian is

X
i

X
n

hnjL̄ðiÞ∇LðiÞjni (102)

where L, R, and ∇ are now all lying in the SLq(2) algebra,
and where the sum over n is over the three generations,
while the sum over i is over the two doublets. The only
modification of ∇ in going over to the knot model is the
replacement of ~t by ~τ.
We next consider the detailed dependence of (102) on

knot form factors. For the lepton-neutrino doublet we have,
dropping the Feynman slash,

L̄∇L ¼
�
ν̄ l̄

�
L
ð∂ þ igWÞ

�
ν
l

�
L
: (103)

The first term in (103) is

�
ν̄ l̄

�
L
∂
�
ν
l

�
L
¼ ðc̄3ν̄LÞ∂ðc3νLÞ þ ðā3l̄LÞ∂ða3lLÞ
¼ ðc̄3c3Þν̄L∂νL þ ðā3a3Þl̄L∂lL:

(104a)

Here

�
ν
l

�
L
≡

�
c3νL
a3lL

�

is the knot doublet and

�
νL
lL

�

is the doublet of the standard model.
Equation (104a) may be rewritten as

hnj
�
ν̄ l̄

�
L
∂
�
ν
l

�
L
jni ¼ ν̄LΔννL þ l̄LΔllL (104b)
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where

Δν ¼ hnjc̄3c3jni∂ Δl ¼ hnjā3a3jni∂: (104c)

ThenΔν andΔl are modified momentum operators rescaled
with the same factors that rescale the neutrino and lepton
rest masses found in the previous section.
The second term of (103) is by (96), (97), and (101)

�
ν̄ l̄

�
L
W

�
ν

l

�
L

¼
h
c̄3ν̄L ā3 l̄L

i� c3D3W3 cþDþWþ

c−D−W− −c3D3W3

��
c3νL
a3lL

�

(105)

¼
h
c̄3ν̄L ā3 l̄L

i� c3D3W3 · c3νL þ cþDþWþ · a3lL
c−D−W− · c3νL − c3D3W3 · a3lL

�

¼ c3ðc̄3D3c3Þðν̄LW3νLÞ þ cþðc̄3Dþa3Þðν̄LWþlLÞ
þ c−ðā3D−c3Þðl̄LW−νLÞ − c3ðā3D3a3Þðl̄LW3lLÞ:

(106)

There are four form factors stemming from the knot
degrees of freedom, namely:

Fν̄ν ¼ c3hnjc̄3D3c3jni ¼ c3hnjc̄3f3ðbcÞc3jni (107)

Fl̄l ¼ c3hnjā3D3a3jni ¼ c3hnjā3f3ðbcÞa3jni (108)

Fν̄l ¼ cþhnjc̄3Dþa3jni ¼ cþhc̄3ðc3d3Þa3jni (109)

Fl̄ν ¼ c−hnjā3D−c3jni ¼ c−hnjā3ða3b3Þc3jni: (110)

Here f3ðbcÞ ¼ D3
00 as in (100).

Then the interaction is

Fν̄νðν̄LW3νLÞ − Fl̄lðl̄LW3lLÞ þ Fν̄lðν̄LWþlLÞ
þ Fl̄νðl̄LW−νLÞ: (111)

All of these form factors are invariant under Uað1Þ × Ubð1Þ
since a and d, as well as b and c, transform oppositely and
each operator transforms oppositely to its adjoint.
For the up-down quark doublet we have

L̄∇L ¼
�
ū d̄

�
L
ð∂ þ igWÞ

�
u
d

�
L

(112)

where

�
u
d

�
L
¼

�
cd2 · uL
ab2 · dL

�
: (113)

Here again
� u
d

�
L
is the knot doublet while

� uL
dL

�
is the

doublet in the standard model.
The first term of (112) is

�
ū d̄

�
L
∂
�
u

d

�
L

¼ cd2ūL∂ðcd2ÞuL þ ab2d̄L∂ðab2ÞdL
¼ ðcd2cd2ÞūL∂uL þ ðab2ab2Þd̄L∂dL:

(114a)

Equation (114b) may be rewritten as

hnj
�
ū d̄

�
L
∂
�
u
d

�
L
jni ¼ ūLΔuuL þ d̄LΔddL (114b)

where

Δu ¼ hnjcd2cd2jni∂ Δd ¼ hnjab2ab2jni∂: (114c)

Here Δu and Δd are modified momentum operators again
rescaled with the same factors that rescale the rest masses of
the u and d quarks in the previous section.
The second term is

c3½ðcd2ÞD3ðcd2Þ�ðūLW3uLÞ
þ cþ½ðcd2ÞDþðab2Þ�ðūLWþdLÞ
þ c−½ðab2ÞD−ðcd2Þ�ðd̄LW−uLÞ
− c3½ðab2ÞD3ðab2Þ�ðd̄LW3dLÞ: (115)

The interaction term in Eq. (112) is then the sum of four
parts.

FūuðūLW3uLÞ − Fd̄dðd̄LW3dLÞ þ FūdðūLWþdLÞ
þ Fd̄uðd̄LW−uLÞ (116)

where the four form factors are

Fūu ¼ c3hnjcd2f3ðbcÞcd2jni (117)

Fd̄d ¼ c3hnjab2f3ðbcÞab2jni (118)

Fūd ¼ cþhnjðcd2ÞDþðab2Þjni ¼ cþhnjcd2ðc3d3Þab2jni
(119)

Fd̄u ¼ c−hnjðab2ÞD−ðcd2Þjni ¼ c−hnjab2ða3b3Þcd2jni:
(120)

All of these form factors are invariant under Uað1Þ × Ubð1Þ
since a and d transform oppositely as do b and c.
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After passing to SUq(2) all of the four form factors may
be evaluated in terms of q and β where β is the eigenvalue
of b on the ground state.
Since the R fields are SU(2) singlets, they are invariant

under SU(2) transformations and are not subject to SU(2)
interactions. They do transform according to hypercharge
(t0), or rotation charge. These are U(1) gauge transforma-
tions, and R̄∇R is the sum of the following four parts:

hnjc̄3c3jniðν̄Rð∂ þW0ÞνRÞ (121)

hnjā3a3jniðl̄Rð∂ þW0ÞlRÞ (122)

hnjcd2cd2jn > ðūRð∂ þW0ÞuRÞ (123)

hnjab2ab2jn > ðd̄Rð∂ þW0ÞdRÞ: (124)

All these terms are again invariant under Uað1Þ × Ubð1Þ
gauge transformations on the SLq(2) algebra.

D. The Higgs kinetic energy term

The weak neutral couplings are

iðgW3τ3 þ g0W0τ0Þ ¼ iðAAþ ZZÞ (125)

where the t of the standard model has been replaced by τ as
in (101) and

W0 ¼ Acos θ − Z sin θ (126)

W3 ¼ Asin θ þ Z cos θ: (127)

Here θ is the Weinberg angle:

tan θ ¼ g0
g
: (128)

Then

A ¼ g0ðτ3 þ τ0Þ cos θ (129)

Z ¼ gðτ3 − τ0tan2θÞ cos θ: (130)

If j0i is a neutral state

Aj0 >¼ 0: (131)

By (129)

ðτ3 þ τ0Þj0i ¼ 0: (132)

Then by (130)

Zj0i ¼
�

τ3
cos θ

�
j0i: (133)

Then by (91), (125), (131), and (133)

∇ðφj0iÞ ¼ ∂ðφj0i þ ig

�
Wþτþ þW−τ− þ Z

cos θ
τ3

�
ðφj0iÞ
(134)

and

1

2
h0jTr∇μφ∇μφj0i

¼ 1

2
∂μρ∂μρþ g2ρ2

�
IþþW̄

μ
þWþμ þ I−−W̄μ

−W−μ

þ I33
cos2θ

Z̄μZμ

�
(135)

where

φ ¼
�
0

ρ

�

and

Ikk ¼
1

2
Trh0jτ̄kτkj0i k ¼ þ;−; 3 (136)

and Tr is taken over t̄ktk.
To agree with the vector masses that are satisfactorily

given by the standard model we have set h0j0i ¼ 1 and
shall also set

Ikk ¼
1

2
Trh0jτ̄kτkj0i ¼ 1: (137)

Since

τk ¼ cktkDk k ¼ þ;−; 3 (138)

the previously introduced and undetermined constants in
(96) and (97) are now fixed by

jckj−2 ¼
1

2
h0jD̄kDkj0i (139)

where the Dk are given by (98)–(100)
The ck are properly invariant and may be evaluated as

functions of q and jβj2 in the sameway that the form factors
are evaluated in Sec. 9.
We now replace the Higgs kinetic energy term of the

standard model by

1

2
Trh0j∇̄μφ∇μφj0i (140)

where ∇μφ ¼ ∂μφþ ig½Wþτþ þW−τ− þ Z
cos θ τ3�φ is the

knot covariant derivative of the Higgs field.
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E. Field invariants

We replace the field invariant of the standard model by

h0jTrWμλWμλj0i (141)

where Wμλ are the field strengths of the knot model and
where j0i is the ground state of the commuting b and c
operators.
The covariant derivative is

∇μ ¼ ∂μ þWμ (142)

where Wμ is the vector connection

Wμ ¼ igðWþ
μ τþ þW−

μ τ− þW3
μτ3Þ (143)

where τ� and τ3 are given by (96)–(100).
The field strengths are

Wμλ ¼ ½∇μ;∇λ� ¼ ig½∂μW
p
λ − ∂λW

p
μ �τp − g2Wk

μWl
λ½τk; τl�
(144)

and differ from the Wμ and Wμλ of the standard model by
the substitution of τk for tk.
The τ commutators lead to structure coefficients invari-

ant under the gauge transformations Uað1Þ × Ubð1Þ that
leave the SLq(2) algebra invariant and hence are functions
of bc only. The structure coefficients in (144) will therefore
be functions of βγ, the value of bc on the ground state
in (141).

F. Fermion and preon dynamics

Interactions and masses of the fermions and preons are in
principle determined by the Lagrangian described in the
preceding section. The fermions and preons, are described
by the D

3
2 and D

1
2 representations, and interact by the D3

vector bosons and by the D1 vector bosons respectively.
Since the number of preons equals the number of

crossings by (50), one may speculate that the crossings
and preons are pointlike, that there is one preon at each
crossing, and that the elementary fermions are composed of
three preons bound by a trefoil of knot-electroweak and
gluon fields. If this is a realistic picture, there should be
three bound states, corresponding to the three members of
each family, with their observed masses; and assuming that
the preon dynamics is entirely determined by the knotted
action, the calculation of these bound states could be
formulated as a well-defined mathematical problem. On
the other hand, to reach a physically credible picture,
one needs some experimental guidance at relevant
and presumably very high energies. For example, one
should expect the electroproduction of a and d particles
according to

eþ þ e− → aþ dþ…

since they are charged ð� e
3
Þ.

The following decay modes are also kinematically
possible:

Down quarks : D
3
2
3
2
−1
2

→ D
1
2
1
2
1
2

þ D1
1−1 ðab2 → aþ b2Þ

Up quarks : D
3
2

−3
2
−1
2

→ D
1
2

−1
2
1
2

þ D1
−1−1 ðcd2 → cþ d2Þ:

These decays could limit to three the number of gen-
erations by permitting the quark to decay if given a critical
dissociation energy. In that case one would expect the
formation of a preon-quark plasma at a sufficiently high
temperature.
Currently there is data at hadronic energies on electro-

weak reaction rates and on the masses of the three
generations. This data at present constrains and in principle
is predicted by the knot model. To discuss this data we now
introduce some simplifications based on the same physical
picture and on SUq(2), the unitary version of SLq(2). Let us
first consider the masses of the three generations of
fermions.

G. The masses of the fermions [9,10]

The mass terms (81), (85), (87) and (88) of the knot
Lagrangian contain the mass spectra of the four families
that are listed in Table IX [9,10].
These masses are all of the form

ρðm;m0ÞhnjD̄3
2

mm0D
3
2

mm0 jni

where ðm;m0Þ labels the family and n labels the generation.
The jni are eigenstates of D̄

3
2

mm0D
3
2

mm0 . Since the electric
charge is − e

3
ðmþm0Þ, the pair ðm;m0Þ determines both the

mass and the charge.
In this table, as before, only the operator factor of the

monomial D
3
2

mm0 is recorded. The four prefactors
ðρðlÞ; ρðνÞ; ρðdÞ; ρðuÞÞ represent the products of the
numerical factors in D

3
2

mm0 with the Higgs factor. The
magnitude of ρ sets the energy scale and differs for each
family.
The Mði; nÞ in Table IX are invariant under Uað1Þ ×

Ubð1Þ transformations since the preon operators ða; b; c; dÞ
transform oppositely to their adjoints.

TABLE IX. Masses of Elementary Fermions.

i D
3
2

mm0 ðiÞ Mði; nÞ

l a3 ρðlÞhnjā3a3jni
ν c3 ρðνÞhnjc̄3c3jni
d ab2 ρðdÞhnjb̄2ā · ab2jni
u cd2 ρðuÞhnjd̄2c̄ · cd2jni
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To numerically evaluate the expectation values of these
operator products we may go to the unitary version of SLq
(2) by setting

d ¼ ā (145)

c ¼ −q1b̄: (146)

Then

ab ¼ qba aāþ bb̄ ¼ 1 ab̄ ¼ qb̄a

āaþ q21b̄b ¼ 1 bb̄ ¼ b̄b:
(147)

The identification of d with ā and c with b̄ is in
agreement with the physical identification of the creation
operators for the d and c preons with the creation operators,
ā and b̄, for the antiparticles of the a and b preons
respectively. Then the operators ānan and anān are charge
neutral and are expressible in terms of bb̄ which is also
charge neutral.
The reduction of andn to a polynomial in bc may be

shown as follows:

andn ¼ an−1 · ad · dn−1 (148)

¼ an−1ð1þ qbcÞdn−1
¼ an−1dn−1ð1þ q2n−1bcÞ: (149)

By iteration one finds

andn ¼
Y2n−1
s¼1

ð1þ qsbcÞ (150)

and in SUq(2)

anān ¼
Y2n−1
s¼1

ð1 − qs−1bb̄Þ (151)

and

ānan ¼
Yn
s¼1

ð1 − q2s1 bb̄Þ: (152)

We take the states jni in Table IX to be eigenstates of a
mass operator expressed as a function of bb̄. Then the
expectation values for these states are functions of ββ̄, the
eigenvalue of bb̄ on the ground state. The Mði; nÞ are then
functions of ðq; β; nÞ and ρ, but the ratios of the masses in a
single family depend only on ðq; β; nÞ and not on ρ.
The three generations, corresponding to the ground and

two excited states, may be labeled by any three choices of
n. The three expressions for the massMði; nÞ correspond to
the three choices of n within a single family and are

functions of the four parameters of the model ðq; β; n; ρÞ
according to

Mði; nÞ ¼ ρðiÞFðq2; jβj2; nÞ (153)

where Fðq2; jβj2; nÞ is a polynomial in jβj2 of the third
degree, and a polynomial in q2 of the degree determined by
Table IX, Eqs. (151) and (152) and the algebra (1) [9,10].
Depending on the assignment of n to the three gener-

ations, one may determine q and β by Eq. (153) from the
two ratios of the three observed masses [10].

H. Electroweak reaction rates [11]

The matrix elements of the standard model acquire the
following form factors in the corresponding knot model:

hn″jD̄3
2

−3t″
3
−3t″

0

D3
−3t3 0−3t0 0

D
3
2

−3t3−3t0 jni (154)

where n and n″ run over the three generations.
As an example consider

l− þWþ → νl (155)

with the following form factor:

hνljD̄
3
2

−3
2
3
2

D3
−30D

3
2
3
2
3
2

jli: (156)

If this form factor is reduced in the SUq(2) algebra, it
becomes a function of q and β, where β is the eigenvalue of
b on the ground state j0i. Comparison of (156) with
experimental data on lepton-neutrino interactions like
(155) indicates that

ðq; βÞ ≅
�
1;

ffiffiffi
2

p

2

�
(157)

in approximate agreement with the universal Fermi inter-
action [10].
More demanding tests of the model are provided by the

Cabbibo-Kobayashi-Maskawa (CKM) and the Pontecorvo-
Maki-Nakagawa -Sakata (PMNS) matrices that relate to
(154), depending on whether n and n″ label quarks or
leptons and neutrinos. In making these tests we introduce
the further assumption that the flavor states are the
“coherent states,” i.e., the eigenstates of the operators ā
and a, that are raising and lowering operators and thereby
transmute particles of one generation into particles of the
adjoining generation [11].
Starting from the mass states, one may obtain the flavor

states as follows. The orthonormal mass states jn > are
defined to satisfy

jni ¼ ānj0i (158)

hnjn0i ¼ δðn; n0Þ: (159)
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Then ā is a raising operator:

ājni ¼ λnjnþ 1i (160)

and

hnja ¼ λ�nhnþ 1j: (161)

By (159) and (147)

jλnj2 ¼ 1 − q2njβj2: (162)

Similarly, a, working to the right on jni, is a lowering
operator.
Let jα > be an eigenstate of a with eigenvalue α:

ajαi ¼ αjαi (163)

hαjā ¼ hαjα�: (164)

We now compute the matrix element hnjajαi connecting
mass and coherent states.
If a operates to the right, one has by (163)

hnjajαi ¼ αhnjαi (165)

and if it operates to the left, one has by (161)

hnjajαi ¼ λ�nhnþ 1jαi: (166)

Then

hnþ 1jαi ¼ α

λ�n
hnjαi: (167)

By iteration,

hnjαi ¼ αnQ
n−1
0 λ�s

h0jαi (168)

and h0jαi may be fixed by normalizing jαi [11].
Let the flavor states jii be expressed as superpositions of

the mass states jni:

jii ¼
X

jnihnjii (169)

Then the matrix elements between flavor states are related
to the matrix elements between mass states as follows:

hijMji0i ¼
X

hijnihnjMjn0ihn0ji0i: (170)

The mass states are orthonormal but the flavor (coherent)
states are not orthogonal and their normalizations are also
left free to be fixed by the data.

Let

Ni ¼ hijii: (171)

We are now interested in the generalization of (156) to the
cases for which

M ¼ D̄
3
2

m″p″D3
m0p0D

3
2
mp; (172)

when taken between flavor states, describes the weak
vector interactions of all the elementary fermions. In
particular

huðiÞjWþjdði0Þi
¼

X
nn0

huðiÞjuðnÞihuðnÞjWþjdðn0Þihdðn0Þjdði0Þi (173)

hdðiÞjW−juði0Þi
¼

X
nn0

hdðiÞjdðnÞihdðnÞjW−juðn0Þihuðn0Þjuði0Þi (174)

holding for the flavor states of the up and down quarks.
With the same model for the PMNS matrix the form

factor is

hijD̄3
2

−3
2
3
2

D3
00D

3
2

−3
2
3
2

ji0i (175)

where i ¼ 0; 1; 2 label the three generations of neutrino
flavor states.
Because of the Umð1Þ × Um0 ð1Þ symmetry, the matrix

element M in (172) is neutral, i.e., na − nd ¼ nb − nc ¼ 0.
It is therefore a function of b and c only and has no off-
diagonal elements:

hnjMjn0ii ¼ Mnδðn; n0Þ (176)

and by (170)

hijMji0i ¼
X
n

hijniMnhnji0i: (177)

We propose that the quantities jhnjiij correspond to the
matrix elements of the CKM matrix and may be expressed
as a function of
(a) the eigenvalues of a: α
(b) the norms of the eigenstates of a: Ni
(c) the matrix elements of a between neighboring mass

states: λ�n ¼ hnjajnþ 1i.

I. Comments on the present stage
of the model

(1) This model has been used to parametrize flavor
states, the CKM matrix, and mass ratios between
generations.
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(2) The states of composite particles described by Dj
mm0

are superpositions of preon states described by D
1
2

mm0

according to Eq. (49) where the ðt; t3; t0; QÞ describ-
ing Dj

mm0 , are sums of the ðt; t3; t0; QÞp describing

the D
1
2

mm0 of the component preons. For j ¼ 3
2
the

composite particles are the elementary fermions:
leptons, neutrinos, up and down quarks, which are
composed of 3 preons in exact agreement with the
charge and hypercharge assignments of the Harari-
Shupe model and with the experimental data on
which their model is based.

(3) Since the knot dynamics and the preon dynamics are

obtained by adjoining D
3
2

mm0 , and D
1
2

mm0 factors,
respectively, to the field operators of the standard
model as described in Eq. (8), the knot and preon
Lagrangians may be described as two SLq(2) repre-
sentations of the Lagrangian of the standard model
that differ by form factors induced by their different
Dj

mm0 . The so constructed knot and preon actions have
to be either compatible or have to be supplemented or
adjusted. The problem of relating the microscopic
ðj ¼ 1

2
Þ to the macroscopic ðj ¼ 3

2
Þ descriptions has

not been directly addressed but one may try to
approach it with the aid of an effective Hamiltonian.
Basic compatibility between the knot and preon
actions would require that the effective preon Ham-
iltonian have three bound states with the masses and
angular momentum of the observed j ¼ 3

2
leptons,

neutrinos, and up and down quarks.
(4) It is possible to construct effective Hamiltonians

describing three preon systems bound by a trefoil
field as suggested in Fig. 2. If the external loops are
infinitesimal, this structure would resemble a three
particle nucleus like H3. The interaction fields would
be Coulomb- or Yukawa-like, depending on the
masses of the vector preons by which the fermionic
preons interact.
Current experimental knowledge requires very
heavy preons and very small knots and therefore
very strong binding. The binding problem remains a
serious challenge for the model if the preons are
observable as free particles. On the other hand, if the
preons are not observable as free particles, it is
natural to associate them with the crossing points of
the trefoils since the number of preons equals the
number of crossings, or N0 ¼ N as shown in (50)
and (63). Then one possibility is that the preons are
solitonic field concentrations of mass, momentum,
and charge, which occur at the crossing points.

J. The physical interpretation of “q” [12]

In the present context q is a parameter that measures
the deformation of the standard model caused by the

“knotting” of the elementary fermion. The empirical value
of q obtained from electroweak reaction rates is in the
neighborhood of unity. In particular, if the knot identifi-
cation of the flavor states is accepted, then the observed
CKM matrix indicates that the parameter, q, may be very
close to unity. On the other hand, if there is any SLq(2)
substructure at all, the possibility that q is precisely unity is
excluded.
The primary substructure of quantum fields is deter-

mined by the Heisenberg algebra holding for the conjugate
fields and realized by field quanta. Here there is another
substructure determined by the SLq(2) algebra and imple-
mented by preons.
The Heisenberg and SLq(2) algebras may be related by

the following quadratic form:

K ¼ AtεqA (178)

where

εq ¼
�

0 q−
1
2

−q1
2 0

�
ε2q ¼ −1: (179)

This form is invariant under SLq(2) transformations of A.
Choosing

A ¼
�
Dx

x

�
and K ¼ q−

1
2 (180)

one has by (178)–(180) the following SLq(2) invariant
relation

Dxx − qxDx ¼ 1: (181)

Equation (181) is identically satisfied if Dx is chosen as
the q-difference operator, namely

DxΨðxÞ ¼ ΨðqxÞ −ΨðxÞ
qx − x

: (182)

If we introduce

Px ¼
ℏ
i
Dx (183)

then we have the SLq(2) invariant relation

ðPxx − qxPxÞΨðxÞ ¼ ℏ
i
ΨðxÞ: (184)

If q → 1 then (184) becomes the Heisenberg commutator
applied to a quantum state. Otherwise Dx resembles, by
(182), the differentiation operator on a lattice space and q
may play the role of a dimensionless regulator.
In view of the physical evidence suggestive of sub-

structure, which has been described here, as well as the

SLQ(2) EXTENSION OF THE STANDARD MODEL PHYSICAL REVIEW D 89, 125020 (2014)

125020-17



natural appearance of the nonstandard q derivative, it may
be possible to utilize SLq(2) to describe a finer level of
structure than is currently considered.
We have ignored the gravitational field in this paper

since it is not immediately relevant. As we have, however,
discussed the knot symmetries of the fundamental particles,
we have thereby also discussed the knot symmetries of
these sources of the gravitational field. Since one expects
that the symmetries of its source would in some measure be

inherited by the gravitational field itself, it is interesting that
knot states have emerged in a natural way in attempts to
quantize general relativity [13].
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