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We propose a one-parameter family of nonlinear covariant gauges which can be formulated as an
extremization procedure that may be amenable to lattice implementation. At high energies, where the
Gribov ambiguities can be ignored, this reduces to the Curci-Ferrari-Delbourgo-Jarvis gauges. We further
propose a continuum formulation in terms of a local action which is free of Gribov ambiguities and avoids
the Neuberger zero problem of the standard Faddeev-Popov construction. This involves an averaging over
Gribov copies with a nonuniform weight, which introduces a new gauge-fixing parameter. We show that
the proposed gauge-fixed action is perturbatively renormalizable in four dimensions and we provide
explicit expressions of the renormalization factors at one loop. We discuss the possible implications of the
present proposal for the calculation of Yang-Mills correlators.
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I. INTRODUCTION

The understanding of the long distance properties of
non-Abelian gauge theories is a problem of topical impor-
tance. Perturbation theory breaks down at low energies
since the running coupling constant increases without
bound. The highly nontrivial infrared dynamics of Yang-
Mills (YM) fields is thus thought to be accessible only
through nonperturbative techniques. Among existing such
approaches, only lattice calculations can directly access
physical observables. In contrast, continuum methods, such
as truncations of Schwinger-Dyson equations [1,2] or the
nonperturbative renormalization group [3], are based on
computing the basic correlation functions of Yang-Mills
fields and require a gauge-fixing procedure. It is thus of key
importance to have a quantitative understanding of such
correlators.
When possible, gauge-fixed lattice calculations provide

an important benchmark for continuum approaches. An
important issue concerns the algorithmic complexity of
fixing a gauge numerically. For instance, covariant gauges,
which are the most convenient for continuum calculations,
are not easily implemented on the lattice as they require
one to find the roots of a large set of coupled nonlinear
equations. The Landau gauge is a remarkable exception
because it can be formulated as a minimization procedure
well suited to numerical methods and which, for this
reason, has been extensively studied [4–9]. Precise
determinations of the ghost-antighost and gluon two-
point correlators in this gauge have now been obtained.
In particular, these show the so-called decoupling behav-
ior in the infrared, where both the gluon correlator
and the ghost dressing function are finite at zero
momentum [10–17].

However, the Landau gauge is a peculiar representative
of the class of covariant gauges as it possesses additional
symmetries. It is of great interest to investigate other gauges
within both lattice and continuum approaches in order to
distinguish the specific features of the Landau gauge
from more generic ones as well as to study the gauge
dependence—and thus the possible gauge independent
feature—of Yang-Mills correlators.1 Attempts to formulate
general linear covariant gauges on the lattice were made in
[21,22] and, later, in [23,24], but these were not completely
satisfactory. In particular, although the proposal of [24]
solves most of the problems afflicting the methods pro-
posed earlier, it is limited to infinitesimal gauge transforma-
tions as a result of trying to enforce a linear gauge-fixing
condition.
The proposals mentioned above rely on a suitable

extremization procedure. An alternative strategy has been
proposed in [25,26], which is based on sampling each
gauge orbit with a nontrivial measure. This was shown to
be tractable in lattice simulations, although numerically
demanding, and exploratory physical studies were per-
formed [27,28]. However, the corresponding continuum
action appears to be nonrenormalizable [26,29], which
makes a proper continuum limit of lattice calculations
problematic [28]. To our knowledge, this has not been
pursued further.
The second, related issue concerning gauge fixing in

non-Abelian theories is the existence of Gribov ambiguities
[30] for the most common choices of gauge, including
covariant gauges. Continuum approaches are essentially

1For analytical studies of the infrared gluon and ghost
two-point correlators including nonperturbative features, see,
e.g., [18–20].
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based on the standard Faddeev-Popov procedure, which
neglects Gribov copies but which is assumed to be a valid
starting point at sufficiently high energies. On the lattice,
the Faddeev-Popov construction is, however, plagued by
the Neuberger zero problem [31], due to the degenerate
contribution of many Gribov copies with alternating signs.
The easy way to cope with this issue is to pick up a single
copy per gauge orbit. This is the essence of the so-called
minimal Landau gauge [16]. However, such a procedure is
not easy to formulate with continuum approaches, which
complicates the task of comparing results. The Gribov-
Zwanziger proposal [30,32,33] to restrict the path integral
to the first Gribov region is not sufficient since the latter is
not free of Gribov ambiguities [34].2

Recently, two of us proposed an alternative strategy in
the case of the Landau gauge, namely, to average over
Gribov copies in such a way as to lift their degeneracy in
the Faddeev-Popov procedure and avoid the Neuberger
zero problem [36].3 This is somewhat similar to the
proposal of [25,26] mentioned above, but where the
average is restricted to Gribov copies along each gauge
orbit and where we include a sign factor from the Faddev-
Popov determinant. Such an averaging procedure can be
formulated in terms of a local action, suitable to continuum
approaches and, for a proper choice of the weighting
functional, the gauge-fixed theory is perturbatively renor-
malizable in four dimensions. This introduces a new gauge-
fixing parameter, which controls the weight of the different
copies. Remarkably, the resulting theory turns out to be
perturbatively equivalent to a simple massive extension of
the Landau gauge Faddeev-Popov action, namely, the
Curci-Ferrari (CF) model [40], for what concerns the
calculation of ghost and gluon correlators. This is an
exciting result since a one-loop perturbative calculation
in this model had been shown earlier to give a remarkably
good description of lattice data down to the deep infrared
regime [41]. In particular, the model was shown to possess
infrared safe renormalization group trajectories, with no
Landau pole.
The aim of the present paper is twofold and concerns the

two issues mentioned above. In Sec. II, we express a one-
parameter family of nonlinear covariant gauges as an
extremization procedure valid for arbitrary, finite gauge
transformations. The corresponding extremization func-
tional generalizes the one of [24] and presents good
properties for the purpose of numerical extremization

(minimization) techniques. Neglecting Gribov ambiguities
issues—which should be justified at high energies—and
implementing the standard Faddeev-Popov procedure leads
to the Curci-Ferrari-Delbourgo-Jarvis (CFDJ) Lagrangian
[40,42]. The latter is a perfectly valid gauge-fixedLagrangian,
with all good properties, including unitarity, but with Gribov
ambiguities.
In the second part of the paper, we extend the method of

Ref. [36] to deal with these Gribov copies. This involves a
suitable averaging procedure along each gauge orbit, which
we treat formally using the replica trick, borrowed from the
theory of disordered systems in statistical physics [43].
This allows us to formulate our gauge-fixing procedure in
terms of a local action. The resulting gauge-fixed theory
admits an elegant and powerful superfield description. It
describes a set of replicated supersymmetric nonlinear
sigma models coupled to a massive extension of the
CFDJ Lagrangian, the general CF Lagrangian [40]. In
contrast to the case of the Landau gauge studied in [36], we
find that the nonlinear sigma model sector does not
decouple in that case, leading to explicit differences with
the CF model. This is presented in Sec. III. We analyze the
symmetries of our gauge-fixed Lagrangian and prove its
perturbative renormalizability in four dimensions to all
orders in Sec. IV. We then derive the Feynman rules
of the theory in Sec. V and we compute explicitly the
renormalization factors at one-loop order in Sec. VI.
We emphasize that the extremization functional pro-

posed in Sec. II is a slight generalization of the one
routinely employed for the Landau gauge. It is thus
interesting to investigate its numerical implementation by
means of existing techniques, e.g., along the lines of
Refs. [24,44,45]. We hope the present paper will motivate
such studies. We expect that for some value of the
weighting parameter, the average over Gribov copies
described in Sec. III is essentially equivalent to picking
up a random copy, as in the minimal Landau gauge. In that
case, our proposal predicts specific features for the basic
Yang-Mills correlators. For instance, we expect the ghost
correlator to develop a mass gap at vanishing momentum,
as discussed in Sec. VII, which may improve the infrared
properties of perturbation theory. We also briefly mention
in Sec. VII specific two-point correlators that can be
computed by numerical and analytical means and which
may carry interesting information concerning the role of
Gribov copies.
Some technical details and additional material are

presented in the Appendices. We discuss some aspects
of the issue of numerical minimization in Appendix A. In
particular, we show how the standard Los Alamos mini-
mization algorithm can be straightforwardly generalized to
the present proposal. Appendix B shows how to exploit
fully the replica symmetry relevant to our proof of
renormalizability. In Appendix C, we describe an alter-
native formulation of our proposal which does not use the

2A refined version of the Gribov-Zwanziger scenario leads to
predictions for the ghost and gluon two-point correlators which
describe well the lattice data in the Landau gauge [35]. An
extension of the Gribov-Zwanziger scenario to linear gauges has
been studied in [19].

3A similar proposal has been made earlier in Ref. [37]. We
thank L. von Smekal for bringing this to our attention. For other
proposals addressing the Neuberger zero problem, see, e.g.,
Refs. [38,39] and references therein.
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superfield formalism. We provide explicit one-loop results
in this context and discuss in detail the relation to the
superfield formalism, which involves composite field
renormalization. Finally, we discuss the specific features
of the Landau gauge in Appendix D.

II. THE GAUGE-FIXING PROCEDURE

The classical action of the SUðNÞ Yang-Mills theory
reads, in d-dimensional Euclidean space,

SYM½A� ¼
1

4

Z
x
ðFa

μνÞ2; ð1Þ

where
R
x ≡
R
ddx and

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ g0fabcAb

μAc
ν; ð2Þ

where g0 is the (bare) coupling constant and a summation
over spatial and color indices is understood. In the
following we use the convention that fields written without
an explicit color index are contracted with the generators ta

of SUðNÞ in the fundamental representation and are thus
N × N matrix fields, e.g., Aμ ¼ Aa

μta. Our normalization for
the generators is such that

tatb ¼ δab

2N
1þ ifabc þ dabc

2
tc; ð3Þ

with fabc and dabc, the usual totally antisymmetric
and totally symmetric tensors of SUðNÞ. In particular,
we have

trðtatbÞ ¼ δab

2
: ð4Þ

In order to fix the gauge, we consider the functional

H½A; η; U� ¼
Z
x
tr
�
ðAU

μ Þ2 þ
U†ηþ η†U

2

�
ð5Þ

for each field configuration Aμ, where η is an arbitrary
N × N matrix field and

AU
μ ¼ UAμU† þ i

g0
U∂μU† ð6Þ

is the gauge transform of Aμ with a gauge element
U ∈ SUðNÞ. We define our gauge condition as (one of)
the extrema of H with respect to U. The latter can be
obtained by writing U → VU with V ¼ eig0λ and expand-
ing in λ. Using AV

μ ¼ Aμ þDμλþOðλ2Þ, with the usual
covariant derivative

ðDμφÞa ¼ Dab
μ φb ¼ ∂μφ

a þ g0fabcAb
μφ

c ð7Þ

for any field φ in the adjoint representation of SUðNÞ, we
obtain the covariant gauge condition4

ð∂μAU
μ Þa ¼

ig0
2

tr½taðUη† − ηU†Þ�: ð8Þ

This can be used as a gauge condition for any η.
Alternatively, we can average over η with a given
distribution P½η�. Here, we choose a simple Gaussian
distribution5

P½η� ¼ N exp

�
− g20
4ξ0

Z
x
tr η†η

�
; ð9Þ

with N a normalization factor.
Equation (5) is a simple generalization of the extremiza-

tion functional routinely employed in lattice calculations in
the Landau gauge [which is recovered for η ¼ 0, that is, by
choosing ξ0 ¼ 0 in Eq. (9)] and presents similar good
properties for the purpose of numerical minimization
techniques.6 In this line of thought, we emphasize that a
somewhat similar extremization procedure has been pro-
posed and implemented in actual lattice calculations in
Ref. [24]. There, the authors considered a similar functional
as (5), with iη constrained to belong to the Lie algebra of
the gauge group, with the aim of enforcing a linear gauge
condition.7 We see from Eq. (8) that this is only valid for
gauge transformations close to the identity: U ¼ 1þ ig0λ.
Here, we do not insist on having a linear gauge fixing and
Eq. (8) holds for arbitrary U along the whole gauge orbit.
Another important difference lies in the sampling (9) over
the matrix field η. Here, the latter is not restricted to the Lie
algebra of the gauge group, which leads to a different gauge
fixing (see below). However, we believe that the numerical
implementation of Ref. [24] is not restricted to infinitesimal
gauge transformations in principle and we do not expect the

4The gauge condition selects particular representatives U
along the gauge orbit of a given field configuration A. In principle
this can always be written as a condition in the space of field
configurations, namely, in terms of A alone. For instance, the
Landau gauge condition can be written ∂μAμ ¼ 0. In the present
case, such a rewriting is difficult since the gauge transformation
field U genuinely appears in the gauge-fixing condition.

5We shall see below that this choice is convenient for being
able to factor out the volume of the gauge group in a continuum
formulation. Moreover, we mention that more complicated
distributions, involving either non-Gaussian or derivative terms,
would lead to nonrenormalizable actions in the procedure
described in Sec. III.

6Usual numerical minimization techniques require that the
discretized version of the minimization functional be linear in the
gauge transformation matrix UðxÞ at each lattice point. This is
the case of the standard discretization of the Landau gauge term,
the first one on the right-hand side of Eq. (5) and this is obviously
true for the second, η-dependent term as well; see the discussion
in Appendix A.

7Linear covariant gauges correspond to demanding that
∂μAU

μ ¼ ϕ, with ϕ independent of U.
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different sampling on η to be an issue for what concerns the
question of numerical minimization. It would thus be of
great interest to investigate whether the numerical methods
employed in [24,44,45] apply to the present proposal.
To gain more insight on the gauge-fixing procedure

described above, let us consider the ultraviolet regime
where the standard Faddeev-Popov procedure is justified
because Gribov copies are irrelevant. Setting, again,
U → eig0λU in (8) and expanding in λ, we obtain the
Faddeev-Popov operator�
∂μDac

μ ½AU�þg20
2
trðtatcUη†þηU†tctaÞ

�
δðdÞðx−yÞ; ð10Þ

where the derivatives act on the variable x and where the
covariant derivative, defined in (7), is to be evaluated at
AUðxÞ. Introducing a Nakanishi-Lautrup field ih to account
for the gauge condition (8) as well as ghost and antighost
fields c and c̄ to cope for the corresponding Jacobian, the
Faddeev-Popov gauge-fixed action reads, for a given
external field η,

Sηgf ½A; c; c̄; h; U� ¼ SYM½A� þ SηFP½A; c; c̄; h; U�; ð11Þ

with

SηFP½A; c; c̄; h; U� ¼
Z
x

�
∂μc̄aDμ½AU�ca þ ihað∂μAU

μ Þa

þ g0
2
tr½η†Rþ R†η�

�
; ð12Þ

where we introduced8

R ¼ ðh − g0c̄cÞU: ð13Þ

It is important to notice here that the effective action (12)
depends separately on A and U, not only on the combi-
nation AU, which makes the standard Faddeev-Popov trick
of factorizing out a volume of the gauge group inapplicable.
Here, the sampling (9) over η is of great help sinceZ

DηP½η�e−
g0
2

R
x
tr½η†RþR†η� ∝ eξ0

R
x
tr½R†R� ð14Þ

does not depend explicitly on U anymore.9 The resulting
gauge-fixed action is of the form SYM½A� þ SFP½AU; c; c̄; h�
and one can factor out the volume of the gauge group in the
standard manner. Remarkably the calculation of tr½R†R� in
(14) yields, after some simple algebra,

Sgf ½A; c; c̄; h� ¼ SYM½A� þ SCFDJ½A; c; c̄; h�; ð15Þ

where

SCFDJ½A; c; c̄; h�

¼
Z
x

�
∂μc̄aDμca þ iha∂μAa

μ

þ ξ0

�ðhaÞ2
2

−
g0
2
fabcihac̄bcc −

g20
4
ðfabcc̄bccÞ2

��
ð16Þ

is known as the Curci-Ferrari-Delbourgo-Jarvis gauge-
fixing action [40,42]. Thus, the extremization of the func-
tional (5) together with the Gaussian average (9) provide a
nonperturbative formulation of this class of nonlinear
covariant gauges.
The CFDJ gauges have been much studied in the

literature [40,42,46–48] and are known to possess various
good properties. For instance, they are perturbatively
renormalizable in four dimensions. Also, they have a
nilpotent BRST symmetry and are thus unitary.
However, they have Gribov ambiguities, just as the
Landau gauge. This is not a problem for lattice calculations
as one may easily select a particular copy, as done in the
so-called minimal Landau gauge.

III. AVERAGING OVER GRIBOV COPIES

At an analytical level, the action (16) suffers from the
Neuberger zero problem [31]. The Faddeev-Popov con-
struction ignores the Gribov copies, which contribute to the
partition function with alternating signs and eventually sum
up to zero. In order to cope with this issue, we follow [36]
and lift the degeneracy of the Gribov copies by means of a
suitably chosen nonuniform weight.

A. The general procedure

Gribov copies correspond to the extrema Ui ≡Ui½A; η�
of the functionalH½A; η; U�, Eq. (5), for given A and η. For
any operator O½A�, we define the average over the Gribov
copies of a given field configuration A as10

hO½A�i ¼
R
DηP½η�PiO½AUi �sðiÞe−β0H½A;η;Ui�R

DηP½η�PisðiÞe−β0H½A;η;Ui� ; ð17Þ

8Here, ih ¼ ihata is to be seen as an Hermitian matrix field and
similarly for c and c̄.

9We note that this is not true for the sampling proposed in [24].

10We also considered the following definition:

hO½A�i ¼
Z

DηP½η�
P

iO½AUi �sðiÞe−β0H½A;η;Ui�P
isðiÞe−β0H½A;η;Ui� :

Following the procedure described below, we can express this
gauge fixing in terms of a local field theory. The latter is,
however, more intricate—it induces nontrivial couplings between
replica, see below—and we do not pursue this path further. We
emphasize that in both cases, the average over η is performed
before the one over the Yang-Mills field A.
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where the sums run over all Gribov copies, sðiÞ is the sign
of the functional determinant of the Faddeev-Popov
operator (10) evaluated at U ¼ Ui, and β0 is a free
parameter which controls the lifting of degeneracy between
Gribov copies11 according to the value of the functional
H½A; η; Ui�. Equation (17) defines our gauge-fixing pro-
cedure. This is inspired from the averaging procedure put
forward in [50] to deal with potentials with nontrivial
landscapes in the context of the Random Field Ising Model.12

Once the average (17) has been performed for each
individual gauge-field configuration, we average over the
latter with the Yang-Mills weight, hereafter denoted by an
overall bar:

O½A� ¼
R
DAO½A�e−SYM½A�R
DAe−SYM½A�

: ð18Þ

To summarize, our gauge-fixing procedure amounts to
average first over Gribov copies and then over Yang-
Mills field configurations, that is

hO½A�i: ð19Þ

A crucial remark is in order here; observe that gauge-
invariant operators such that Oinv½AU� ¼ Oinv½A�, are blind
to the average (17): hOinv½A�i ¼ Oinv½A�, which guarantees
that our gauge-fixing procedure does not affect physical
observables. In particular, one has

hOinv½A�i ¼ Oinv½A�: ð20Þ

It is crucial to introduce the denominator in (17) in order for
this fundamental property to hold.

B. Functional integral formulation

The previous gauge fixing can be implemented within a
field-theoretical framework by making use of the identityX
i

X ½Ui�sðiÞ ¼
Z

DðU; c; c̄; hÞX ½U�e−SηFP½AU;c;c̄;h�; ð21Þ

for any functional X ½U�, where SηFP is defined in Eq. (12).
Here, DðU; c; c̄; hÞ≡DUDcDc̄Dh, with DU the Haar
measure on the gauge group. In the following, we collect
the set of fields U, c, c̄ and h in a single symbol V—we
shall see shortly how this can be realized explicitly in a
superfield formulation—and write DðU; c; c̄; hÞ ¼ DV.

Using (21) with X ½U� ¼ O½AU� expf−β0H½A; η; U�g and
performing the integral over the field η with the Gaussian
measure (9), we obtain

hO½A�i ¼
R
DVO½AU�e−SCF½A;V�R

DVe−SCF½A;V�
; ð22Þ

where we denoted

SCF½A;V�≡ SCF½AU; c; c̄; h�; ð23Þ

with

SCF½A; c; c̄; h� ¼ Sβ0 ½A; c; c̄� þ SCFDJ½A; c; c̄; h�: ð24Þ

The action SCFDJ is defined in (16) and

Sβ0 ½A; c; c̄� ¼ β0

Z
x

�
1

2
ðAa

μÞ2 þ ξ0c̄aca
�
: ð25Þ

The gauge-fixing action (24) is a massive extension of the
CFDJ action known as the CF action [40]. Here, the gauge-
fixing parameter β0 induces a mass for both the gluon and
the ghost fields.
We now introduce an elegant and compact superfield

formulation which makes explicit some of the symmetries
of the problem. First, introducing ĥa ¼ iha þ g0

2
fabcc̄bcc,

the action (24) takes the ghost-antighost symmetric
form

SCF ¼
Z
x

�
β0
2
ðAa

μÞ2 þ
1

2
ð∂μc̄aDμca þDμc̄a∂μcaÞ

þ ĥa∂μAa
μ þ ξ0

�
β0c̄aca −

ðĥaÞ2
2

−
g20
8
ðfabcc̄bccÞ2

��
:

ð26Þ

The fields U, c, c̄ and ĥ can be put together in a matrix
superfield V that depends on the Euclidean coordinate x
and two Grassmannian coordinates θ and θ̄ as

Vðx; θ; θ̄Þ ¼ exp fig0ðθ̄cþ c̄θ þ θ̄θĥÞgU; ð27Þ

where ĥ is seen as a real field. V is a SUðNÞ matrix field on
the superspace ðx; θ; θ̄Þ. It is convenient to define an
associated super gauge-field transform as

AV
μ ¼ VAμV† þ i

g0
V∂μV†: ð28Þ

Similarly, we introduce the pure gauge (M ¼ θ; θ̄)

AV
M ¼ i

g0
V∂MV†: ð29Þ

11We mention that the sign-weighted averages over Gribov
copies proposed in [49] correspond to a flat weight in (17)
(β0 ¼ 0) and thus suffer from the Neuberger zero problem [37].

12As was argued in [36] for the case of the Landau gauge, the
denominator in (17) is a sum over real numbers—instead of
integers in the case β0 ¼ 0—and the set of field configurations for
which it may vanish is expected to be of zero measure.
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The Grassmann subspace is taken to be curved with line
element ds2 ¼ gMNdNdM ¼ 2gθθ̄dθ̄dθ, where

gθ̄θ ¼ −gθθ̄ ¼ β0θ̄θ þ 1;

gθ̄θ ¼ −gθθ̄ ¼ β0θ̄θ − 1: ð30Þ

Accordingly, we define the invariant integration measure in
Grassmann coordinates as [48]Z

θ
¼
Z

dθdθ̄g1=2ðθ; θ̄Þ; ð31Þ

where

g1=2ðθ; θ̄Þ ¼ β0θ̄θ − 1: ð32Þ

Here and in the following, we denote the couple of
Grassmann variables ðθ; θ̄Þ by θ. It is an easy exercise to
check that, in terms of the curved Grassmann space and of
the fields (28) and (29), the Curcci-Ferrari action in (22)
takes the particularly compact form of a generalized
masslike term

SCF½A;V� ¼
Z
x;θ

tr

�
ðAV

μ Þ2 þ
ξ0
2
gMNAV

NA
V
M

�
; ð33Þ

which makes explicit a large group of symmetries corre-
sponding to the isometries of the curved superspace.
Equivalently, Eq. (33) can be written as

SCF½A;V� ¼
1

g20

Z
x;θ

tr

�
DμV†DμV þ ξ0

2
gMN∂NV†∂MV

�
;

ð34Þ

where DμV ¼ ∂μV þ ig0VAμ. This is the action of a
supersymmetric nonlinear sigma model coupled to the
gauge field Aμ in a gauge-invariant way. This form of
the action makes explicit the invariance under the gauge
transformations A → AVR and V → VV†

R, with VR ≡ VRðxÞ
a local SUðNÞ matrix.13 Finally, for later purposes, it is
useful to rewrite, again, Eq. (33) as

SCF½A;V� ¼
Z
x;θ

�
1

2
ðLa

μ − Aa
μÞ2 þ

ξ0
4
gMNLa

NL
a
M

�
; ð35Þ

where we introduced the vector fields

Lμ ¼
i
g0

V†∂μV and LM ¼ i
g0

V†∂MV ð36Þ

which belong to the adjoint representation of SUðNÞ.

C. Replicas

The evaluation of Yang-Mills correlators or of physical
quantities with our gauge-fixing procedure involves two
subsequent averages, see Eqs. (17)–(19). The average over
the Gribov copies of a given gauge-field configuration A
produces a complicated, highly nonlocal functional of the
latter because of the nontrivial denominator in Eq. (17) or,
equivalently, Eq. (22). A similar issue arises in the theory of
disordered systems in statistical physics [43]. Consider, for
instance, an Ising model in the presence of quenched
disorder, which means that the typical time scale of disorder
is slow as compared to that of the Ising degrees of freedom.
In that case, one first averages over statistical fluctuations
of the Ising spins for a given disorder configuration and
then over the possible realizations of the latter. Such two-
step averages can be efficiently dealt with by using the
method of replicas [43]. In the present context, the matrix
fields U play the role of the Ising spins and the gauge field
A of the quenched disorder.
In its simplest version, the replica trick consists in

writing formally the denominator of Eq. (22) as

1R
DVe−SCF½A;V�

¼ lim
n→0

�Z
DVe−SCF½A;V�

�
n−1

¼ lim
n→0

Z Yn−1
k¼1

ðDVke−SCF½A;Vk�Þ: ð37Þ

Here and below, the limit is to be understood as the value of
the (analytically continued) function of n on the right-hand
side when n → 0. The average over the disorder field A can
then be formally written as

hO½A�i ¼ lim
n→0

R
DAðQn

k¼1DVkÞO½AU1 �e−S½A;fVg�R
DAe−SYM½A�

; ð38Þ

where

S½A; fVg� ¼ SYM½A� þ
Xn
k¼1

SCF½A;Vk�: ð39Þ

Finally, using Eq. (38) with O½A� ¼ 1, we obtain the more
convenient expression

hO½A�i ¼ lim
n→0

R
DAðQn

k¼1DVkÞO½AU1 �e−S½A;fVg�R
DAðQn

k¼1DVkÞe−S½A;fVg�
: ð40Þ

Here, the choice of the replica k ¼ 1 is arbitrary because of
the obvious symmetry between replicas.

13In terms of the original fields U, c, c̄, and h, see Eq. (27),
such transformations only affect U → UV†

R and leave c, c̄, and h
invariant. Here, it is essential to recall that the action SCF
appearing in Eq. (22) is to be evaluated at A ¼ AU. The invariance
mentioned here follows from the fact that AU→ ðAVRÞUV†

R ¼AU.
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It may be necessary, e.g., for analytic approaches, to
explicitly factor out the volume of the gauge group

R
DU.

This can be done by performing the change of variables
A → AU1 and Uk → UkU−1

1 , ∀k > 1 in (40). Renaming
ðc1; c̄1; h1Þ → ðc; c̄; hÞ, we get

hO½A�i ¼ lim
n→0

R
DðA; c; c̄; h; fVgÞO½A�e−S½A;c;c̄;h;fVg�R
DðA; c; c̄; h; fVgÞe−S½A;c;c̄;h;fVg� ;

ð41Þ

with DðA; c; c̄; h; fVgÞ≡DðA; c; c̄; hÞðQn
k¼2DVkÞ and

S½A; c; c̄; h; fVg� ¼ SYM½A� þ SCF½A; c; c̄; h�

þ
Xn
k¼2

SCF½A;Vk�; ð42Þ

where we used the notation (23) in the last line. Thus,
we see that Eq. (39) describes a collection of n gauged
supersymmetric nonlinear sigma models coupled to the
Yang-Mills field A. It is invariant under the local right color
rotations A → AVR and Vk → VkV

†
R, ∀k ¼ 1;…; n. This

symmetry gets explicitly broken after one replica is singled
out to extract the volume of the gauge group. The action
(42) describes n − 1 gauged supersymmetric nonlinear
sigma models coupled to a gauge-fixed Yang-Mills field
with gauge-fixing action SCF½A; c; c̄; h�. As discussed
below, the action (42) possesses a BRST symmetry as a
remnant of the original gauge symmetry.

IV. RENORMALIZABILITY

A. Symmetries

We now prove the perturbative renormalizability of the
action (42) in d ¼ 4. This is nontrivial given the presence of
nonlinear sigma models, which are, in general, renorma-
lizable in d ¼ 2. Our proof follows standard arguments
[51,52] and consists in identifying all local terms of mass
dimension less than or equal to 4,14 compatible with the
symmetries of the theory in the effective action Γ.
Let us first list the symmetries of the action (42) that are

realized linearly. Apart from the global SUðNÞ color
symmetry and the isometries of the Euclidean space
R4, there are the net ghost number conservation
(c → eiϵc, c̄ → e−iϵc̄) and the isometries of the curved
Grassmann space. The latter only impact the superfields:
Vk → Vk þ XM∂MVk, with M ¼ θ; θ̄, where XM is one of
the five independent Killing vectors on the Grassmann
space [48]. At the level of the effective action, these

symmetries simply imply that terms involving
Grassmann variables should be written in a covariant
way: integrals always come with the proper integration
measure, see (31), and derivatives are contracted with
proper tensors [48]. An important remark to be made is
that these transformations apply to each individual replica
superfield Vk, independently of the others. This implies that
each such superfield comes with its own set of Grassmann
variables. There is also a discrete symmetry under the
permutation of the replicas: Vk ↔ Vl for k; l ¼ 2;…; n.
These linear transformations are also symmetries of the

effective action Γ and directly constrain the possible
divergent terms. We shall also exploit the fact that the
choice of the replica k ¼ 1 singled out in (41)–(42), being
arbitrary, the divergences associated with the fields c, c̄,
and h are the same as those associated with ck, c̄k, and hk
for k ≥ 2.15

The action (42) also admits nonlinear symmetries. One is
a BRST-like symmetry, corresponding to the infinitesimal
transformation

sAa
μ ¼ ∂μca þ g0fabcAb

μcc; sca ¼ −
g0
2
fabccbcc;

sc̄a ¼ iha; siha ¼ β0ca; ð43Þ

and

sVk ¼ −ig0Vkc; k ¼ 2;…; n: ð44Þ

In the sector ðA; c;VkÞ this simply corresponds to a gauge
transformation with Grassmann parameters ca; see the
discussion below Eq. (42). For the analysis to follow, it
proves convenient to employ the linear parametrization of
the SUðNÞ superfield Vk

Vk ¼ ða0k þ ib0kÞ1þ iðaak þ ibakÞta ð45Þ

with an implicit sum over the N2 − 1 color indices. Here,
we choose the aak as the N2 − 1 unconstrained superfields.
The fields a0k, b

0
k, and b

a
k are functions of a

a
k , determined by

the constraint that Vk ∈ SUðNÞ. In practice, we will not
need their explicit expressions. The BRST transformation
(44) of the basic field aak reads

saak ¼ g0
�
−a0kca þ

1

2
fabcabkc

c þ 1

2
dabcbbkc

c
�

ð46Þ

and those of the constrained fields are14This relies onWeinberg’s theorem and assumes, in particular,
that the free propagators decrease sufficiently fast at large
momentum. We show in the next section that all free propagators
decrease at least as fast as 1=p2 at large p, which is a sufficient
condition.

15For instance, upon the change of variables A → AU2 , Uk →
UkU−1

2 for k > 2, U2 → U−1
2 and c ↔ c2, c̄ ↔ c̄2 and h ↔ h2,

one gets that it is now the replica k ¼ 2 which is singled out.
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sa0k ¼
g0
2N

abkc
b; sb0k ¼

g0
2N

bbkc
b;

sbak ¼ g0

�
−b0kca þ

1

2
fabcbbkc

c −
1

2
dabcabkc

c

�
: ð47Þ

It is easy to check that s2 ¼ 0 in the sector ðA; c;VkÞ. The
full BRST transformation is, however, not nilpotent:
s2 ¼ β0t, where t is another nonlinear symmetry of the
problem [53], whose action on the primary fields is

tc̄a ¼ ca; tiha ¼ −
g0
2
fabccbcc; ð48Þ

and tAa
μ ¼ tca ¼ tVk ¼ 0.

Finally, there is a third family of nonlinearly realized
symmetries, one for each replica, which corresponds to
global left color rotations of the nonlinear sigma model
fields Vk → VL;kVk with VL;k ∈ SUðNÞ. These symmetries
are nonlinear because Vk is a constrained superfield. Each
replica superfield can be transformed independently of the
others and there are thus ðN2 − 1Þ × ðn − 1Þ generators.
The infinitesimal transformations are

δakVl ¼ iδkltaVl: ð49Þ

In terms of the representation (45), the transformation of
the basic field aak reads

δaka
b
l ¼ δkl

�
δaba0k þ

1

2
fabcack −

1

2
dabcbck

�
ð50Þ

and those of the constrained fields are

δaka
0
l ¼ −δkl

aak
2N

; δakb
0
l ¼ −δkl

bak
2N

;

δakb
b
l ¼ δkl

�
δabb0k þ

1

2
fabcbck þ

1

2
dabcack

�
: ð51Þ

Wemention that the generators of the nonlinear symmetries
considered above induce a closed (super)algebra:

fs; sg ¼ 2β0t; ½δak; δbl � ¼ iδklfabcδck;

½δak; s� ¼ ½δak; t� ¼ ½s; t� ¼ 0: ð52Þ

We wish to derive Slavnov-Taylor identities associated
with the nonlinear symmetries described above in the form
of Zinn-Justin equations [51,52]. To this aim, we introduce
(super)sources coupled to both the (super)fields and their
variations under s and δak . We define16

S1 ¼
Z
x
fJaμAa

μ þ η̄aca þ c̄aηa þ ihaMa þ K̄a
μsAa

μ þ L̄ascag

þ
Xn
k¼2

Z
x;θ
fP0

ka
0
k þPa

ka
a
k þR0

kb
0
k þRa

kb
a
k þ Q̄0

ksa
0
k

þ Q̄a
ksa

a
k þ T̄0

ksb
0
k þ T̄a

ksb
a
kg ð53Þ

and consider the Legendre transform Γ of the functional
W ¼ ln

R
DðA; c; c̄; h; fVgÞe−SþS1 with respect to the

sources Jaμ, ηa, η̄a, Ma and Pa
k . It is a straightforward

procedure to derive the desired identities [51,52].
Following [52], it proves convenient to introduce a

generalized transformation ~s as

~s ¼
X
φ

Z
x
ð~sφÞ δ

δφ
þ
Xn
k¼2

Z
x;θ
ð~saakÞ

δθ
δaak

ð54Þ

where the sum runs over the fields φ ¼ A; c; c̄; ih. Here, we
introduced the covariant functional derivative δθΓ=δϕ ¼
ðg−1=2ÞδΓ=δϕ, with any superfield ϕ, where the metric
factor g is defined in (31). This accounts for the curved
Grassmann directions. The variations of the fields are
defined as

~sAa
μ ¼ −

δΓ
δK̄a

μ
; ~sca ¼ −

δΓ
δL̄a ; ~saak ¼ −

δθΓ
δQ̄a

k

ð55Þ

and

~sc̄a ¼ iha; ~siha ¼ β0ca: ð56Þ

In analogy with Eq. (54), we introduce the transformations
~t and ~δak defined by their action on the primary fields

~tc̄a ¼ ca; ~tiha ¼ −
δΓ
δL̄a ð57Þ

and

~δakabl ¼ δkl

�
−δab

δθΓ
δP0

k

þ 1

2
fabcack þ

1

2
dabc

δθΓ
δRa

k

�
ð58Þ

with all other variations being zero. With these notations
the relevant symmetry identities read

~sΓ ¼
Xn
k¼2

Z
x;θ

�
P0
k
δθΓ
δQ̄0

k

þ R0
k
δθΓ
δT̄0

k

þ Ra
k
δθΓ
δT̄a

k

�
; ð59Þ

~tΓ ¼ 0; ð60Þ

and

16Note that the variations of the (super)fields under s2,
sδak ¼ δaks, and δakδ

b
l can be fully expressed in terms of either

the (super)fields themselves or their variations under s or δak.
Therefore, they do not require independent (super)sources.
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~δakΓ ¼
Z
x;θ

�
1

2N

�
P0
ka

a
k − R0

k
δθΓ
δRa

k
− Q̄0

k
δθΓ
δQ̄a

k

− T̄0
k
δθΓ
δT̄a

k

�
þ
�
Ra
k
δθΓ
δR0

k

þ Q̄a
k
δθΓ
δQ̄0

k

þ T̄a
k
δθΓ
δT̄0

k

�
þ fabc

2

�
Rb
k
δθΓ
δRc

k
þ Q̄b

k
δθΓ
δQ̄c

k

þ T̄b
k
δθΓ
δT̄c

k

�
−
dabc

2

�
Rb
ka

c
k þ Q̄b

k
δθΓ
δT̄c

k
− T̄b

k
δθΓ
δQ̄c

k

��
: ð61Þ

B. Constraining ultraviolet divergences

The proof of renormalizability follows standard lines
[51,52]. It eventually boils down to constraining the form of
the divergent part Γdiv of the effective action through
the Zinn-Justin equations derived in the previous
subsection. Standard power counting arguments imply that
Γdiv ¼ R d4xLdivðxÞ with Ldiv the most general local
Lagrangian density including operators of mass dimension
lower than or equal to 4 compatible with the symmetries of
the problem. Here, one must take into account the fact that
the Grassmann integration measure has mass dimension
two17: ½dθdθ̄� ¼ 2. This implies that a contribution to Ldiv

of the form
R
θ L2ðx; θÞ is such that the Lagrangian density

L2 is of mass dimension two; a contribution of the formR
θ;θ0 L3ðx; θ; θ0Þ is such that L3 is of mass dimension 0, etc.
The constraints from the linear symmetries listed below

are trivially implemented. In order to write the most general
local Lagrangian Ldiv consistent with power counting and
those symmetries, it is convenient to recall the dimension
and ghost numbers of the building blocks of the action.
These are resumed in Table I. Finally, we recall that each
replica comes with its own set of Grassmann variables and
thus with its own set of isometries. We can thus make a
joint expansion in the number of free replica indices and
Grassmann integrals. By inspection, we see that the
divergent terms are at most linear in the sources. By
analogy with (53), we write

Γdiv ¼ Γ0 − Γ1; ð62Þ

where Γ0 is independent of the sources and

Γ1 ¼
Z
x
fK̄a

μ ~sAa
μ þ L̄a ~scag

þ
Xn
k¼2

Z
x;θ
fP0

k ~a
0
k þ R0

k
~b0k þ Ra

k
~bak

þ Q̄0
kX

0
k þ Q̄a

k ~sa
a
k þ T̄0

kY
0
k þ T̄a

kY
a
kg: ð63Þ

Here, the unknown functions ~sAa
μ, ~sca, and ~saak are defined

in Eq. (55) with Γ → Γdiv. Notice that the functions ~a0k, ~b
0
k,

and ~bak are of dimension zero and can only depend on the
superfields abl . When restricted to the divergent part of the
effective action Γdiv, the variation (58) thus reads

~δakabl ¼ δkl
�
δab ~a0k þ

1

2
fabcack −

1

2
dabc ~bck

�
: ð64Þ

Inserting Eq. (63) in the symmetry identity (59) and
extracting the terms linear in P0

k, R
0
k, and Ra

k , we find that

X0
k ¼ ~s ~a0k; Y0

k ¼ ~s ~b0k; Ya
k ¼ ~s ~bak; ð65Þ

with the transformation ~s defined in (54). Similarly,
extracting the terms linear in the remaining sources in
Eq. (59) as well as the terms linear in the sources in
Eqs. (60) and (61), we conclude that the renormalized
transformations ~s, ~t, and ~δak satisfy the same algebra as the
bare ones, Eq. (52), with the bare parameter β0 appearing
explicitly.
In order to find the most general form for the trans-

formations ~s and ~δak , it proves convenient to group the fields
aak and the unknown functions ~a0k, ~b

0
k, and ~bak in the matrix

~Vk ¼ ð ~a0k þ i ~b0kÞ1þ iðaak þ i ~bakÞta: ð66Þ

The operator ~s is of dimension one and has a ghost number
one. By inspection, we find the most general form of the
renormalized BRST variations of the fields to be

~sAa
μ ¼ κ1∂μca þ ~gfabcAb

μcc; ~sca ¼ −
~g
2
fabccbcc;

~s ~Vk ¼ −i~g ~Vkc; k ¼ 2;…; n: ð67Þ

Similarly we get, for the most general form of the
transformation ~δk,

~δak ~Vl ¼ iδklta ~Vl; ð68Þ

TABLE I. Mass dimension and ghost number of the fields, sources, and Grassmann coordinates.

A c c̄ ih a K̄ L̄ P R Q̄ T̄ θ ∂θ dθ θ̄ ∂ θ̄ dθ̄

Dimension 1 1 1 2 0 2 2 2 2 1 1 −1 1 1 −1 1 1
Ghost number 0 1 −1 0 0 −1 −2 0 0 −1 −1 1 −1 −1 −1 1 1

17This can be seen as follows. The metric of the Grassmann
subspace (30) must be dimensionless. It follows that
½θ� ¼ ½θ̄� ¼ ½β−1=20 � ¼ −1. The identity

R
dθθ ¼ R dθ̄θ̄ ¼ 1 then

implies that ½dθ� ¼ ½dθ̄� ¼ 1.

COVARIANT GAUGES WITHOUT GRIBOV AMBIGUITIES … PHYSICAL REVIEW D 89, 125019 (2014)

125019-9



which shows that ~Vk transforms under a linear representa-
tion of SUðNÞ. It follows that

~V†
k
~Vk ¼ Z1; ð69Þ

with Z a (possibly divergent) constant.
Finally, there remains to determine the source-

independent term Γ0, which satisfies

~sΓ0 ¼ ~tΓ0 ¼ ~δakΓ0 ¼ 0: ð70Þ

Using the fact that, by power counting, there can be at most
two set of Grassmann variables, we parametrize the
solution as

Γ0 ¼
Z
x
L1ðA; c; c̄; hÞ þ

Xn
k¼2

Z
x;θ

L2ðA; c; c̄; h; akðθÞÞ

þ
Xn
k;k0¼2

Z
x;θ;θ0

L3ðakðθÞ; ak0 ðθ0ÞÞ: ð71Þ

Power counting implies that L3 is of mass dimension
zero. Therefore, it cannot involve the fields A, c, c̄, or h.
Similarly, it cannot involve any derivatives ∂μ or ∂M. It
is thus a potential term for the superfields ak and ak0 (or
equivalently ~Vk and ~Vk0). The only possible such term
compatible with the symmetry (68) is a function of
~V†
k
~Vk and ~V†

k0
~Vk0 , which is trivial due to (69) so

that L3 ¼ 0.
Notice that, in the sector (A; c; ~Vk), the transformation ~s

is, up to a multiplicative factor κ1, a (left) gauge trans-
formation with Grassmannian gauge parameter ca and
effective coupling constant ~g=κ1. A trivial solution to
~sL1 ¼ 0 is thus a Yang-Mills-like term with an appropriate
field-strength tensor, see below. It is easy to check that apart
from this term, the combinations

X ¼ β0
2κ1

ðAa
μÞ2 − ~sðAa

μ∂μc̄aÞ; ð72Þ

Y ¼ β0c̄aca − ~s

�
c̄a
�
iha þ ~g

2
fabcc̄bcc

��
ð73Þ

are the only independent solutions to ~sL1 ¼ 0 with
the correct dimension, symmetries, and ghost number.
Thus

L1 ¼
Z1

4
ð ~Fa

μνÞ2 þ κ2X þ κ3
2
Y; ð74Þ

with

~Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ

~g
κ1

fabcAb
μAc

ν: ð75Þ

Explicitly, one has

L1¼
Z1

4
ð ~Fa

μνÞ2þκ2

�
β0
2κ1

ðAa
μÞ2−iAa

μ∂μhaþ∂μc̄a ~sAa
μ

�
þκ3

�
β0c̄acaþ

ðhaÞ2
2

−
~g
2
fabcihac̄bcc−

~g2

4
ðfabcc̄bccÞ2

�
;

ð76Þ

with ~sAa
μ given in (67). This is trivially invariant under ~t

and ~δak .
Let us now consider the nonlinear sigma model sector

L2. The constraint ~δakL2 ¼ 0 is trivially accounted for by
using the SURðNÞ invariants ~V†

k∂…∂ ~Vk, with an arbitrary
number of bosonic and Grassmannian derivatives, as
building blocks. The term with no derivatives is trivial
due to (69). The isometries of the embedding superspace
and the fact that L2 can only contain local terms of mass
dimension lower than two restricts the set of possible
invariants to (M ¼ θ; θ̄)

~Lk;μ ¼
i
~g
~V†
k∂μ

~Vk and ~Lk;M ¼ i
~g
~V†
k∂M

~Vk: ð77Þ

Both ~Lk;μ and ~Lk;M have mass dimension one. Their ghost
numbers are 0 for ~Lk;μ, 1 for ~Lk;θ̄ and −1 for ~Lk;θ. The

variation of ~Lk;μ under ~s is

~s ~La
k;μ ¼ Z∂μca þ ~gfabc ~Lb

k;μc
c: ð78Þ

It follows that ~Lk;μ=Z − Aμ=κ1 transforms covariantly

~s

�
~La
k;μ −

Z
κ1

Aa
μ

�
¼ ~gfabc

�
~Lb
k;μ −

Z
κ1

Ab
μ

�
cc: ð79Þ

Similarly, ~Lk;M transform covariantly:

~s ~La
k;M ¼ −~gfabc ~Lb

k;Mc
c: ð80Þ

The most general dimension two Lagrangian L2 satisfying
~sL2 ¼ 0 is thus

L2 ¼
Z
2

�
~La
k;μ −

Z
κ1

Aa
μ

�
2

þ Z3

4
gMN ~La

k;N
~La
k;M: ð81Þ

We see that the most general divergent part compatible
with the symmetries has the same form as the bare
Lagrangian. This demonstrates the (multiplicative) renor-
malizability of the present theory. So far we have eight
independent renormalization constants κ1;2;3, Z1;2;3, Z, and
~g. As described in Appendix B, the original symmetry
between the replicas k ¼ 1 and k ≥ 2, mentioned in
Sec. IVA, leads to the relations
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Z2Z2 ¼ κ1κ2 and Z3Z2 ¼ κ3 ð82Þ

which reduce the number of independent renormalization
constants to six. In particular, it follows that all replicas
contribute a mass term for the gauge field

Z2Z2

2κ21

Z
θ
ðAa

μÞ2 ¼
β0κ2
2κ1

ðAa
μÞ2; ð83Þ

identical to the one in (76). The total A2 contribution is thus
proportional to n, as expected from the replica symmetry.

C. Relation with perturbation theory

To make a link with perturbation theory, we introduce the
usual renormalized fields and constants as

A ¼
ffiffiffiffiffiffi
ZA

p
Ar; c ¼

ffiffiffiffiffi
Zc

p
cr;

c̄ ¼
ffiffiffiffiffi
Zc

p
c̄r; ih ¼

ffiffiffiffiffiffi
Zh

p
ihr ð84Þ

and

β0 ¼ Zββ; ξ0 ¼ Zξξ; g0 ¼ Zgg: ð85Þ

It is useful to also introduce rescaled Grassmann variables
θr and θ̄r such that the measure (32) reads β0θ̄θ − 1 ¼
βθ̄rθr − 1. We thus define

θ ¼ Z−1=2
β θr; ∂θ ¼ Z1=2

β ∂θr ; dθ ¼ Z1=2
β dθr;

θ̄ ¼ Z−1=2
β θ̄r; ∂ θ̄ ¼ Z1=2

β ∂ θ̄r
; dθ̄ ¼ Z1=2

β dθ̄r: ð86Þ

Accordingly we introduce a renormalized metric as

gMrNr
r ðθrÞ ¼ gMNðθÞ; ð87Þ

with Mr;Nr ¼ θr; θ̄r. In particular, this impliesZ
θ
¼ Zβ

Z
θr

; ð88Þ

where
R
θr
¼ R dθrdθ̄rðβθ̄rθr − 1Þ. Finally, parametrizing

the bare nonlinear model superfields as

Vk ¼ expfig0Λkg; ð89Þ

we define the corresponding renormalized superfields as

Λk ¼
ffiffiffiffiffiffi
ZΛ

Zβ

s
Λr;k: ð90Þ

The replica symmetry imply that ZΛ is the same for all
k ≥ 2. Here, we extracted a factor

ffiffiffiffiffiffi
Zβ

p
in such a way that

the kinetic term of the fields Λa
r;k is normalized as

1

2

Z
θ
ð∂μΛa

kÞ2 ¼
ZΛ

2

Z
θr

ð∂μΛa
r;kÞ2: ð91Þ

For later use, we also mention the identitiesZ
θ
Aa
μ∂μΛa

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZβZΛZA

p Z
θr

Aa
r;μ∂μΛa

r;k ð92Þ

and

ξ0
4

Z
θ
gMN∂NΛa

k∂MΛa
k ¼

ξ0
4

Z
θ
Λa
k□θΛa

k

¼ ZβZΛZξ
ξ

4

Z
θr

Λa
r;k□θrΛ

a
r;k; ð93Þ

where

□θ ¼
1ffiffiffi
g

p ∂M
ffiffiffi
g

p
gMN∂N

¼ 2β0ðθ∂θ þ θ̄∂ θ̄Þ þ 2ð1 − β0θ̄θÞ∂θ∂ θ̄ ð94Þ

and where □θr is defined accordingly with the renormal-

ized metric (87).
To make link with the divergent constants of the previous

section, we need to relate the matrix (66) to the superfield
Λk. We write

~Vk ¼
ffiffiffiffi
Z

p
expfig0 ~Λkg ð95Þ

and expand the exponentials in (89) and (95). Comparing
with the linear parametrizations, Eqs. (45) and (66), we find
~Λk ¼ Λk=

ffiffiffiffi
Z

p þOðΛ2
kÞ. Inserting (84), (85), and (95) in the

expressions (76) and (81) and demanding that the effective
action written in terms of renormalized quantities be finite,
we obtain the following relations for the divergent parts of
the various renormalization factors:

Z1 ¼ 1=ZA; κ2=κ1 ¼ 1=ðZβZAÞ;
κ2κ1 ¼ 1=Zc; κ3 ¼ ξ0=ðZβZξZcÞ;
~g=κ1 ¼ g0=ðZg

ffiffiffiffiffiffi
ZA

p
Þ; Z ¼ ZΛZ2

g=Zβ; ð96Þ
as well as the constraint

Zh ¼ ZβZc; ð97Þ
where we used Eq. (82).
To end this section, we mention that the above results

generalize those of Ref. [36] corresponding to the case of
the Landau gauge, ξ0 ¼ 0. As shown there and rederived in
detail in Appendix D, in that case the number of indepen-
dent renormalization factors is reduced from 6 to 3 thanks
to further nonrenormalization theorems. In particular, one
has ZAZcZβ ¼ Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ ZΛ=Zc ¼ 1.
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V. FEYNMAN RULES

The superfield formalism makes transparent the conse-
quences of the supersymmetries—the isometries of the
curved Grassmann space—for loop diagrams. Here, we
employ the exponential parametrization (89). Expanding
the action (42) in powers of the (super)fields Λk, we obtain
the vertices of the theory. Wework in Euclidean momentum
space. Because of the curvature of the Grassmann sub-
space, it is of no use to introduce Grassmann Fourier
variables. Inverting the quadratic part of the action to obtain
the free two-point correlators therefore requires a bit of
Grassmann algebra. The various correlators in the
ðA; c; c̄; hÞ sector read

½Aa
μð−pÞAb

νðpÞ� ¼ δab
�

PT
μνðpÞ

p2 þ nβ0
þ ξ0PL

μνðpÞ
p2 þ β0ξ0

�
; ð98Þ

where PL
μνðpÞ ¼ pμpν=p2 and PT

μνðpÞ ¼ δμν − pμpν=p2,

½cað−pÞc̄bðpÞ� ¼ δab

p2 þ β0ξ0
; ð99Þ

½ihað−pÞihbðpÞ� ¼ −β0δab

p2 þ β0ξ0
ð100Þ

and

½ihað−pÞAb
μðpÞ� ¼

iδabpμ

p2 þ β0ξ0
: ð101Þ

Here, the square brackets represent an average with the
action (42), with n finite. The correlators (98)–(101)
assume similar forms as in the CF model with the exception
that the square mass term in the transverse part of the
gauge-field correlator gets a factor n from the replicated
superfield sector.18

The correlator of the superfields Λk reads

½Λa
kð−p; θÞΛb

l ðp; θ0Þ� ¼ δab
�
δklδðθ; θ0Þ
p2 þ β0ξ0

þ ξ0ð1þ δklÞ
p2ðp2 þ β0ξ0Þ

�
;

ð102Þ

where δðθ; θ0Þ ¼ g−1=2ðθÞðθ̄ − θ̄0Þðθ − θ0Þ is the covariant
Dirac delta function on the curved Grassmann space:R
θ δðθ; θ0ÞfðθÞ ¼ fðθ0Þ. Notice that, for ξ0 ≠ 0, there is a
nontrivial correlation between different replicas. Finally,
there are nontrivial mixed correlators

½ihað−pÞΛb
kðp; θÞ� ¼

δab

p2 þ β0ξ0
ð103Þ

and

½Λa
kð−p; θÞAb

μðpÞ� ¼
iξ0δabpμ

p2ðp2 þ β0ξ0Þ
: ð104Þ

Besides the obvious replica symmetry between the
replicas k ≥ 2, the symmetry with the fields (c; c̄; h) of
the replica k ¼ 1 is encoded in the structure of the
correlator (102). It is made explicit by using Eq. (27) for
the replica k, with Uk ¼ expfig0λkg and writing

Λa
kðp; θÞ ¼ λakðpÞ þ θ̄cakðpÞ þ c̄akðpÞθ þ θ̄θihakðpÞ þ � � �

ð105Þ

where the dots stand for terms nonlinear in the fields.
Identifying the coefficients of the terms θ, θ̄, and θ̄θ on
both sides of Eq. (102), we obtain ½cakc̄bl � ¼ δkl½cac̄b� and
½ihakihbl � ¼ δkl½ihaihb�. Doing the same exercise with
Eq. (104) one finds that the mixed terms ½hakAb

μ� ¼ 0 ≠
½haAb

μ�. The replica k ¼ 1 which has been singled out to
factor out the volume of the gauge group has a nontrivial
mixing with the gauge field.
The interaction vertices are obtained from terms higher

than quadratic in the fields. From Eq. (42), it appears
clearly that the vertices of the sector (A; c; c̄; h) are identical
to those of the CF model or, equivalently to those of the
CFDJ action. These include the Yang-Mills vertices with
three and four gluons as well as a standard gluon-ghost-
antighost vertex whose expression depends on whether one
employs the nonsymmetric or the symmetric version of the
CF action, Eqs. (16) and (26), respectively. In addition,
there is a four-ghost vertex whose expression also depends
on the choice of the nonsymmetric or symmetric CF action.
Finally, in the case of the nonsymmetric formulation, there
is a hcc̄ vertex.19 These vertices are well known and we do
not recall their expressions here. In the following, we use
the nonsymmetric version of the theory.
The vertices of the replicated nonlinear sigma model

sector are obtained by expanding the exponential (89) in
powers of Λk. In this part of the action, being linear in
the gauge field A, there are vertices with an arbitrary
number of Λk legs and either one or zero gluon leg.
Vertices with no gluon legs involve two (normal or
Grassmann) derivatives whereas those with one gluon
leg come with one normal derivative ∂μ. Furthermore,
since the color structure of these vertices only involve the
antisymmetric tensor fabc, there is no cubic Λ3

k vertex:
fabc∂μΛa

k∂μΛb
kΛ

c
k ¼ fabcgMN∂NΛa

k∂MΛb
kΛ

c
k ¼ 0. Finally

we emphasize that such vertices do not couple different
replicas and are local in Grassmann variables, i.e., they are
proportional to

Q
n−1
iþ1 δðθi; θiþ1Þwhere θi are the couples of

18The CF model is recovered for n ¼ 1.

19An alternative formulation of the theory consists in integrat-
ing out the field h explicitly. This generates a quadratic term
ð∂μAa

μÞ2 and renormalizes the four-ghost and the ghost-gluon
vertices.
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Grassmann variables associated to the n Λk legs.20 As an
example, the lowest order vertex with Λk legs, coming from
the Aμ∂μΛkΛk term in the action, reads

δθ
δΛa

kðp1;θÞ
δθ0

δΛb
l ðp2;θ0Þ

δ

δAc
μðp3Þ

S

¼ i
g0
4
fabcδklð2πÞdδðdÞðp1 þp2 þp3Þδðθ;θ0Þðp1 −p2Þμ:

ð106Þ

For one-loop calculations, only the cubic and quartic
vertices are needed. These include all the vertices of the CF
model described above, the cubic AΛ2

k vertex (106), as well
as the quartic vertices AΛ3

k and Λ4
k. The expression of the

latter is quite cumbersome and we do not give it here. In
fact, at one loop, those quartic vertices appear in tadpole
diagrams for the Λ-Λ and the A-Λ self-energies, as depicted
in Figs. 4 and 5, respectively.
To end this section, we mention that we recover the

Feynman rules of [36] for ξ0 ¼ 0. In that case the superfield
propagator (102) is local in Grassmann space which leads to
dramatic simplifications. In particular, closed loops involv-
ing the superfields Λk vanish and the latter thus effectively
decouple in the calculation of the gauge-field and/or ghost
correlators. It follows that the ξ0 ¼ 0 is perturbatively
equivalent to the corresponding (Landau gauge) CF model.
This is not the case for ξ0 ≠ 0. The superfields do not
decouple and the theory is not equivalent to the CF model.

VI. RENORMALIZATION AT ONE LOOP

In this section, we illustrate the renormalizability of the
theory by computing the divergent parts of the various vertex
functions at one-loop order using the Feynman rules described
above.We explicitly check that the six renormalization factors
introduced in Sec. IV C are enough to make the theory finite.
We work with renormalized fields and parameters21 and
employ dimensional regularization with d ¼ 4 − ε.
We introduce the following notation for renormalized

two-point vertex functions in momentum space:

δ2Γ
δφa

1ðpÞδφb
2ð−pÞ






0

¼ δabΓð2Þ
φ1φ2

ðpÞ; ð107Þ

where φ1;2 denote renormalized fields in the sector
ðAr; cr; c̄r; ihrÞ and the derivative on the left-hand side is
evaluated at vanishing sources. Here, we explicitly extract a
trivial color factor. We use a similar definition and notation
for vertex functions involving the superfields Λr;k,

which now involves a covariant functional derivative
δ=δφaðpÞ → δθ=δΛa

r;kðp; θÞ, as defined in (54).
The one-loop diagrams contributing to the gluon self-

energy are depicted in Fig. 1. There are the usual diagrams
of the CF model plus two diagrams involving the superfield
sector. Let us illustrate the calculation of Feynman dia-
grams with superfield loops on the example of the Λk-loop
diagram. Using the expression of the correlator (102) and
the vertex (106), its contribution to δabΓAμAν

ðpÞ reads

g2

8
facdfbef

Z
ddq
ð2πÞd ðq − rÞμðq − rÞν

×
Xn
k;l¼2

Z
θ;θ0

½Λc
kð−q; θÞΛf

l ðq; θ0Þ�½Λd
kð−r; θÞΛe

l ðr; θ0Þ�

¼ −δab
g2N
2

βξðn − 1Þ

×
Z

ddq
ð2πÞd

ðq − rÞμðq − rÞν
q2ðq2 þ βξÞðr2 þ βξÞ

�
1þ nþ 2

4

βξ

r2

�
ð108Þ

where r ¼ p − q and where we used facdfbcd ¼ Nδab. In
computing the Grassmann structure, we used δðθ; θÞ ¼ 0 andR
θ 1 ¼ β. The UV divergent piece of the resultingmomentum
integral is obtained as a simple pole in 1=ε. The second term
in brackets on the last line of (108) is UV finite. The divergent
contribution of this loop diagram is thus proportional to the
number of replicated nonlinear sigma model fields n − 1.
Moreover, the superficial degree of divergence of the integral
being zero, its divergent part is a constant and can be obtained
by simply setting p ¼ 0. It reads

−δab
g2N
16π2ε

ðn − 1Þβξδμν: ð109Þ

This is a divergent contribution to the gluon square mass.
Each replica k ≥ 2 contributes the same. There is a similar
contribution from the ghost loop, hence from the replica
k ¼ 1, which reads

FIG. 1. One-loop diagrams for the vertex Γð2Þ
AA. We use the

standard graphical conventions for the gluon (wiggly) and ghost
(dashed) lines. The plain line represents the superfield correlator
(102). The second diagram on the second line involves a mixed
A-Λ correlator (104).

20We recall that each replica comes with its own set of
Grassmann variables. We omit the replica index k on the latter
for simplicity.

21Grassmann variables are understood as renormalized ones
throughout this section; see (86).
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−δab
g2N
16π2ε

βξδμν: ð110Þ

We see that the replica k ¼ 1 contributes the same as all the
other replicas and the resulting contribution is thus propor-
tional to nβ, as expected from the replica symmetry.
A simple calculation reveals that other contributions to the
gluon mass only come from transverse gluon loops and are
thus proportional to the transverse gluon mass nβ. It follows
that the total contribution to the gluonmass renormalization is
proportional to nβ, as expected from our general proof of
renormalizability; see Sec. IVC.
The relevant one-loop diagrams are shown in Figs. 1–5

and can be evaluated along similar lines. Introducing the
notation κ ¼ g2N=8π2ε, we obtain, for the divergent parts
of the two-point vertex functions,

Γð2Þdiv
AμAν

ðpÞ ¼ nβδμνZAZβ

�
1þ κ

3þ ξ

4

�
þ p2PT

μνðpÞZA

�
1 − κ

�
13

6
−
ξ

2

��
; ð111Þ

Γð2Þdiv
ihih ðpÞ ¼ −ξZhZξ

�
1þ κ

ξ

4

�
; ð112Þ

Γð2Þdiv
ihAμ

ðpÞ ¼ ipμ

ffiffiffiffiffiffiffiffiffiffiffi
ZAZh

p �
1þ κ

ξ

4

�
; ð113Þ

Γð2Þdiv
cc̄ ðpÞ ¼ p2Zc

�
1 − κ

3 − ξ

4

�
þ βξZcZβZξ

�
1þ κ

ξ

4

�
;

ð114Þ

Γð2Þdiv
ΛkAμ

ðp; θÞ ¼ −ipμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZAZΛZβ

p �
1þ κ

ξ

6

�
; ð115Þ

and

Γð2Þdiv
ΛkΛl

ðp; θ; θ0Þ ¼ p2δklδðθ; θ0ÞZΛ

�
1 − κ

�
3

4
−

ξ

12

��
þ ξ

2
δkl□θδðθ; θ0ÞZΛZξZβ

�
1þ κ

ξ

12

�
:

ð116Þ

Here, we used the definition (94) for the Laplace operator
on the curved Grassmann space as well as the identity
□θδðθ; θ0Þ ¼ −2þ 2βδðθ; θ0Þ. The divergent parts of the
renormalization factors are easily obtained as

ZA ¼ 1þ κ

�
13

6
−
ξ

2

�
; ð117Þ

Zc ¼ 1þ κ

�
3

4
−
ξ

4

�
; ð118Þ

Zβ ¼ 1 − κ

�
35

12
−
ξ

4

�
; ð119Þ

Zξ ¼ 1þ κ

�
13

6
−
ξ

4

�
; ð120Þ

ZΛ ¼ 1þ κ

�
3

4
−

ξ

12

�
: ð121Þ

We verify Eq. (97) at this order of approximation:

Zh ¼ ZβZc ¼ 1 − κ
13

6
: ð122Þ

The nine divergent structures of Eqs. (111)–(116) are
renormalized by the five independent counterterms
(117)–(121). Observe, in particular, that nontrivial corre-
lations between different replicas do develop but are UV
finite. The contrary would spoil the renormalizability of the
theory. The remaining renormalization constant Zg can be
determined from the ghost-gluon vertex Acc̄. At one-loop

FIG. 3. One-loop diagrams for the vertex Γð2Þ
cc̄ . The last two

diagrams involve the mixed h-A correlator (101).

FIG. 4. One-loop diagrams for the vertex Γð2Þ
ΛΛ.

FIG. 5. One-loop diagrams for the vertex Γð2Þ
AΛ.

FIG. 2. One-loop diagrams for the vertices Γð2Þ
ihih (left) and Γð2Þ

Aih
(right). Double lines stands for the field ih.
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order, there is only one diagram involving superfields
contributing to the latter, which is trivially finite.
Therefore, the calculation of the divergent contribution
follows the corresponding one in the CF model and the
renormalization factor can be taken from the existing
literature, see, e.g., Refs. [54,55]22:

Zg ¼ 1 − κ
11

6
: ð123Þ

We notice that the divergent parts of the renormalization
factors are independent of n at one loop. We thus recover
the expressions of the independent factors ZA, Zc, Zβ, Zξ,
and Zg of the CF model (which, we recall, corresponds to
n ¼ 1), where Zβ is identified to the square mass renorm-
alization factor; see [54,55].23 We do not see any reason for
this trivial n dependence to hold beyond one loop and we
expect explicit differences with the CF model to arise at
higher loop orders. We stress that such differences already
arise at one-loop order in the finite parts of the vertex
functions. Similarly, the factor ZΛ is a specific feature of the
present theory which, contrarily to the CF model, is an
actual gauge-fixed version of Yang-Mills theories. It is
interesting to relate it to the normalization Z of the SUðNÞ
matrix superfields; see Eq. (69). The last relation (96) gives,
at one loop,

Z ¼ 1 − κ
ξ

3
: ð124Þ

Again, we check that, in the Landau gauge, we recover the
results of [36], as discussed in Appendix D: Z ¼ 1
and ZΛ ¼ Zc.
As a final comment, we mention that in a wide variety of

renormalization schemes, one can deduce the beta func-
tions of the theory in the UV from the divergent parts of the
counterterms, obtained here at one loop. In particular, from
Eq. (123), we recover the universal one-loop beta function
for the coupling constant for any finite value of n.
Therefore, the presence of replicated scalar fields does
not affect the asymptotic freedom of the theory, as expected
since these fields arise from a particular gauge-fixing
procedure. This happens because the replicated scalar
fields come together with replicated ghost and antighost
fields which cancel their contribution to the beta function.
Just as the renormalizability of the theory described here,

this is a consequence of the supersymmetry of the
action (34).

VII. SUMMARY AND PERSPECTIVES

We have proposed a formulation of a class of nonlinear
covariant gauges as an extremization procedure, which
has good properties for the purpose of numerical mini-
mization techniques. It is of great interest to investigate its
possible lattice implementation, e.g., along the lines of
Refs. [24,44,45]. Ignoring Gribov ambiguities, which is
probably a valid procedure in the UV regime, this class of
gauge is equivalent to the CFDJ gauges. Gribov ambiguities,
which corresponding to various possible extrema, can be
handled in lattice calculations, e.g., by selecting a given
extremum (minimum) as done in the minimal Landau gauge.
We have applied the method proposed in Ref. [36] to

deal with Gribov ambiguities in an analytical way, which
amounts to averaging over the Gribov copies along each
gauge orbit with a suitable weight. This lifts the degeneracy
between the different copies and avoids the usual
Neuberger zero problem. We have shown that our averag-
ing procedure can be formulated as a local action that is
perturbatively renormalizable in d ¼ 4. This requires a set
of six independent renormalization factors. We have
provided explicit expressions of the latter at one-loop order
in perturbation theory.
The resulting gauge-fixed theory has the form of the CF

model augmented by a nontrivial sector of replicated scalar,
ghost, and antighost fields, which can be written as
supersymmetric nonlinear sigma models coupled to the
gauge field; see Eq. (42). This extends the proposal of
Ref. [36] away from the particular case of the Landau
gauge and provides a more generic framework. For
instance, unlike in the Landau gauge, the nonlinear sigma
model fields do not decouple in the perturbative calculation
of ghost and gluon correlators and the present gauge-fixed
version of the Yang-Mills theory exhibits explicit
differences with the standard CF model.
The present proposal opens the way to both lattice and

continuum studies of Yang-Mills correlators in covariant
gauges away from the Landau gauge. In particular, this
allows one to study the gauge dependence of such
correlators as well as to gain a more generic—and maybe
deeper—understanding of their structure as a function of
momentum and, possibly, of the role of Gribov copies.
Assuming that, for some range of the weighting parameter
β0, the average over Gribov copies proposed here is
essentially equivalent to randomly picking up a single
one,24 we expect the action (42) to provide a good

22The only difference is the mass term nβ for the transverse
part of the gluon correlator. This does not affect the divergent
contribution.

23It follows that the nonrenormalization theorems proved in
[47,48] for the CF model are satisfied at one loop: with the
present definitions of the renormalization factors, they read, for
the divergent parts, ZAZcZβ ¼ Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ Z2

A=Z
2
ξ . Note that in

Refs. [47,48,54] the renormalization factor Zξ is defined as
ZA=Zξ.

24A possible picture is, e.g., that the minima of (5)—the analog
of the first Gribov region in the Landau gauge—are deeper in
average than other extrema in the landscale of (5). In that case, we
expect the minima to be essentially equiprobable for β0 not too
large and other extrema to be suppressed for β0 not too small.
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starting point for an analytic description of the lattice
results. An important observation is that the weighting
parameter β0 provides an effective mass to the various
degrees of freedom of the theory, see Sec. V, and thus
regulates infrared fluctuations. As a consequence, we expect
perturbation theory to be well defined down to the deep
infrared, as in the case of the Landau gauge [41].
A key point in the scenario described in [36] is to

absorb the trivial n dependence of the transverse gluon
correlator, see Eq. (98), in a renormalized square mass
parameter m2, defined as nβ0 ¼ Zm2m2, in such a way that
the latter survives the limit n → 0. It appears natural to
employ a similar renormalization scheme in the present
case in order to recover the Landau gauge scenario in the
limit ξ0 → 0. Similarly, the ghost mass in (99) should
vanish in this limit. This suggests including an n depend-
ence in the renormalization of the parameter ξ0 as well
such that β0ξ0 is finite in the limit n → 0 (to be taken
before the Landau gauge limit). A simple choice is
ξ0=n ¼ Zξ0ξ

0, with ξ0 a finite n-independent renrormalized
gauge-fixing parameter. In this scenario, one has
β0ξ0 → const. whereas ξ0 → 0 in the limit n → 0. Thus,
the only departures from the Landau gauge which survive
this limit are those involving the product β0ξ0. For
instance, a definite prediction is that the ghost correlator,
not only its dressing function, is finite at vanishing
momentum.25 Similarly, we expect from (98) the
longitudinal component of the gluon correlator to
develop a mass gap at zero momentum and to be sup-
pressed by loop effects since its tree-level expression
is ∝ ξ0 → 0.
We stress that the average over Gribov copies proposed

here could, in principle, be implemented on the lattice, e.g.,
along the lines of Ref. [56], at least in the case where
minima dominate. This offers an interesting possibility to
measure new nontrivial quantities such as, in the notations
of Sec. III, hAihAi which, as opposed to the correlator
hAAi, concerns correlations between different gauge orbits
and might thus bring some information concerning the role
of Gribov copies in computing gauged-fixed correlators.
This deserves further investigation.
Finally, we mention that since the BRST symmetry of

the gauge-fixed Yang-Mills action proposed here is not
nilpotent, see Eq. (52), the standard proof of unitarity
does not apply, a situation similar to that of the CF
model [40,46,57]. It is important to study the question
of unitarity in the present context and, in particular, the
possible role of the replicated (super)fields and/or of the
limit n → 0.
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APPENDIX A: LATTICE FORMULATION AND
MINIMIZATION ALGORITHM

Let us briefly discuss how the Los Alamos minimization
algorithm [58], routinely used in lattice calculations in the
minimal Landau gauge, can be generalized to the functional
(5); see also [59]. We consider the case of the SU(2)
group for simplicity.26 Introducing the lattice link variable
WμðxÞ ¼ exp f−iag0AμðxÞg and the rescaled matrix field
MðxÞ ¼ a2g20ηðxÞ=2, where a is the lattice spacing, a
simple discretization of the extremization functional (5)
reads [16,58,59], up to an irrelevant constant,

Hlatt½W;M;U� ¼ Re tr
X
x

�
M†ðxÞUðxÞ −

Xd
μ¼1

WU
μ ðxÞ

�
;

ðA1Þ

with WU
μ ðxÞ ¼ UðxÞWμðxÞU†ðxþ μ̂Þ the gauge trans-

formed link variable, where μ̂ denotes a lattice link in
the direction μ. The second term on the right-hand side of
Eq. (A1) is the usual discretized version of the Landau
gauge extremization functional. Note that this term, being
the trace of a SU(2) matrix, is bounded from below by
−2dNlatt, where Nlatt is the number of lattice sites. It is easy
to prove that the first term is also bounded from below by
−
P

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tr½M†ðxÞMðxÞ�

p
. For a finite lattice and for a given

matrix field MðxÞ, the previous functional therefore admits
a minimum.27

The Los Alamos procedure, that we aim at generalizing
in this appendix, relies onminimizing the functional (A1) by
making a gauge transformation on one site x. An essential
property in this respect is that the functional to be extremized
is linear in the gauge transformation matrix UðxÞ at each
lattice site x. As is well known, this is the case of the second
termof (A1), and the first termobviously shares this property.
Under the previous restriction, minimizing the functional
(A1) reduces to minimizing

Hlatt½W;M;U� ¼ const − Re trfUðxÞBðxÞg; ðA2Þ
where the matrix BðxÞ can be given the following compact
expression:

25The possibility of a nonperturbative infrared finite
ghost correlator in the Feynman gauge has been discussed in
Ref. [20] in the context of Schwinger-Dyson equations.

26A possible generalization to SU(3) consists in applying
the SU(2) minimization step described below to the three
SU(2) subgroups of SU(3) alternatively.

27With the averaging over M proposed here, see
Eq. (A6) below, the typical value of the lower bound is
∼ − 2ðdþ g0

ffiffiffiffiffi
ξ0

p ÞNlatt.
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BðxÞ ¼ −M†ðxÞ þ
Xd
μ¼−d

WμðxÞU†ðxþ μ̂Þ ðA3Þ

with W−μðxÞ b¼W†
μðx − μ̂Þ and W0ðxÞ b¼ 0. Note that the

matrix B is a generic 2 × 2 matrix with complex entries
because η, and consequently M, are unrestricted in our
implementation, see Sec. II. However, since only the real
part of the trace appears in Eq. (A2), the extremization
procedure is only sensitive to the matrix (σa¼1;2;3 denotes the
Pauli matrices)

CðxÞ ¼ 1
4
trðBðxÞ þ B†ðxÞÞ þ σa

4
tr½σaðBðxÞ − B†ðxÞÞ�;

ðA4Þ

which is proportional to a SU(2) matrix. As is well known
[60], the minimum of (A2) is attained for UðxÞ ¼ UminðxÞ
with:

UminðxÞ ¼
C†ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detCðxÞp : ðA5Þ

The generalization of the standard Los Alamos algorithm
for computing the average of some operator O goes as
follows:

(i) For each configuration of the link variables WμðxÞ
and of the noise field MðxÞ, apply the gauge trans-
formation UðxÞ ¼ UminðxÞ at all even lattice sites
(which can be treated independently) and UðxÞ ¼ 1
at all odd lattice sites. This decreases the functional
(A1). Then perform another minimization step on
odd lattice sites. Repeat these operations until a local
minimum is reached.28

(ii) Compute the operator O for this gauge configura-
tion, and repeat the previous point with another
matrix field M. Perform the average over the matrix
field M with weight, see Eq. (9),

Platt½M� ¼ exp

�
−

1

ξ0g20
tr
X
x

½M†ðxÞMðxÞ�
�
:

ðA6Þ

(iii) Finally, average over gauge links with the
(discretized) Yang-Mills action.

Of course, the above considerations do not guarantee that
the algorithm converges fast enough for actual implemen-
tations,29 but our point here is to demonstrate on this
particular example that standard algorithms used in the
Landau gauge may be easily generalized to the functional
(A1). The Los Alamos minimization step is the basis of
more refined methods such as the (stochastic) over-
relaxation algorithm [62]. We hope this will motivate
lattice studies of the present proposal.

APPENDIX B: REPLICA SYMMETRY

There is an obvious permutation symmetry among the
replicas k > 2. The latter guarantees for instance that Z2 and
Z3 do not depend on k; see Eq. (82). There is also a less
obvious permutation symmetry between the replicas k > 2
and k ¼ 1, which has been (arbitrarily) singled out to factor
out the volume of the gauge group. To exploit this symmetry
we employ a parametrization of ~Vk similar to (27)

~Vk ¼
ffiffiffiffi
Z

p
exp fi~gðC̄kθ þ θ̄Ck þ θ̄θĤkÞg ~Uk; ðB1Þ

with Ĥa
k ¼ iHa

k þ ~g
2
fabcC̄b

kC
c
k and ~U†

k
~Uk ¼ 1. Here, we

introduced the fields (Ck; C̄k; Hk; ~Uk) in order to take into
account a possible renormalization between the bare fields
introduced in (27) and the variables of the effective action Γ.
A simple calculation leads toZ
θ
L2 ¼

Z2Z2

κ1

�
β0
2κ1

ðAa
μÞ2 − iAa

μ∂μHa
k

þ ∂μC̄a
kðκ1∂μCa

k þ ~gfabcAb
μCc

kÞ
�

A¼A ~Uk

þ Z3Z2

�
β0C̄a

kC
a
k þ

ðHa
kÞ2
2

−
~g
2
fabciHa

kC̄
b
kC

c
k

−
~g2

4
ðfabcC̄b

kC
c
kÞ2
�
: ðB2Þ

To make contact with the original fields (ck; c̄k; hk) to which
the replica symmetry applies, we introduce possible renorm-
alization factors as

Ca
k ¼ Ẑccak þ � � � C̄a

k ¼ Ẑcc̄ak þ � � �
iHa

k ¼ Ẑhihak þ ẐA∂μAa
μ þ g0Ẑcc̄fabcc̄bkc

c
k þ � � � ðB3Þ

where the dots stand for terms involving λk and nonlocal
contributions. Here we included all possible local terms
having the correct dimension, ghost number, and symmetry
properties. The replica symmetry guarantees that the factors
Ẑc;h;A;cc̄ above do not depend on k. Inserting (B3) in the
equation above, setting ~Uk ¼ 1, and identifying terms

28Note that there are equivalent classes of noise fields M
which lead to the same extremization problem, Eq. (A2).
Indeed, it is always possible to add to M a traceless, real
matrix, such that C is not changed in Eq. (A4). We stress,
however, that we extremize the functional (A1) with respect to
U at fixed M such that the existence of such equivalent classes
has no influence on the minimization procedure. Our formu-
lation relies on taking into account all the matrices belonging to
the equivalence class and averaging over them with possibly
different weights.

29In practice, it may be important to couple the previous
procedure with some Fourier acceleration methods; see [61].
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involving ðck; c̄k; hkÞ with the corresponding ones involving
ðc; c̄; hÞ in (76), we obtain, after some algebra,

Ẑc ¼ Ẑh ¼ 1 and Ẑcc̄ ¼ ẐA ¼ 0; ðB4Þ
as well as the two relations

Z2Z2 ¼ κ1κ2 and Z3Z2 ¼ κ3; ðB5Þ
which reduce the number of independent renormalization
constants to six. Note that ZA ¼ 0 guarantees that there is no
term ð∂μAa

μÞ2. The relation Z2Z2 ¼ κ1κ2 guarantees that all
replicas contribute the same to the gluon mass squared,
which thus scales as n.

APPENDIX C: FORMULATION
WITHOUT SUPERFIELDS

1. Feynman rules

As mentioned in the main text, we can equivalently
formulate the present gauge-fixed Yang-Mills action without
introducing the superfield formulation. This amounts, e.g., to
work with the action (42) expressed through Eqs. (23)–(26).
Eliminating the fields ĥ and ĥk through the shifts
ĥa → ĥa þ ∂μAa

μ=ξ0, and similarly for ĥk, we obtain

S ¼ SYM½A� þ Sgf½A; c; c̄� þ
Xn
k¼2

Sgf½AUk; ck; c̄k�; ðC1Þ

where

Sgf ½A; c; c̄� ¼
Z
x

�
β0
2
ðAa

μÞ2 þ
ð∂μAa

μÞ2
2ξ0

þ 1

2
ð∂μc̄aDμca þDμc̄a∂μcaÞ

þ β0ξ0c̄aca −
g20ξ0
8

ðfabcc̄bccÞ2
�
: ðC2Þ

To obtain the Feynman rules, we parametrize the SUðNÞ
matrix fields Uk as

Uk ¼ exp fig0λkg ðC3Þ
and expand in powers of λk. The free two-point correlators
are given by Eqs. (98) and (99) and

½cakð−pÞc̄bl ðpÞ� ¼ δab
δkl

p2 þ β0ξ0
; ðC4Þ

½λakð−pÞλbl ðpÞ� ¼ δab
ξ0ð1þ δklÞ

p2ðp2 þ β0ξ0Þ
; ðC5Þ

½λakð−pÞAb
μðpÞ� ¼ δab

iξ0pμ

p2ðp2 þ β0ξ0Þ
: ðC6Þ

The vertices are obtained in a straightforward manner.

2. One-loop results

We have computed explicitly the divergent parts of the
various two-point vertex functions at one-loop order. The
number of vertices—and thus of diagrams—is considerably
larger than with the superfield formulation but the calcu-
lation is straightforward. We introduce the renormalized
fields

ck ¼
ffiffiffiffiffi
Zc

p
cr;k; c̄k ¼

ffiffiffiffiffi
Zc

p
c̄r;k; λk ¼

ffiffiffiffiffi
Zλ

p
λr;k;

ðC7Þ
where the replica symmetry implies that the factor Zc is the
one already introduced in (84) and that Zλ does not depend
on k. We obtain, for the divergent part of the gluon two-
point vertex,

Γð2Þdiv
AμAν

ðpÞ ¼ nβδμνZAZβ

�
1þ κ

3þ ξ

4

�
þ p2PT

μνðpÞZA

�
1 − κ

�
13

6
−
ξ

2

��
−
n
ξ
p2PL

μνðpÞ
ZA

Zξ

�
1þ κ

ξ

4

�
: ðC8Þ

The first two lines are identical to Eq. (111) and the last line
is the renormalization of the ð∂μAa

μÞ2=ξ term in the
formalism with the h fields integrated out. One readily
checks that the renormalization factors obtained in Sec. VI
cancel the divergences in (C8).
The ghost vertex function is unchanged as compared to

the previous calculation in Sec. VI. We thus reproduce
Eq. (114):

Γð2Þdiv
cc̄ ðpÞ ¼ p2Zc

�
1 − κ

3 − ξ

4

�
þ βξZcZβZξ

�
1þ κ

ξ

4

�
;

ðC9Þ
which is finite. The calculation of the replicated ghost

vertex function involves the same diagrams as those of Γð2Þ
cc̄

plus some loops involving the fields λk. It is a nontrivial
check that the latter exactly cancel out (not only their
divergent parts) as expected from the replica symmetry:

Γð2Þ
ckc̄lðpÞ ¼ δklΓ

ð2Þ
cc̄ ðpÞ: ðC10Þ

The two-point vertices involving the fields λk read

Γð2Þdiv
λkAμ

ðpÞ ¼ −ipμβZβ

ffiffiffiffiffiffiffiffiffiffiffi
ZAZλ

p �
1þ κ

ξ

6

�
− ipμ

p2

ξ

ffiffiffiffiffiffiffiffiffiffiffi
ZAZλ

p
Zξ

�
1 − κ

�
3

4
−
ξ

6

��
ðC11Þ

and
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Γð2Þdiv
λkλl

ðpÞ ¼ δklβp2ZλZβ

�
1 − κ

�
3

4
−

ξ

12

��
þ δkl

p4

ξ

Zλ

Zξ

�
1 − κ

�
3

2
−

ξ

12

��
: ðC12Þ

We check that the four divergent structures in (C11)
and (C12) are canceled by the factors ZA, Zβ, and Zξ

determined previously and

Zλ ¼ 1þ κ

�
11

3
−
ξ

3

�
: ðC13Þ

Finally, the coupling renormalization factor Zg is
unchanged as compared to the calculation of Sec. VI.
As expected from the general analysis of Sec. IV B, the
theory can be made finite by adjusting six independent
renormalization factors. The factor ZΛ of the superfield
formulation is replaced by Zλ in the present one. Those two
factors are not independent as we now show.

3. Relation to superfield formalism

We wish to relate the formulation of perturbation theory
of the present section, in terms of the basic fields λk, ck, c̄k,
and hk, to that of the main text, in terms of the superfields
Λk. Identifying the representations (27) and (89) and
using the Campbell-Haussdorf formula for the product of
exponentials, we get

Λk ¼ λk þ θ̄c0k þ c̄0kθ þ θ̄θĥ0k ðC14Þ

with

c0k ¼ ck þ
ig0
2

½ck; λk� −
g20
12

½½ck; λk�; λk� þ � � � ; ðC15Þ

c̄0k ¼ c̄k þ
ig0
2

½c̄k; λk� −
g20
12

½½c̄k; λk�; λk� þ � � � ; ðC16Þ

and

ĥ0k ¼ ĥk þ
ig0
2

½ĥk; λk�

−
g20
12

f½½ĥk; λk�; λk� − ½½c̄k; ck�; λk�g þ � � � ; ðC17Þ

where the dots denote higher order nonlinear terms. The
above relations highlight the fact that the superfield Λk is a
nonlinear composite of the original fields λk, ck, c̄k, and hk.
They hold for the basic fields to be integrated over in the
path integral. Instead, the variables of the effective action Γ
correspond to averages of these integration variables in the
presence of nontrivial sources, e.g., hΛki, where the
brackets denote the relevant average in the presence of
sources as in Eq. (53). In the following, we omit the
brackets for simplicity. At the level of the effective action,

we thus need to take into account the nontrivial renorm-
alization of the nonlinear composite fields (C15)–(C17).
In particular, one has, at linear order,

c0k ¼
ffiffiffiffiffi
Z0
c

p
ck þ � � � ; ðC18Þ

c̄0k ¼
ffiffiffiffiffi
Z0
c

p
c̄k þ � � � ; ðC19Þ

ĥ0k ¼
ffiffiffiffiffiffi
Z0
h

q
ihk þ � � � ; ðC20Þ

where the dots stands for nonlinear and/or nonlocal con-
tributions and where the composite field renormalization
factors Z0

c and Z0
h do not depend on the replica index due to

the replica symmetry. At linear order, we write

Λk ¼ λk þ
ffiffiffiffiffi
Z0
c

p
θ̄ck þ

ffiffiffiffiffi
Z0
c

p
c̄kθ þ

ffiffiffiffiffiffi
Z0
h

q
θ̄θihk þ � � �

ðC21Þ

or, equivalently, introducing renormalized fields as in
Eqs. (84) and (90),ffiffiffiffiffiffi
ZΛ

Zβ

s
Λr;k ¼

ffiffiffiffiffi
Zλ

p
λr;k

þ
ffiffiffiffiffiffiffiffiffiffi
ZcZ0

c

Zβ

s  
θ̄rcr;k þ c̄r;kθr þ

ffiffiffiffiffiffi
Z0
h

Z0
c

s
θ̄rθrihr;k

!
þ � � � ; ðC22Þ

where we used Zh ¼ ZβZc; see Eq. (97).
Now it is easy to check that, for the quadratic part of the

effective action to have the desired expressions in terms of
either the renormalized superfields Λr;k or the renormalized
fields λr;k, cr;k, c̄r;k, and hr;k, we must have

Λr;k ¼ λr;k þ θ̄rcr;k þ c̄r;kθr þ θ̄rθrihr;k þ � � � : ðC23Þ

We conclude that

Z0
h ¼ Z0

c ðC24Þ

and that

Zλ ¼
ZΛ

Zβ
¼ ZcZ0

c

Zβ
: ðC25Þ

The first equality in Eq. (C25) is satisfied at one loop; see
Eqs. (117)–(121). The second equality can be checked at
one loop by a direct calculation of the composite field
renormalization factor Z0

c. Using Eq. (C15) and the appro-
priate Feynman rules, we obtain, after a simple calculation,
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Zc
0 ¼ 1þ κ

ξ

6
: ðC26Þ

This agrees with the second equality in (C25).

APPENDIX D: LANDAU GAUGE

The case ξ0 ¼ 0 studied in [36] exhibits various sim-
plifications as compared to the general class of gauges
studied here. The first obvious one is the fact that the h
sector does not receive any loop corrections, i.e.,

δΓ
δiha

¼ δS
δiha

¼ ∂μAa
μ: ðD1Þ

This can be seen, e.g., by applying a infinitesimal shift
ih → ihþ f under the defining path integral for Γ. In terms
of the divergent constants introduced in Sec. IV B, this
implies that κ2 ¼ 1 or, equivalently [48,63],

ZAZβZc ¼ 1; ðD2Þ
where we used the relation (97).
The next simplification comes from the fact that for

ξ0 ¼ 0, the superfield correlator (102) is ultralocal in
Grassmann space, i.e., it is proportional to δðθ; θ0Þ and
the mixed correlator (104) vanishes. As pointed out in
Ref. [36], since all vertices of the theory are also local in
Grassmann space (for ξ0 ¼ 0 there are no term involving
Grassmann derivatives) it follows that closed loops involv-
ing superfields are proportional to δðθ; θÞ ¼ 0. An impor-
tant consequence is that the Λk sector effectively decouples
in the (perturbative) calculation of correlators in the sector
ðA; c; c̄; hÞ at all orders. The only effect of the superfields
Λk is the mass term nβ0 for the gauge field.
A first consequence of this dramatic simplification for

the renormalizability of the theory is that the usual non-
renormalization theorems of the CF model with ξ0 ¼ 0 are
valid. One of them is the relation (D2) above. The second
one comes from the Taylor theorem, which states that the

ghost-antighost-gluon vertex in a particular momentum
configuration does not receive loop corrections [64]. It
follows that

Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ 1: ðD3Þ

We observe that Eqs. (D2) and (D3) together with the last
relation in Eq. (96) imply that Z ¼ ZΛ=Zc. The second
equality in Eq. (C25), thus shows that the normalization Z
of the nonlinear sigma model superfields is directly related
to the composite field renormalization discussed in
Appendix C: Z ¼ Z0

c.
Another consequence of the absence of loops of the

superfield is the fact that there can be no loop diagram with
only one external Λk leg. This is easy to show by direct
inspection. It follows that those vertices are tree-level
exact, i.e.,

δθΓ
δΛa

k






Λk¼0

¼ δθS
δΛa

k






Λk¼0

¼ −∂μAa
μ: ðD4Þ

Taking into account the rescaling (86) of Grassmann
variables, which implies, together with (90), that

δF ½Λ� ¼
Z
x;θ

δθF
δΛ

δΛ ¼ ffiffiffiffiffiffiffiffiffiffiffi
ZβZΛ

p Z
x;θr

δθF
δΛ

δΛr; ðD5Þ

for any given functional F ½Λ�, we conclude that
ZAZΛZβ ¼ 1. When combined with Eq. (D2), this gives

ZΛ ¼ Zc; ðD6Þ
or, equivalently, Z ¼ 1. Equations (71), (76), (81), together
with the relations (82), (96), (D2), (D3), and (D6),
reproduce the results of [36]. In the Landau gauge, the
number of independent renormalization factors is reduced
from 6 to 3. The relations (D2), (D3), and (D6) are readily
checked from the one-loop results of Sec. VI for ξ ¼ 0.
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