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We consider a flat lattice of dipoles modeled by harmonic oscillators interacting with the electromagnetic
field in the dipole approximation. Eliminating the variables from the coupled equations of motion, we come
to effective Maxwell equations. These allow for taking the lattice spacing a to zero. As a result, we obtain
reflection coefficients for the scattering of electromagnetic waves off the sheet. These are a generalization
of that known from the hydrodynamic model. For instance, we get a nontrivial scattering for polarizability
perpendicular to the sheet. Also, we show that the case of polarizability parallel to the sheet can be obtained
in a natural way from a plasma layer of finite thickness. As an alternative approach, we discuss the
elimination of the electromagnetic fields resulting in effective equations for the oscillators. These are
shown, for a → 0, divergent behavior, resulting from the electrostatic interaction of the dipoles.

DOI: 10.1103/PhysRevD.89.125015 PACS numbers: 12.20.-m, 41.20.Cv, 77.55.-g

I. INTRODUCTION

Monoatomically thin polarizable sheets are interesting as
idealizations and as physical models as well. For the latter
one may think of graphene or C60 and of thin sheets whose
perpendicular degrees of freedom are frozen. Idealization
starts with “hard” boundary conditions, as describing an
ideally conducting surface, or membranes. Softening of
boundaries results in “semitransparent” boundaries, e.g.,
described by delta function potentials. It must be mentioned
that an infinitesimal thin sheet cannot be obtained from
shrinking the thickness of a dielectric slab with finite
permeability to zero.
In general, interest in such sheets dates back at least to

[1], considering two-dimensional electron gas. Recently,
interest was renewed in [2,3] and in [4]. One of the
questions discussed is the following. In macroscopic
electrodynamics, a piece of matter enters trough its per-
meability εðxÞ. Deforming the piece into a flat sheet, its
response disappears for any finite εðxÞ. This prompts for a
description using a delta function, εðxÞ ¼ 1þ λδðzÞ, as
done in [2] for a sheet in the x; y plane. Another approach
was taken in [4], which models a sheet in two ways, by a
two-dimensional lattice of dipoles and by an amorphous
sheet of dipoles starting from a nonrelativistic treatment.
The questions discussed are the following: what is the
response of such a sheet to an electromagnetic field? And,
especially, what are the reflection coefficients?
The response of a thin sheet, including the calculation of

cohesive energy and the Casimir effect, was investigated in
detail in [5,6] within the hydrodynamic model. This model,
by construction, allows for polarizability parallel to the
sheet only. Perpendicular polarization was discussed in a
recent article [4] and applied to the van der Waals
interaction between an atom and the sheet as well as in

[7], where it was applied to the scattering off the sheet.
Perpendicular polarizability was also discussed in [2] with
the conclusion that it does not produce any effect (see the
paragraph just before Sec. III A there).
Actual interest in the response of thin sheets comes also

from graphene. For low energy, its electronic excitations
can be described by a Dirac equation. There is a vast
literature on this topic and we mention only the Casimir
effect calculated within this model in [8] and the recent
investigation of surface plasmons in [9] (and literature cited
therein). For low energy, the hydrodynamic model is
excluded already experimentally; see the recent article
[10]. For energies above 2…3 eV, a description by a
hydrodynamic model seems more appropriate. For in-plane
polarizability such a model was considered, for example,
in [6], while perpendicular polarizability was considered so
far only in [4].
In the present paper we take an approach starting from a

physical model for the sheet consisting of dipoles on a
plane lattice. These are realized as charged mass points
allowed for harmonic motion around charges of the
opposite sign resting at the corresponding lattice points.
We take a simple two-dimensional square lattice in the
plane z ¼ 0. We write down the classical action for these
point charges and the electromagnetic field and make the
dipole approximation in this action. The resulting equations
of motion are the Maxwell equations with source consist-
ing of the point charges and Newton’s equations for the
motion of the mass points in an electromagnetic field.
This is a completely standard procedure and the dipole
approximation is the only step of approximation. With
these equations, we take the lattice spacing to zero and
further, we investigate the resulting equations. In this way
we consider a model allowing for both, in-plane and
perpendicular polarizabilities.
To proceed, there are at least two ways. First, one solves
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Maxwell equations thus eliminating the dipoles. The
resulting effective equations are not easy to solve because
of the lattice. However, these equations allow for the limit
of shrinking the lattice spacing to zero. After that, the
polarization of the sheet is represented by delta functions
and their derivatives and the equations can be solved using
well-known methods. For instance, we calculate the result-
ing reflection coefficients for the scattering off the sheet
and obtain a generalization of the hydrodynamic model.
Also, we get nontrivial scattering for a sheet that is
polarizable perpendicularly.
A second way to proceed solves the Maxwell equations

with the dipoles as sources, which is trivial since they are
in free space, and inserts the solutions into the equations of
motion for the dipoles. This is the way used in [4]. Here,
one hits the problem of the electrostatic self-energy of point
charges and the divergence for vanishing lattice spacing,
which is specific for a two-dimensional sheet. In this way,
one can investigate, for instance, the excitations of the
dipoles.
As for the Casimir effect for two parallel sheets, one can

calculate it from either the electromagnetic excitations
proceeding the first way, or from the excitation of the
dipoles, proceeding the second way. For the hydrodynamic
model, these two ways were shown in [11] to give the same
result. Here we discuss that this equivalence must hold for
perpendicular polarization too.
The paper is organized as follows. In the next section we

collect the known formulas for the electromagnetic field
and point charges. In Sec. III we derive the equations of
motion and make the dipole approximation. In one sub-
section we consider in-plane polarizability and calculate the
reflection coefficients. In the other subsection we consider
the equations for the dipoles. In Sec. IV we discuss the
equations for the electronic excitations. Conclusions are
given in Sec. V. Technical details are given in the
appendixes.
Throughout the paper we use unrationalized Gaussian

units.

II. THE MODEL AND NOTATIONS

We have to work with vectors in three-dimensional space
and on the two-dimensional sheet at z ¼ 0. We use the
notations

x ¼
�
s
z

�
; s ¼

�
x
y

�
; ð1Þ

and, for the lengths of these vectors,

x ¼ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ z2

p
; s ¼ jsj: ð2Þ

As a convention, we put all vectors in bold and denote their
lengths by the same letter, taken not bold. The lattice is
given by

sn ¼ an; n ¼
�
n1
n2

�
: ð3Þ

Wherever a vector s or sn appears multiplied by a three-
dimensional vector,

s →

�
s
0

�
; sn →

�
sn
0

�
; ð4Þ

is assumed.
The action of the system,

S ¼
Z

d4xL ¼ Smatter þ Sint þ SED; ð5Þ

consists of the usual electrodynamic part,

LED ¼ −
1

16π
F2
μν ¼

1

8π
ðE2 − B2Þ; ð6Þ

with Aμ ¼ ðΦ;AÞ and

E ¼ −∇Φ −
1

c
∂tA; B ¼ rotA; ð7Þ

the interaction,

Lint ¼ −
1

c
jμAμ ¼ −ρΦþ 1

c
jA; ð8Þ

and the matter part,

Lmatter ¼
X
n

m
2
ð_ξ2n −Ω2ξ2nÞ; ð9Þ

constituting charged three-dimensional harmonic oscilla-
tors with mass m at each lattice site. This is different from
the matter part in the hydrodynamic model, where a
continuous medium is taken from the very beginning
and there is no restoring force. As written in (9), the
oscillators are isotropic, but can easily be generalized
by taking for each spatial direction its own Ω. Let us
mention that the Lagrangian (9) covers the simplest models
for atomic polarizability as well as for displacement
polarizability (see, e.g., Chap. 27 in [12]).
Multiplying the displacement ξ by the charge we get the

dipole moment,

pn ¼ eξn; ð10Þ

at site n. We mention that both ξn and pn are functions of t,
which we do not indicate explicitly.
The model of charged oscillators produces a charge

density from point charges,

ρðxÞ ¼ e
X
n

ðδ3ðx − ðsn þ ξnÞÞ − δ3ðx − snÞÞ; ð11Þ
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with displacement ξn around a lattice site sn. Here also the
neutralizing charges are included. The corresponding
current is

jðxÞ ¼ e
X
n

_ξnδ3ðx − ðsn þ ξnÞÞ; ð12Þ

where the dot, as in (9), denotes the time derivative. With
these notations, the interaction part of the action takes the
form

Sint ¼
Z

d4x

�
−ρðxÞΦðxÞ þ 1

c
jðxÞAðxÞ

�
;

¼ e
Z

dx0
X
n

�
−ðΦðsn þ ξnÞ − ΦðsnÞÞ

þ 1

c
_ξnAðsn þ ξnÞ

�
: ð13Þ

In this way, the system, consisting of point charges and of
the electromagnetic field, is specified. Of course, these
formulas are in no way new; however, these underline that
so far no approximation is made.
Next we do the dipole approximation. It amounts to an

expansion of the interaction part up to first order in the
elongations ξn. We get from (13)

Sdipoleint ¼ e
Z

dx0
X
n

�
−ξn∇ΦðsnÞ þ

1

c
_ξnAðsnÞ

�
; ð14Þ

and, using (7),

Sdipoleint ¼ e
Z

dx0
X
n

�
ξnEðsnÞ þ

1

c
∂tðξnAðsnÞÞ

�
: ð15Þ

The last term is a total derivative and does not enter the
equations of motion. So we drop it. With (10) we get

Sdipoleint ¼
Z

dx0
X
n

pnEðsnÞ; ð16Þ

which is the usual interaction of a dipole with the electric
field. The dipole approximation can be done also in the
charge density (11) and in the current (12),

ρdipoleðxÞ ¼ −e
X
n

ξn∇δ3ðx − snÞ;

jdipoleðxÞ ¼ e
X
n

_ξnδ3ðx − snÞ; ð17Þ

where the gradient differentiates with respect to x.
The equations of motion, which can be derived in a

standard way from the above action, are the Maxwell
equations,

rotEðxÞ þ 1

c
∂tBðxÞ ¼ 0;

divEðxÞ ¼ 4πρ;

rotBðxÞ − 1

c
∂tEðxÞ ¼

4π

c
jðxÞ;

divBðxÞ ¼ 0; ð18Þ
and the equations of motion for the oscillators,

mð∂2
t þΩ2Þξn ¼ eEðsnÞ; ð19Þ

at each lattice site.
For the following, it is convenient to rewrite the Maxwell

equations by eliminating the magnetic field. Standard
manipulations give

divE ¼ 4πρ;�
−

1

c2
∂2
t þ Δ −∇∘∇

�
E ¼ 4π

c2
∂tj: ð20Þ

Using Gauss’s law, the second line can also be written in the
form �

−
1

c2
∂2
t þ Δ

�
E ¼ 4π

�
∇ρþ 1

c2
∂tj

�
: ð21Þ

For completeness we mention also the equation for the
magnetic field,�

−
1

c2
∂2
t þ Δ

�
B ¼ −

4π

c
rotj; ð22Þ

which we do not need in the following.

III. EQUATIONS FOR THE
ELECTROMAGNETIC FIELD

In order to proceed, two ways are possible. The first is to
solve Eq. (19) for the oscillators and to insert the solution
into Eqs. (20) or (21) for the field strengths. This gives the
equations including the response of the oscillators and
allow us, for instance, to calculate the reflection coefficients
for the scattering of electromagnetic waves off the sheet.
The second way is to proceed in the reverse order, first
solving the equations for the electromagnetic field with
sources, and then insert these solutions into Eq. (19) for the
oscillators. This would allow us to investigate the excita-
tions in the sheet. This is discussed in the next section.
Herewe proceed in the first way.We consider Eq. (21) and

insert the sources in the dipole approximation from (17),�
−

1

c2
∂2
t þ Δ

�
EðxÞ

¼ 4πe
X
n

�
−∇∘∇þ 1

c2
∂2
t

�
ξnδ3ðx − snÞ: ð23Þ
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In the right side, the spatial derivatives act only on the delta
function, whereas the time derivative acts only on ξn.
The equation (19) for the displacement can be solved

easily using the Fourier transform in the time variable, or
by assuming harmonic time dependence ∼ expð−iωtÞ
everywhere,

ξn ¼ e
mð−ω2 þ Ω2ÞEðsnÞ: ð24Þ

Then the dipole moment (10) is

pn ¼ αðωÞ
4π

EðsnÞ ð25Þ

with

αðωÞ ¼ 4πe2

mΩ2ð1 − ω2=Ω2Þ ð26Þ

and αð0Þ is the static polarizability. In this way, inserting
(25) into (23), we get

�
ω2

c2
þ Δ

�
EðxÞ

¼ −αðωÞ
X
n

EðsnÞ
�
∇∘∇þ ω2

c2

�
δ3ðx − snÞ; ð27Þ

where also for EðxÞ, harmonic time dependence is
assumed. We mention that, according to the convention
(4), the electric field in the right side is to be taken at z ¼ 0.
Next we take the continuums limit. That is, we assume

the lattice spacing a → 0. The lattice sum turns into the
corresponding two-dimensional integration and the lattice
variables (3) become continuous,

a2
X
n

→
Z

d2s0;

sn → s0: ð28Þ

Accordingly, we have ξn → ξðsÞ and

n ¼ 1

a2
ð29Þ

is the density per unit area. Doing this limit in Eq. (28) we
come to

�
ω2

c2
þ Δ

�
EðxÞ

¼ −αðωÞn
Z

d2s0Eðs0Þ
�
∇∘∇þ ω2

c2

�
δ3ðx − s0Þ; ð30Þ

where s0 is taken according to (4). Carrying out the s0
integration and using the notation (1) for x, we get

�
ω2

c2
þΔ

�
EðxÞ¼−nαðωÞ

�
∇∘∇þω2

c2

�
EðsÞδðzÞ: ð31Þ

Again, we mention that EðsÞ in the right side does not
depend on z so that z derivatives from the gradients act on
the delta function only.
Next we split these equations into parts, one parallel to

the plane and the other orthogonal to the plane, using
notations

E ¼
�
E∥
E3

�
; ∇ ¼

�∇∥
∂z

�
: ð32Þ

With these, Eq. (31) can be rewritten in the form

�
ω2

c2
þ Δ

�
E∥ðxÞ ¼ −nαðωÞ

��
∇∥ ∘∇∥ þ

ω2

c2

�
E∥ðsÞδðzÞ þ∇∥E3ðsÞδ0ðzÞ

�
;

�
ω2

c2
þ Δ

�
E3ðxÞ ¼ −nαðωÞ

�
∇∥E∥ðsÞδ0ðzÞ þ E3ðsÞ

�
∂2
z þ

ω2

c2

�
δðzÞ

�
: ð33Þ

As can be seen, first and second order derivatives of the
delta function appear. Moreover, these equations do not
separate, at least not in an immediateway. For this reasonwe
consider separately oscillators polarizable in-plane only and
perpendicular-to-plane only. An alternative way would
consider the polarizability α in Eq. (25) as a diagonal matrix.

A. In-plane polarizability

We go back to Eq. (16) and allow in the right side for
vectors p∥ and E∥ only. Going through the subsequent

formulas we see that in the right sides E3 does not appear.
Thus we get from (33)

�
ω2

c2
þ Δ

�
E∥ðxÞ ¼ −nαðωÞ

×

�
∇∥ ∘∇∥ þ

ω2

c2

�
E∥ðsÞ�δðzÞ;�

ω2

c2
þ Δ

�
E3ðxÞ ¼ −nαðωÞ∇∥E∥ðsÞδ0ðzÞ: ð34Þ
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These equations have a triangular structure. The first one
contains E∥ only and it can be solved on its own. The
second equation has E3 in the left side only, which can be
calculated once E∥ is known.
In order to solve these equations, we make a Fourier

transform in the directions parallel to the plane and define

~Eðk; zÞ ¼
Z

d2sEðxÞe−iks ð35Þ

and similar for other quantities. Equation (34) turns into

ðp2 þ ∂2
zÞ ~E∥ðk; zÞ ¼ −nαðωÞ

×

�
−k∥ ∘k∥ þ

ω2

c2

�
~E∥ðk; 0ÞδðzÞ;

ðp2 þ ∂2
zÞ ~E3ðk; zÞ ¼ −nαðωÞð−ik∥Þ ~E∥ðk; 0Þδ0ðzÞ; ð36Þ

with the definition

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
− k2

s
ð37Þ

for the momentum p in the left sides.
From the last line in (36) the normal component of the

electric field can be calculated once the parallel compo-
nents are known. The equation for these, i.e., the upper line
in (36), is a two component. It can be diagonalized by the
standard transverse electric (TE) and transverse magnetic
(TM) polarizations. These are

~ETE ¼

0
B@

−k2
k1
0

1
CAaTE; ~ETM ¼

0
B@

k1i∂z

k2i∂z

−ðk21 þ k22Þ

1
CAaTM;

ð38Þ

but we need only the properties

k ~ETE
∥ ¼ 0; k ∘k ~E∥

TM ¼ k2 ~ETM
∥ : ð39Þ

Then the equations read

ðp2 þ ∂2
zÞ ~ETE

∥ ðk; zÞ ¼ −nαðωÞω
2

c2
~ETE
∥ ðk; 0ÞδðzÞ;

ðp2 þ ∂2
zÞ ~ETM

∥ ðk; zÞ ¼ −nαðωÞp2 ~ETM
∥ ðk; 0ÞδðzÞ; ð40Þ

where (37) was used in the right side.
These are typical Schrödinger equations with a delta

function potential. By well-known formulas, the delta
function can be rewritten as matching conditions. We
display these in Appendix A. From (A6) with μ →
−nαðωÞ ω2

c2 and λ ¼ 0 we get for the TE polarization

discont ~ETE
∥ ðk; zÞ ¼ 0;

discont ∂z
~ETE
∥ ðk; zÞ ¼ −nαðωÞω

2

c2
~ETE
∥ ðk; 0Þ; ð41Þ

and with μ → −nαðωÞp2 and λ ¼ 0 we get for the TM
polarization

discont ~ETM
∥ ðk; zÞ ¼ 0;

discont ∂z
~ETM
∥ ðk; zÞ ¼ −nαðωÞp2 ~ETM

∥ ðk; 0Þ: ð42Þ

The equation outside z ¼ 0 is just the free wave equation.
The scattering solutions are like (B1) with p, given by
Eq. (37), which is the momentum perpendicular to
the plane.
From the matching conditions (41) and (42), the reflec-

tion coefficients can be written down using the formulas
collected in Appendix B. Using (B2) we get

rTE ¼ −1
1þ i 2pc2

nαðωÞω2

;

rTM ¼ −1
1þ i 2

nαðωÞp
: ð43Þ

With these formulas, the problem for in-plane polarizable
dipoles is solved.
In fact, the above solution is a generalization of the

reflection coefficients obtained from the hydrodynamical
model in [6]. To see the equivalence, we first rewrite (43)
using (26),

rTE ¼ −1
1 − i pmc2

2πne2 ð1 − Ω2

ω2Þ
;

rTM ¼ −1
1 − i mω2

2πne2p ð1 − Ω2

ω2Þ
: ð44Þ

These equations must be compared with Eqs. (2.14) and
(2.15) in [6] using the notation qB ¼ 2πne2=ðmc2Þ intro-
duced there in Eq. (2.5). It is seen that these expressions
coincide by putting Ω ¼ 0 in (44). This is because in the
hydrodynamic model no restoring force was assumed. In
this way, the model of the oscillating point charges, used
here, reproduces in the continuums limit the known
reflection coefficients of the hydrodynamic model.

B. Perpendicular polarizability

We go back to Eq. (16) and allow for p3 and E3 only. As
a consequence, in the right-hand sides in the equations in
Sec. III only the normal component E3 of the electric field
appears. Thus we get from (33)
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�
ω2

c2
þΔ

�
E∥ðxÞ¼−nαðωÞ∇∥E3ðsÞδ0ðzÞ;�

ω2

c2
þΔ

�
E3ðxÞ¼−nαðωÞE3ðsÞ

�
∂2
zþ

ω2

c2

�
δðzÞ: ð45Þ

These equations have, like that in the preceding subsection,
a triangular structure. The lower line is an equation for E3

alone and the upper line allows us to calculate E∥ from a
known E3. Now we have to solve the equation for E3. Since
this is one equation only, we have only one polarization at
work. Looking at (38) it is clear that this should be the TM
polarization since it has a z component.
We apply the Fourier transform (35) to the second line in

(45) and get

ðp2 þ ∂2
zÞ ~E3ðk; zÞ ¼ −nαðωÞ ~E3ðk; 0Þ

�
∂2
z þ

ω2

c2

�
δðzÞ:

ð46Þ

This equation is considered in Appendix A. The matching
conditions are given by Eq. (A6) with μ → −nαðωÞ ω2

c2 and
λ → c2

ω2 ,

discont ~E3ðk; 0Þ ¼ 0;

discont ∂z
~E3ðk; 0Þ ¼ −nαðωÞk2 ~E3ðk; 0Þ: ð47Þ

We mention that the solution for ~E3ðk; zÞ has a delta
function contribution like the last term in (A3), making the
right side of Eq. (47) ill defined as it stands. However, let us
remember that the argument z ¼ 0 in ~Eðk; zÞ results from
the dipole approximation done in Eq. (14). Therefore, in
fact we have to take the limit z → 0. In that case the
problem does not appear as discussed in Appendix A.
Using Eq. (B1) with the above mentioned substitution

for μ and λ, we can write down the reflection coefficient,

rP ¼ −1
1þ i 2p

nαðωÞk2
; ð48Þ

which we gave an index “P” to denote the case of
polarizability perpendicular to the sheet.

IV. EQUATIONS FOR THE ELECTRONIC
OSCILLATIONS

In this section we follow the second way discussed at the
beginning of the preceding section and eliminate the
electromagnetic field. Since only the electric field enters
Eq. (19), it is sufficient to invert Eq. (23). This can be done
easily using the Green function

GωðxÞ ¼
Z

d3k
ð2πÞ3

eikx

ω2 − k2 þ i0
¼ −

eiωx

4πx
ð49Þ

[note the convention defined after Eq. (2)], where in the last
expression one has to understand ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ i0

p
. We get

from Eq. (23)

EðxÞ ¼ −4πe
X
n

Z
d3x0Gωðx − x0Þ

×

�
∇∘∇þ ω2

c2

�
ξnδ3ðx0 − snÞ; ð50Þ

where the gradients differentiate with respect to x0. Using
the Yukawa potential in (49) and (10) we get

EðxÞ ¼ 4π
X
n

Tωðx − snÞpn ð51Þ

with

TωðxÞ ¼
�
∇∘∇þ ω2

c2

�
eiωx

x
: ð52Þ

For ω ¼ 0, (51) is the static field from the dipoles pn.
Now we insert (51) into Eq. (19) for the oscillators,

mð−ω2 þ Ω2Þξn ¼ 4πe
X
m

Tωðsn − sm þ εÞpm: ð53Þ

Here we were forced to introduce some regularization ε to
avoid the infinite electrostatic self-energy of the dipoles.
Using (10) and (26) we arrive at

pn ¼ αðωÞ
X
m

Tωðsn − sm þ εÞpm; ð54Þ

which is the equation of motion for the dipoles. The well-
known problem of the electrostatic self-energy can be
handled by a dropping the singular contribution from
m ¼ n in the sum. The other, slightly less ad hoc, treatment
is to separate the diagonal contributions, to write them in
the left side,

ð1 − αðωÞTωðεÞÞpn ¼ αðωÞ
X

m

0
Tωðsn − sm þ εÞpm;

ð55Þ

where the primed sum excludes m ¼ n, and remove them
by defining with

αðωÞ
1 − αðωÞTωðεÞ

→ αðωÞ ð56Þ

a new coupling constant, considering the original one like
an unrenormalized coupling in quantum field theory.
Either way we arrive at the equation

pn ¼ αðωÞ
X

m

0
Tωðsn − smÞpm: ð57Þ
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It can be diagonalized by the Fourier transform,

~pðkÞ ¼
X
n

pne−iksn : ð58Þ

We get �
1 −

αðωÞ
a3

~Tðaω; akÞ
�
~pðkÞ ¼ 0 ð59Þ

with

~Tðω;kÞ ¼
X

n

0
TωðnÞe−ikn; ð60Þ

where now the prime excludes n ¼ 0. Equation (59)
determines the excitation in the sheet and the solutions of

det

�
1 −

αðωÞ
a3

~Tðaω; akÞ
�

¼ 0 ð61Þ

give their dispersions.
Now we consider small lattice spacing, which is equiv-

alent to ωa ≪ 1 and ka ≪ 1, i.e., to low frequencies and
long wave lengths. At this point the dimensionality of the
sheet becomes important. With (29), the factor

αðωÞ
a3

¼ nαðωÞ 1
a

ð62Þ

in front of ~T in (28) or (28) is proportional to 1=a, thus
growing for a → 0.
Further, we need the behavior of ~Tðaω; akÞ for a → 0.

First of all, we mention that the effects of retardation do not
contribute in leading order. Thus, we put ω ¼ 0 and have to
consider

~Tð0;kÞ ¼
X

n

0 3n ∘n − n2

n5
e−ikn;

¼ ð∂2
k − 3∇k ∘∇kÞJ5ðkÞ; ð63Þ

with

JsðkÞ ¼
X

n

0 e−ikn

ns
; ð64Þ

which is absolute convergent for ℜðsÞ > 2. From each
derivative, one has to increase s by one for this conver-
gence. The expansion for small k can can be found by
Fourier transform and reads

JsðkÞ ¼
Γð2−s

2
Þ

2sΓðs=2Þ k
s−2 þ Z2ðsÞ −

k2

4
Z2ðs − 2Þ þ � � �

ð65Þ

with the Epstein zeta function

Z2ðsÞ ¼
X

n

0 1

ns
¼ 1

4
ζR

�
s
2

�
β

�
s
2

�
ð66Þ

(note n is two-dimensional, n ¼ jnj). The last expression

uses βðsÞ ¼ P∞
k¼0

ð−1Þk
ð2kþ1Þs and was found in [13] (see also

[14] or [4], Sec. II.). Taking the derivatives in (63) we get

~Tðω;kÞ ¼ diag

�
1

2
;
1

2
;−1

�
Z2ð3Þ þOðω;kÞ ð67Þ

with Z2ð3Þ≃ 9.0336. The corrections start with first order
in ω and k. The matrix element ~T33ð0; 0Þ coincides with (9)
in [4].
From the finite result for ~Tð0; 0Þ, which can also be

inferred directly from the upper line in (63) due to the
convergence of the sum, it follows that the limit a → 0
makes the Coulomb self-interaction in Eq. (59) singular.
This is different from a three-dimensional medium where
the factor 1=a is absorbed in the density, taken per unit
volume in that case.
The physical interpretation is quite obvious. The spacing

a of a two-dimensional lattice can, in this case, not go
below the interatomic separation determining the range of
validity of the dipole approximation. The spectrum, deter-
mined by (61), must be expected to be sensitive to a. Again,
we mention the difference to the three-dimensional case
where for small a the equation is insensitive to a variation
of a allowing for a ¼ 0 even if this is below the region
where the dipole approximation is valid.
From Eq. (61) with the approximation (67), the spectrum

of the excitations has two solutions for polarizability
parallel to the plane with

1 −
αðωÞn
2a

Z2ð3Þ≃ 0 ð68Þ

and one for perpendicular with

1þ αðωÞn
a

Z2ð3Þ≃ 0: ð69Þ

Both do not depend on k in this approximation. The latter
case was also discussed in detail in [4], Sec. II.

V. CONCLUSIONS

We considered the simplest model for the polarizability
of a two-dimensional lattice. Starting from the complete
action and making only the dipole approximation, we
considered
(1) the effective equations for the electromagnetic field,
(2) the effective equations for the dipoles,
by eliminating the corresponding variables from the

equations of motion. It must be mentioned that this
procedure carries over directly to the corresponding
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quantum theory. One would represent the partition function
by a functional integral defined with the considered action
and integrate out either the variables of the polarization or
the variables for the electromagnetic field. Such a pro-
cedure was discussed in detail in [11], Sec. II.
In the first way, it is possible to take the lattice spacing

a → 0 and to calculate the reflection coefficients for the
scattering of the electromagnetic waves off the sheet. We
collect here the results from Sec. III written in terms of the
scattering phase shifts defined in Appendix B,

tan ηTE ¼ nαðωÞ
2

ω2

pc2
; tan ηTM ¼ nαðωÞ

2
p;

tan ηP ¼
nαðωÞ

2

k2

p
; ð70Þ

where ηTE and ηTM are the phase shifts for the correspond-
ing polarizations in the case of polarizability only parallel
to the sheet and ηP is for polarizability only perpendicular
to the sheet.
An essential technical moment in our derivation for

perpendicular polarizability is the following. Such a sheet
corresponds to a double layer. Its electric field has a delta
function (the normal derivative of the electrostatic potential
of a double layer has a jump) and in the right side of
Eq. (45) one has to give the electric field a meaning on the
sheet. We did this in Sec. III B by going a step back from
the dipole approximation.
For a polarizability only parallel to the sheet, we obtain,

for the oscillator eigenfrequency Ω ¼ 0, the reflection
coefficients rTE and rTM known from the hydrodynamic
model [6]. For a polarizability only perpendicular to the
sheet, only one polarization can couple to the sheet for
parity reasons. Its reflection coefficient is different from the
coefficients for the parallel polarizability.
The latter result is different from the findings in [2].

In that paper a permeability

ε ¼ 1þ λδðzÞ ð71Þ
was considered. Within our approach, we consider from
(18) Gauss’s law and insert from (17),

divEðxÞ ¼ −4πe
X
n

ξn∇δðx − snÞ: ð72Þ

In this expression we take the limit a → 0 and get with (10)

divðEðxÞ þ 4πpðsÞδðzÞÞ ¼ 0: ð73Þ
Further we let a → 0 in (25) obtaining pðsÞ ¼ αðωÞEðsÞ
[note the convention (4)] and insert that into (73),

divðEðxÞ þ 4παðωÞδðzÞEðsÞÞ ¼ 0 ð74Þ
and read off the permeability

ε − 1 ¼ 4παðωÞδðzÞ ð75Þ

confirming the structure of (71), used in [2], within our
model. So the starting formulas are the same, but the
conclusions concerning the polarizability perpendicular to
the sheet are different.
The reflection coefficient ηP in (70) is also different from

the finding in [7]. It has a similar form, but the polar-
izability, which in our formulas is given by (26), has in [7]
an additional contribution in the parenthesis in the denom-
inator resulting from the electrostatic self-interaction of the
dipoles.
It is interesting to note how the results for the polar-

izability parallel to the sheet can be obtained in a natural
way as limiting case from a slab of finite thickness. Let the
slab be formed from two parallel planes of separation L
with a plasma in between, producing a permittivity

ε ¼ 1 −
ω2
p

ω2
ð76Þ

with the plasma frequency

ω2
p ¼ 4πn3e2

m
: ð77Þ

We mention that this permittivity corresponds to an
isotropic polarizability of the plasma. In (77), n3 is the
density per unit volume of the plasma. The reflection
coefficients rðLÞTE and rðLÞTM, where the superscript “(L)”
indicates the finite thickness, for the scattering off the slab
are well known and displayed in Appendix C, Eq. (C2).
Now we consider the limit of making the slab thin. It is well
known that for finite ε these reflection coefficients vanish
for L → 0. However, we make a point that the density n3 in
(77) is no longer appropriate and that it is natural to use

n3 ¼ n
1

L
ð78Þ

instead, where n is the density per unit area used in Sec. III
and appears in the reflection coefficients (43) and (44).
With this relation for the densities, we get for the plasma
frequency (77)

ω2
p ¼ 2πne2

m
2

L
≡ qBc2

2

L
; ð79Þ

which, when inserted into (76) gives a permittivity, growing
ε ∼ 1=L for L → 0. The parameter qB is just that discussed
at the end of Sec. III A.
Now the statement, proven in Appendix C, is that the

reflection coefficients rðLÞTE and rðLÞTM turn for L → 0 into that
of the plasma shell model. As mentioned at the end of
Sec. III A, these are given by Eq. (44) with Ω ¼ 0.
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We did not try the case when parallel and perpendicular
polarizabilities are present both at the same time. We
conclude the discussion of the first way in our approach
with a remark on the Casimir effect for two parallel sheets
of the considered kind, which are semitransparent and can
be represented in the continuum limit by delta functions.
For such planes, the Casimir effect was first calculated in
[15] (and reconsidered recently [16]), for the hydrodynamic
model in [17]. Using these methods, especially the Lifshitz
formula, it can be easily calculated also for the reflection
coefficients (43) and (48), found in Sec. III.
As for the second way, the equations for the oscillators

do not allow for a limit a → 0 because of the interplay of
dimensionality and Coulomb interaction between dipoles,
as also discussed in detail in [4]. In view of this, the result of
the insensitivity of the scattering of electromagnetic waves
off the sheet to the limit a → 0 is somehow counterintui-
tive. On the other side, let us think of the Casimir effect for
two sheets in terms of a mode sum over the spectrum of the
electronic excitations. For two sheets one can generalize
Eq. (59) correspondingly. Then the separation L between
the sheets would enter TðωÞ in (57) making the electrostatic
contributions between the sheets nonsingular. Further, one
could imagine that after the subtraction of the self-energies
of the individual sheets, which do not depend on L, the
sensitivity to small a disappears. Of course, a proof of this
conjecture would be helpful. To conclude this discussion
we remind that for the hydrodynamic model the equiv-
alence of both ways was shown in [11], Sec. II. An
extension to the model considered here seems feasible.
An interesting extension of the model considered here

would be the inclusion of dissipation. For a bulk dielectric
there is the Huttner-Barnett approach [18], which was
applied in [19] to the Casimir effect between slabs of finite
thickness (or, for more recent work, see [20] and [21] and,
in a one-dimensional setup, [22]).

APPENDIX A: DELTA FUNCTION POTENTIALS
AND MATCHING CONDITIONS

Here we collect the simple formulas allowing us to recast
a delta function potential into matching conditions. The
procedure is to solve the equation everywhere except for
the point, where the delta function is sitting, z ¼ 0 for
simplicity, and to supplement by the matching conditions.
We adopt the notation

discontΦðxÞ ¼ lim
ε→0

ðΦðxþ εÞ − Φðx − εÞÞ ðA1Þ

for the discontinuity. The equation reads

ðp2 þ ∂2
zÞΦðzÞ ¼ μΦð0Þð1þ λ∂2

zÞδðzÞ: ðA2Þ
We make the ansatz

ΦðzÞ ¼ Φ−ðzÞΘð−zÞ þ ΦþðzÞΘðzÞ þ hδðzÞ: ðA3Þ

The second derivative is

∂2
zΦðzÞ ¼ ðΦþð0Þ − Φ−ð0ÞÞδ0ðzÞ þ ðΦ0þð0Þ − Φ0

−ð0ÞÞδðzÞ
þ hδ00ðzÞ þ Φ00

−ðzÞΘð−zÞ þ Φ00þðzÞΘðzÞ: ðA4Þ

From Eq. (A2), the equations

ðp2 þ ∂2
zÞΦ�ðzÞ ¼ 0 ðA5Þ

hold for z ≠ 0, i.e., “outside” the delta function. Inserting
(A3) and (A4) into Eq. (A2) and matching the delta
functions and their derivatives, we get the matching
conditions

discont ΦðxÞ ¼ 0; discont Φ0ðxÞ ¼ μð1 − λp2ÞΦð0Þ;
h ¼ μλΦð0Þ: ðA6Þ

For λ ¼ 0 these are the matching conditions for a delta
function potential well known from, e.g., quantum mechan-
ics. These apply to the parallel polarizability in Sec. III A.
For λ ≠ 0, as it appears in Sec. III B for the perpendicular
polarizability, there is a problem with the delta function in
the ansatz (A3) and ΦðzÞ at z ¼ 0 in the right side of
Eq. (A2). As it stands, it is not well defined. This problem
can be avoided only if Φð0Þ in the right side of (A2) is to be
understood as limit z → 0 in ΦðzÞ, which is then Φþð0Þ, or
equivalently, Φ−ð0Þ.

APPENDIX B: REFLECTION COEFFICIENTS

We consider the one-dimensional scattering setup with a
function

ΦðzÞ ¼ ðeipz þ re−ipzÞΘð−zÞ þ teipzΘðzÞ ðB1Þ

with the reflection coefficient r and transmission coefficient
t. For the matching conditions (A6) these are

r ¼ −1
1 − 2ip

μð1−λp2Þ
; t ¼ 1

1 − μð1−λp2Þ
2ip

; ðB2Þ

where μ and λ are defined in Eq. (A2). We mention that
these coefficients can also be written in terms of phase
shifts [see, e.g., Eq. (2.14) in [6]],

r ¼ i sinðηÞeiη ¼ −1
1þ i cot η

;

t ¼ cosðηÞeiη ¼ 1

1 − i tan η
; ðB3Þ

with

η ¼ − arctan
μð1 − λp2Þ

p
: ðB4Þ
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APPENDIX C: SLAB OF FINITE THICKNESS

Here we collect the formulas for scattering off a slab of
finite thickness L filled with a plasma having permittivity ε.
Let the surface of the slab be formed by two planes, the
intersection of the z axis in z ¼ 0 and in z ¼ L. For the
momenta k parallel to the surfaces and p perpendicular to
the surfaces we take the same notations as in Sec. III. In
addition, here we have also a perpendicular momentum q in
between the surfaces. These momenta obey the relations

ω2 ¼ c2ðk2 þ p2Þ;
εω2 ¼ c2ðk2 þ q2Þ; ðC1Þ

following from the wave equations outside and inside
the slab.
With these notations, the reflection coefficients read

rðLÞTE ¼
q−p
qþp ðe2iqL − 1Þ
1 − ðq−pqþpÞ2e2iqL

;

rðLÞTM ¼
q−εp
qþεp ðe2iqL − 1Þ
1 − ðq−εpqþεpÞ2e2iqL

: ðC2Þ

One should note that frequently only the denominators
enter in applications like the Lifshitz formula.
Now the statement is that with

ε ¼ 1 −
2qBc2

ω2L
ðC3Þ

and (C1), the relations

rðLÞTE ¼ −1
1 − i p

qB

þOðLÞ; rðLÞTM ¼ −1
1 − i ω2

pc2qB

þOð
ffiffiffiffi
L

p
Þ;

ðC4Þ

hold for L → 0. These can be verified by inserting (C3) into
(C2) after some calculation. Compensations between
numerators and denominators appear. The leading terms
in (C4) are just the reflection coefficients for the plasma
shell model, Eqs. (38) and (39) in [6].
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