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There is considerable evidence, based on large Nc chiral dynamics, holographic QCD, and Monte Carlo
studies, that the QCD vacuum is permeated by discrete quasivacua separated by domain walls across which
the local value of the topological θ parameter jumps by �2π. This scenario is realized in a 2D U(1) gauge
theory, the CPN−1 sigma model, where a pointlike charge is a domain wall, and θ describes the background
electric flux and the polarization of charged pairs in the vacuum. The transition between discrete θ vacua
occurs via the transport of integer units of charge between the two spatial boundaries of the domain. We
show that this screening process, and the role of θ as an order parameter describing electric polarization, are
naturally formulated in terms of Bloch wave eigenstates of the Dirac Hamiltonian in the background gauge
field. This formulation is similar to the Berry phase description of electric polarization and quantized
charge transport in topological insulators. The Bloch waves are quasiperiodic superpositions of localized
Dirac zero modes and the charge transport takes place coherently via topological charge-induced spectral
flow. The adiabatic spectral parameter becomes the Bloch wave momentum, which defines a Berry
connection around the Brillouin zone of the zero mode band. It describes the local polarization of vacuum
pairs, analogous to its role in topological insulator theory. In 4DYang-Mills theory, the θ domain walls are
2þ 1-dimensional Chern-Simons membranes, and the θ parameter describes the local polarization of
brane-antibrane pairs. The topological description of polarization in 2D U(1) gauge theory generalizes to
membrane polarization in 4D QCD by exploiting a relationship between the Berry connection and the
gauge cohomology structure encoded in the descent equations of 4D Yang-Mills theory.
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I. INTRODUCTION

In the modern theory of electric polarization in topo-
logical insulators [1,2], the concept of a Berry phase
(sometimes called a geometric phase) has played a central
role. In this context, the Berry phase is the phase acquired
by a charged-particle Bloch wave state under adiabatic
transport of the Bloch wave momentum around the
Brillouin zone. This provides an understanding of the
topological origin of charge transport in such systems, in
which the bulk material is an insulator with a mass gap, but
current is carried by special “topologically protected” edge
states. In this paper, I will show that the Berry phase
concept provides a natural framework for discussing the
role of the topological θ parameter in relativistic gauge
theories such as QCD [3]. In this formulation, the θ
parameter itself is a Berry phase, and the Bloch wave
states that define it are constructed from the Dirac zero
modes associated with topological fluctuations of the gauge
field. First we will discuss the interpretation of the θ
parameter in 2D U(1) gauge theories (e.g. QED2 or CPN−1

sigma models), where a θ term in the Lagrangian can be
interpreted as a background electric field [4]. In this case,
the θ dependence of the vacuum energy and nonzero
topological susceptibility are determined by the

polarizability of quark-antiquark pairs in the vacuum.
For small values of the background electric field, these
pairs do not come apart completely, but form localized
dipoles which partially screen the background field. But
when the electric field exceeds a certain strength (corre-
sponding to θ ¼ �π or a half-unit of electric flux), it
becomes energetically favorable for a pair to come apart,
with charge ending up at � spatial infinity (or on the
capacitor plates that were erected to provide the back-
ground field). This screens off exactly one unit of electric
flux, leaving a net flux of a half-unit in the other direction.
When the value of θ reaches 2π, the bulk vacuum is back to
having zero electric field. In the bulk, the θ ¼ 2π vacuum
and the θ ¼ 0 vacuum are indistinguishable. To distinguish
between them, we must include the boundary charges on
the capacitor plates. This is quite analogous to the bulk-
boundary constraint in topological insulators: the difference
between the value of the bulk topological parameter θ
before and after a transition is determined by the amount of
charge that has flowed from the bulk to the boundary.
Current is only conserved if we include boundary charges.
In the context of relativistic gauge theories, the relation
between bulk and boundary currents can be formulated
covariantly as an “anomaly inflow” constraint [5,6].
The evidence for codimension-one Chern-Simons mem-

branes as the dominant topological charge excitations in the*hbt8r@virginia.edu
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QCD vacuum has been discussed previously [7]. For 4D
QCD, the operator which inserts such a membrane into the
vacuum is the exponential of a 3D integral of the 3-index
Chern-Simons tensorK3 over the surface of the membrane.
The topological charge density QðxÞ is obtained from the
exterior derivative of this tensor or, equivalently, the
divergence of the Chern-Simons current. For the case
of 2D U(1) gauge theory, the topological charge density
Q ¼ 1

2π ∂μKμ is proportional to the field strength,

Q ¼ 1

2π
ϵμνFμν ≡ 1

2π
F; ð1Þ

so the Chern-Simons currentKμ is just the dual of the gauge
potential Kμ ¼ ϵμνAν. For this case the integral over the
membrane reduces to an ordinary Wilson line integral. This
allows us, in the 2D case, to interpret a Chern-Simons
membrane as the spacetime path of a pointlike charged
particle. Thus for example, in the 2D CPn−1 sigma model,
the view of the vacuum as a condensate of tightly bound
charged pairs, as suggested by both the large-N solution [8]
and the lattice strong-coupling expansion [9], is supported
by the observed dominance of 1D coherent topological
charge membranes in Monte Carlo configurations [7],
which are interpreted as the spacetime paths of charged
particle pairs in the condensate. The analogous structure of
layered, codimension-one topological charge membranes
observed in 4D SUð3Þ lattice gauge configurations [10,11]
suggests a natural extension of these ideas to the actual
theory of interest, 4D QCD.
In the 2D U(1) theories, the polarizability of charged

pairs in the vacuum determines the topological susceptibil-
ity as well as the string tension, i.e. the strength of the long-
range charge confining linear Coulomb potential. In this
paper we will show how to formulate the connection
between topology and polarization in 2D U(1) gauge
theory in terms of a Berry connection which relates the
local value of θ to the polarization of vacuum pairs. In this
respect it is quite similar to the treatment of polarization in
topological insulators [1,2].
The discussion of a Berry connection in relativistic

gauge theory is facilitated by considering the “fermionic”
description of a gauge field configuration. In this approach,
one characterizes any particular gauge configuration in
terms of the spectrum and eigenfunctions of the associated
Dirac operator. The fermionic description of gauge con-
figurations is particularly useful for considering the struc-
ture of topological charge fluctuations in the gauge field.
The connection between topological gauge field fluctua-
tions and the spectrum of the Dirac operator is embodied in
the Atiyah-Singer index theorem, which relates the number
of units of topological charge of the gauge field on a
periodic Euclidean 2- or 4-torus to the net number (left
minus right) of chiral zero eigenmodes of the associated
Dirac operator. The connection between topological
charge and Dirac zero modes is most directly formulated

in Euclidean spacetime, but it is instructive to consider this
connection in a Hamiltonian framework, in which it may be
described in terms of spectral flow. In this description,
rather than considering eigenmodes of the Euclidean Dirac
operator, we choose a time direction and consider the
eigenmodes of the Dirac Hamiltonian as a function of time.
The number of units of topological charge on the torus is
related by the index theorem to the net number of left- and
right-handed chiral Hamiltonian eigenmodes that flow from
positive to negative energy as we go once around the torus
in the time direction. As I will discuss in this paper, the
Hamiltonian spectral flow description of topological charge
fluctuations can be recast in terms of a Berry phase. The
evolution of the Hamiltonian eigenstates in time, which
defines the spectral flow, is reinterpreted as an adiabatic
evolution in a Bloch wave momentum variable that char-
acterizes the Dirac Hamiltonian eigenstates. The Berry
phase thus defined is a measure of the polarization of
vacuum pairs, and it defines a local value of θ. In the weak
field perturbative limit there is no dissociation of pairs, as
depicted in Fig. 1(a). This calculation reproduces the
perturbative result for topological susceptibility from
one-loop vacuum polarization [8]. For stronger fields, a
transition between discrete vacua with θ differing by�2π is
identified as a discrete shift of the Berry phase, representing
the instantaneous charge transport caused by dissociation
of each vacuum pair, with the members of each pair
recombining with the opposite charged member of a
neighboring pair. This is represented in Fig. 1(b). Just as
in the theory of electric polarization [1], a nonzero Berry
phase represents the transport of units of charge across a
cell of the spatial lattice which defines the Brillouin zone
band structure of the wave functions.

(a)

(b)

FIG. 1 (color online). (a) Polarization for small fields entails no
net charge transport. (b) For larger fields pairs dissociate and
annihilate with members of neighboring pairs, yielding a net
charge transfer between boundaries.
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II. 2-DIMENSIONAL U(1) THEORY: TOPOLOGY
AND SCREENING

The relation between Hamiltonian spectral flow and the
Berry phase description of topological charge is most easily
seen in 2D U(1) theory for the case of a constant field
strength on a periodic 2-torus. Choosing A0 ¼ 0 gauge, the
gauge interaction term in the Dirac Hamiltonian is A1 ¼ Ft,
where F≡ 1

2
ϵμνFμν is the field strength and t is Euclidean

time. For a massless Dirac fermion in 2D Euclidean space,
the Dirac eigenvalue equation separates into equations for
left and right handed components:

DuLðx; tÞ ¼ λuLðx; tÞ ð2Þ

D�uRðx; tÞ ¼ λuRðx; tÞ; ð3Þ

where

D≡ ∂
∂tþ i

∂
∂xþ Ft. ð4Þ

Let’s first consider the equation for the left component. We
choose coordinates in the x-direction such that the period in
that direction is 2π, and we look for periodic solutions,

uLðxþ 2π; tÞ ¼ uLðx; tÞ. ð5Þ

For field strength F the topological charge density is
Q ¼ F=2π. For constant F we have one unit of topological
charge on the torus if we choose the period in the time
direction to be T ¼ 1=F. The Dirac wave functions are
periodic in the spatial direction, but only quasiperiodic
(periodic up to a gauge transformation) in the time
direction,

uLðx; tþ TÞ ¼ eixuLðx; tÞ. ð6Þ

Because the integrated topological charge density is an
integer, this gauge transformation is also periodic in
x → xþ 2π so it is well-defined and continuous on the
torus. For F > 0, the index theorem implies the existence of
a left-handed eigenmode with zero eigenvalue, given
explicitly by

uLðx; t=TÞ ¼
X∞
n¼−∞

e−
T
2
ðnþ t

TÞ2einx ð7Þ

which satisfies DuL ¼ 0. If the field strength F is negative,
there is instead a right-handed zero mode uR ¼ u�L.
In a Hamiltonian framework, the index theorem mani-

fests itself in the form of a spectral flow constraint.
Consider the Dirac Hamiltonian as a parametric function
of a rescaled time k≡ t=T,

Hðt=TÞ ¼ −i
∂
∂xþ

t
T
. ð8Þ

Acting on a periodic spatial interval 0 < x < 2π, this
Hamiltonian is periodic, up to a gauge transformation,
over the Euclidean time interval 0 < t < T, i.e.

Hðkþ 1Þ ¼ e−ixHðkÞeix. ð9Þ
Thus, for any integer k, the spectrum En ¼ nþ k of HðkÞ
matches up with En ¼ n, the spectrum of Hð0Þ. The Dirac
spectral flow for the gauge configuration is given by k, the
integer shift of the spectrum over the periodic time interval,
or, more generally, the net number of left- minus right-
handed modes that cross from negative to positive energy.
As first pointed out by Atiyah and Lustig [12], the spectral
flow of the Dirac Hamiltonian is equal to the integrated
topological charge over the 2D Euclidean space. Note that,
if we quantize the Dirac Hamiltonian (as opposed to just
employing the Dirac operator as a probe of the gauge field),
spectral flow is associated with the production of fermion-
antifermion pairs: a mode which crosses from negative to
positive energy changes from filled to empty in the physical
vacuum.
In this example, the spectral flow parameter k ¼ A1 ¼

Ft has a simple physical significance. It is the momentum
imparted to the fermion from the background field over the
time interval t. This allows us to interpret the time evolution
of the spectral flow as an adiabatic transport of the
momentum parameter in the fermion wave function, thus
providing the essential elements of a Berry phase con-
struction. Furthermore, the quasiperiodicity in Euclidean
time (9) under an integer shift of k reflects a Brillouin zone
structure in momentum space. This is clarified by rewriting
the zero mode wave function via a Poisson transformation.
The function (7) is a Jacobi elliptic Theta function and a
Poisson transformation on the sum corresponds to a
conjugate modulus transformation which effectively inter-
changes the real and imaginary periods of the elliptic
function. This gives

uð0ÞL ðx; kÞ ¼
X∞
n¼−∞

e−
T
2
ðnþkÞ2einx ð10Þ

¼
X∞

m¼−∞
e−

1
2Tðx−xmÞ2e−ikðx−xmÞ; ð11Þ

where we denote points of a spatial lattice by xm ≡ 2πm.
We also note that the zero mode wave function was
constructed in the A0 ¼ 0 gauge. This function is periodic
in x, but only periodic up to a gauge transformation in the
time direction. But the gauge transformation from the
A0 ¼ 0 gauge to the A1 ¼ 0 gauge is just

gðxÞ ¼ ei
xt
T ¼ eikx. ð12Þ
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In the A1 ¼ 0 gauge, the wave function is periodic in time
and quasiperiodic in space, and has the form of a Bloch
wave,

Ψðx; kÞ ¼ eikxuLðx; tÞ. ð13Þ

This suggests interpreting the zero mode wave function uL
on the torus 0 < x < 2π as the periodic part of a Bloch
wave state on an infinite spatial lattice xm ¼ 2πm. In the
discussion thus far, we have regarded F as a background
electric field in one space and one time dimension. But the
Euclidean 2D theory can just as well be interpreted as a
2-space-dimensional system in a transverse magnetic field,
as e.g. in the quantum Hall effect. Then a single periodic
zero mode of the form (7) can be interpreted as a super-
position of localized Landau orbitals. With a constant
background field, the orbitals at different spatial locations
are degenerate and regularly spaced, and can combine into
delocalized Bloch wave states. This gives a natural lattice
structure, with lattice spacing determined by the radius of a
Landau orbit and thus by the strength of the field F. Charge
transport in such a system results from each local orbit
handing off a charge to the orbit to its left and picking up a
charge from the orbit to its right as depicted in Fig. 1(b).
The transport of charge across a single lattice cell is
embodied in the phase of the periodic part of the Bloch
wave, uLðx; kÞ in (13).
The interpretation of the θ parameter in 2D U(1) gauge

theory as a local field describing the polarization of pairs in
the vacuum can now be stated in terms of a Berry
connection, following lines similar to the description of
electric polarization in topological insulators [1,2]. The
Berry connection is constructed by differentiating the
periodic part of the Bloch wave function with respect to
the momentum parameter:

i
∂
∂k uLðx; kÞ ¼

X∞
m¼−∞

ðx − xmÞe− 1
2Tðx−xmÞ2e−ikðx−xmÞ. ð14Þ

The terms in the sum over m represent individual Landau
orbits localized around an origin at site xm. We see that
differentiating by k weights each term in the wave function
by the dipole moment of the charge at x with respect to the
center of its own Landau orbit. (This can be taken as a
charge-neutral dipole with the positive charge at x and the
negative charge at the origin x ¼ xm.) The Berry connec-
tion AðkÞ at a particular lattice site is defined as the matrix
element of i ∂

∂k integrated over the cell,

AðkÞ ¼
Z

π

−π
dxu�ðx; kÞi ∂∂k uðx; kÞ. ð15Þ

This plays the role of a gauge field in momentum space,
where the phase change of the Dirac wave function under
adiabatic translation in k space is given by the line integral

of AðkÞ. The Berry phase which defines the local polari-
zation field θðxÞ is the gauge invariant closed loop integral
around the lowest Brillouin zone − 1

2
< k < 1

2
,

θðxÞ ¼
Z

1
2

−1
2

AðkÞdk≡
I

AðkÞdk. ð16Þ

Here the range of integration − 1
2
< k < 1

2
is over the

Brillouin zone (BZ) associated with the lowest band of
Bloch wave states, which are constructed from super-
positions of left- and right-handed zero modes on a lattice
cell. A gauge transformation of the Berry connection AðkÞ
which is topologically trivial over the BZ will leave the
value of θðxÞ invariant. On the other hand, a gauge
transformation with nonzero winding number n around
the BZ will change the value by 2πn. These topologically
nontrivial gauge transformations around the BZ represent
the transfer of one or more units of charge between the two
boundaries of the domain. They transform between vacua
with values of θ which differ by integer multiples of 2π.
These vacua are indistinguishable in the bulk (which is why
θ is a truly periodic variable on a torus with no boundaries).
For example, the θ ¼ 2π vacuum would have one unit of
background electric flux, but this is completely screened by
the unit of charge that flowed to the boundary, so in the bulk
there is zero electric field. Thus the value of θ keeps track
of the current that has flowed to the boundaries. This is also
the origin of the “bulk-boundary” constraint which relates
the change of the θ parameter across a membrane to the
surface charge density on the membrane. This has been
discussed previously in the context of anomaly inflow [5].
It is instructive to consider in more detail the adiabatic

evolution of the Bloch wave states as we go around the BZ.
We can write the time-dependent Dirac equation for the
periodic zero mode uðx; kÞ as a formula for the adiabatic
evolution of the Bloch wave in k space,

HðkÞuðx; kÞ ¼ 1

T
∂
∂k uðx; kÞ. ð17Þ

For large T, this equation traces out the adiabatic evolution
of the eigenstates of HðkÞ as a function of k. At any
particular value of k, taking the T → ∞ limit of uðx; kÞ
yields an eigenstate ofHðkÞ. This follows from (17) but can
also be seen from the explicit form of the zero mode
uLðx; kÞ in (10). Using the first sum in Eq. (10), the T → ∞
limit is dominated by the nth term in the sum where n is the
integer closest to −k and the dominant eigenvector is
unðxÞ≡ einx. This delineates the band structure of the
spectrum. Each periodic eigenstate unðxÞ on a single cell
0 < x < 2π with eigenvalue En ¼ n corresponds to a band
of Bloch wave states k − 1

2
< n < kþ 1

2
on an infinite

lattice with eigenvalues EnðkÞ ¼ nþ k. In particular, the
lowest n ¼ 0 band of Bloch wave states − 1

2
< k < 1

2
, is the

zero mode band, with eigenvalues of HðkÞ given by
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E0ðkÞ ¼ k. In fact, in the physical vacuum, the k < 0
states with negative energy are filled, so the physical
energy spectrum of the zero mode band is
E0ðkÞ ¼ jkj;− 1

2
< k < 1

2
. This has the important implica-

tion that this band can be regarded as a compact Brillouin
zone by identifying the points k ¼ 1

2
and k ¼ − 1

2
where left-

and right handed states are degenerate and can mix.
Correspondingly, the adiabatic evolution across k ¼ 0 stays
on the positive energy branch and thus changes from Bloch
waves built from uLðx; kÞ for k > 0 to Bloch waves built
from uRðx; kÞ ¼ u�Lðx; kÞ ¼ uLðx;−kÞ for k < 0. The con-
nectivity of the positive energy branch across k ¼ 0 can be
made more obvous by adding a small fermion mass term,
which introduces a mass gap between the positive and
negative energy states and smooths out the cusp in
E0ðkÞ ¼ jkj.
We note that the evolution in k space described by (17)

becomes adiabatic in the limit where the time period
T → ∞. Since T ¼ 1=F, this corresponds to the weak
field limit F → 0. In this limit, the spectrum obtained from
all of the Bloch wave bands reproduces the full spectrum of
a free massless Dirac fermion,

EðkÞ ¼ jkj; −∞ < k < ∞; ð18Þ

but separated into bands,

EnðkÞ ¼ jnþ kj; −
1

2
< k <

1

2
; n ¼ 0;�1;�2;…

ð19Þ

From the Poisson transformed expression for the zero mode
[the second sum in (11)], we see that the Gaussian wave
functions centered around each lattice cell become com-
pletely delocalized in the weak field limit T → ∞. This is
expected, since the radius of the Landau orbits is going to
infinity in this limit. It is also instructive to consider the
opposite limit of strong field T → 0. From the second sum
in (11) we see that the cell wave functions in the Bloch
wave become localized around each lattice site xn. In this
limit, we expect that all of the Bloch wave states in a given
band (i.e. all the states constructed from a particular
periodic cell eigenstate with different momentum k) will
be degenerate and separated by a finite gap from neighbor-
ing bands. This leads us to conclude that the qualitative
effect of a finite background field F is to introduce a mass
gap which separates the n ¼ 0 band from the n ¼ �1
bands at k ¼ � 1

2
. It is the Berry phase around the BZ for the

n ¼ 0 band that provides a local definition of the topo-
logical parameter θ.
The transition from k > 0 to k < 0 at the BZ boundary

k ¼ � 1
2
has a simple physical interpretation. The strength

of the field F is proportional to k, and the BZ boundary at
k ¼ 1

2
corresponds to an applied field with a half-unit of

flux. If we try to evolve adiabatically beyond the BZ

boundary, the state suddenly shifts to k ¼ − 1
2
. This

indicates that one unit of charge has been transferred from
the capacitor plate at x ¼ ∞ to the one at x ¼ −∞. The net
background field strength is now negative with a half-unit
of flux. SinceF flips sign as we go from k ¼ þ 1

2
to k ¼ − 1

2
,

the cell states flip from being left-handed (clockwise) to
right-handed (counterclockwise), as depicted in Fig. 2. In
this figure, the direction of the arrow represents the flow of
electric current (dictated by the sign of F), e.g. a left-
handed mode, represented by a clockwise arrow, is either a
clockwise-moving fermion or a counterclockwise-moving
antifermion. Note that in Fig. 2, the transition from k ¼ 1

2
to

k ¼ − 1
2
results in the charge flow between two adjacent

rows of orbitals, adding instead of canceling. It thus entails
a net flow of current from one end of the spatial volume to
the other. As we continue the evolution in k, we go from
k ¼ − 1

2
back to k ¼ 0, and the local electric field in the

bulk returns to zero. In contrast, the Berry phase defined by
the Bloch wave states we have constructed increases from 0
to 2π as we go once around the BZ. For small values of
applied field, θ is proportional to the local background
electric field. But for larger applied field, mod 2π changes
in the value of θ keep track of the number of charges that
have flowed to the boundaries. In this way, the Berry phase
definition of the local θ parameter for 2D U(1) theory
combines Coleman’s interpretation of θ as a background
electric field with the understanding of quantized charge
transport that is provided by topological insulator theory.

III. YANG-MILLS COHOMOLOGY AND
THE BERRY PHASE IN 4D QCD

In the preceeding section, we saw that the evolution of
the Bloch wave under transport around the zero-mode BZ
results in the net transfer of a unit of charge from one
boundary to the other along the spatial axis. This is the
cumulative effect of the spectral flow on each unit cell. For
a filled band, a complete cycle of the momentum k around
the compact BZ effectively transports the unit of charge at

FIG. 2 (color online). The transition at the edge of the Brillouin
zone from k ¼ þ 1

2
to k ¼ − 1

2
, which takes place at θ ¼ π, is

accompanied by a chirality flip of the Landau orbitals and the net
flow of one unit of charge from boundary to boundary.
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each site to the left by one lattice cell x → x − 2π. On a
given lattice cell, this charge transport is associated with the
spectral flow. On each lattice cell, we need a gauge
transformation gðxÞ ¼ e−ikðx−xmÞ to recover periodicity in
the time direction after evolution from t ¼ 0 (k ¼ 0) to
t ¼ T (k ¼ 1). At any intermediate value of k, a gauge
transformation by the Bloch wave phase, gðxÞ ¼ e−ikx,
transforms A1 ¼ k to A1 ¼ 0 but is not periodic in
x → xþ 2π. We note that the value of k that appears in
the Hamiltonian is just A1, the spatial component of the
vector potential. For any fixed k, the additional gauge phase
induced by going from xm to xmþ1 across a unit cell is
ei2πk ¼ eiA1Δx. This is just the link phase, i.e. the gauge
group element which would be assigned to a link between
two adjacent sites in a lattice formulation of the gauge field.
The link phase is the gauge phase factor in the fermion
hopping matrix, representing the transport of a quark
between neighboring sites.
We can now understand the connection between a

discrete 2π change of the Berry phase and the operation
of inserting a Chern-Simons membrane into the vacuum via
a Wilson line operator. As discussed in the Introduction, a
Chern-Simons membrane is created by a surface integral of
the Chern-Simons tensor, which reduces in the 2D U(1)
case to an ordinary Wilson line operator. The Poisson
transformed eigenfunction (11) may be understood as a
superposition of quark-antiquark pair states originating
from each lattice site xm, forming an electric dipole with
moment x − xm. (Here the quark is at x, while the antiquark
is fixed at the lattice site xm.) The phase factor in the mth
term of (11) is a gauge string, i.e. a Wilson line, from quark
to antiquark,

e−ikðx−xmÞ ¼ ei
R

xm
x

A1dx0 : ð20Þ

The Berry phase is obtained from the phase associated with
moving the quark from site m to m − 1,

ΘðkÞ ¼
Z

xm

xm−1

A1dx ¼ 2πk: ð21Þ

This phase defines a constant Berry connection,

AðkÞ ¼ ∂
∂kΘðkÞ ¼ 2π: ð22Þ

The Wilson line from xm−1 to xm in (21) can be regarded as
a closed loop around the spatial direction of the periodic
torus representing a unit cell. In a time interval t ¼ kT, this
loop sweeps out a fraction k of the total surface area, and
thus a fraction k of the total F flux on the torus.
To see how the Berry connection is generalized to 4D

QCD, we replace the gauge potential in (21) by the Chern-
Simons current and write the Berry phase as an integral of
the Chern-Simons charge over the spatial cell,

ΘðkÞ ¼
Z

xm

xm−1

K0dx ¼ 2πk: ð23Þ

Under a gauge transformation g ¼ eiω, the variation of the
CS current is

δKμ ¼ ϵμν∂νω. ð24Þ
Thus the Berry phase also varies under a gauge trans-
formation as

δΘðkÞ ¼
Z

xm

xm−1

δK0dx ¼
Z

xm

xm−1

∂1ωdx ¼ ωðxmÞ − ωðxm−1Þ:

ð25Þ
For translation around a complete period of the BZ, Δk ¼
integer and the gauge transformation ω is periodic, so that θ
can only change by a multiple of 2π. The change of electric
polarization over the time period T is given by the phase
integral around the BZ,

ΔθðxÞ ¼ 2πΔP ¼
I

AðkÞdk ¼ Θð1Þ − Θð0Þ: ð26Þ

From (25) we see that the polarization is invariant for gauge
transformations that are topologically trivial on the unit cell
[i.e. ωðxmÞ ¼ ωðxm−1Þ]. A topologically nontrivial trans-
formation (e.g. g ¼ eix) will change the polarization by an
integer.
The extension of this definition of a Berry connection to

4D QCD is provided by the cohomological formulation of
gauge topology first introduced by Faddeev [13]. This
approach is built on the descent equations of Yang-Mills
theory. These equations define the interplay between gauge
variations and exterior derivatives that relates the gauge
variation of the Chern-Simons 3-form K3 to a WZW-type
2-formK2, which plays a role analogous to the gauge phase
ω in the 2D case. The equation we need follows from the
gauge invariance of the topological charge, and the fact that
it can be written as an exterior derivative of the CS 3-form.
Using the standard notation of differential forms, the
topological charge density QðxÞ is written in terms of
the CS tensor K3 as Q ¼ dK3. We denote the gauge
invariance of Q by δQ ¼ 0, with δ representing an exterior
derivative with respect to gauge parameter space. This must
commute with an exterior derivative in spacetime, so

δQ ¼ δðdK3Þ ¼ dðδK3Þ ¼ 0: ð27Þ

This means that the gauge variation of the CS tensor δK3 can
be written locally as the exterior derivative of a 2-form [14]

δK3 ¼ dK2. ð28Þ

However, this equation is not valid globally. TheWZW form
K2 has the character of a phase, in that it is not single valued
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around topologically nontrivial closed paths. In SUðNcÞ
Yang-Mills theory, the topological charge is

QðxÞ ¼ 1

16π2Nc
εμνστTrFμνFστ: ð29Þ

This is equal to the exterior derivative of the Chern-Simons
3-form, or equivalently, the divergence of the CS current
Q ¼ 1

16π2Nc
∂μKμ, where

Kμ ¼ εμαβγTr

�
Aα∂βAγ þ 2

3
AαAβAγ

�
≡ εμαβγK

αβγ
3 : ð30Þ

(Here and below, we drop the factor 1
16π2Nc

from our

definition of the CS and WZW tensors.) The WZW 2-form
K2 is more complicated. It depends on both the gauge
potential Aμ and the gauge phase ω ¼ −i log g, where g is
the SUðNcÞ color gauge transformation which defines the
gauge variation in (28). Up to terms of fourth order in the
gauge phase, it is

Kβγ
2 ¼ i

3
Tr½ωg−1∂βgg−1∂γg� þ Tr½∂βgg−1Aγ� þOðω4Þ:

ð31Þ

Cohomology amounts to a procedure for inverting the
exterior derivative d in (28) and determining solutions for
K2 on a closed 3-surface from the gauge variation of the CS
form K3. Note that in the 2D U(1) version of Eq. (28), the
role of the WZW tensor is played by the gauge phase ω
itself, and the descent equation is just the dual of the gauge
transformation, i.e. Eq. (24). The fact that ω need not be
single valued around a closed loop, but only single valued
mod 2π, provides the cohomology structure associated with
topological charge quantization. Similarly, the WZW form
K2 involves the phase of the color gauge transformation
ω ¼ −i log g. Its integral over a closed 3-surface is gauge
invariant for small gauge transformations, but changes by
integer multiples of 2π under topologically nontrivial
transformations.
In our discussion we have considered Dirac eigenmodes

in a constant background field. The Bloch wave momentum
parameter k ¼ t=T emerged as a rescaled time variable in
the Poisson transformed zero mode on a unit cell. Adiabatic
transport in k is obtained in the limit of large T. The Bloch
wave structure clarifies the coherent nature of charge
transport and its relation to the spectral flow of Dirac zero
modes. But our definition of the Berry connection is given
locally in terms of the charge transport across a single
lattice cell. If we allow nonperiodic gauge transformations
on a unit cell, then any value of A1 ¼ k in the Hamiltonian
can be obtained from k ¼ 0 by a gauge transformation
g ¼ eikx. Physically, this describes the transport of a frac-
tional amount of charge to the boundary. This allows us to
obtain the Berry phase directly from the descent equations

by a construction that easily generalizes to 4D Yang-Mills
fields. For the 2D case we can write the Berry phase in
terms of the gauge variation of the Chern-Simons charge
K0 integrated over the lattice cell,

ΘðkÞ − Θð0Þ ¼
Z

xm

xm−1

δK0dx ¼ ωðxmÞ − ωðxm−1Þ

¼ kðxm − xm−1Þ: ð32Þ

This is the phase of a spatial Wilson line stretched between
oppositely charged members of a polarized pair located at
adjacent lattice sites xm and xm−1. A gauge transformation
that varies k can be regarded as a change of the physical
distance between adjacent sites. The Berry phase is thus a
local order parameter, which describes the polarization of
vacuum pairs.
As we have discussed in previous work [5,7], a Wilson

line in the 2D theory may be regarded as a codimension-
one Chern-Simons membrane, which generalizes in the 4D
case to the integral of the Chern-Simons tensor over a
3-surface. The 4D analog of a charge dipole is a polarized
pair of CS membranes, and the Berry phase defines a local
θ parameter describing the polarization of brane-antibrane
pairs. As discussed previously in the context of anomaly
inflow [5], the gauge transformation on the brane surface
that is implicit in the descent equations represents trans-
verse fluctuations of the branes. As in the 2D case, we
consider the Dirac Hamiltonian on a 3D periodic cell in
space. Choosing a gauge where A0 ¼ 0, the time-dependent
Schroedinger equation for the Dirac zero mode can be cast
as a formula for adiabatic evolution of Hamiltonian
eigenstates in the 3-momentum space of Bloch wave states
built from a lattice of unit cells. In the model of the QCD
vacuum that seems to be favored by Monte Carlo results,
the vacuum consists of a laminated stack of alternating sign
membranes which are closely spaced in the direction
transverse to the branes but flat and uniform over roughly
the confinement scale in the other three Euclidean direc-
tions. This strongly suggests that the Berry connection
needed to define the θ parameter can be reduced to a 1D
Brillouin zone describing Bloch wave momenta transverse
to the branes. A fluctuation of θ thus describes the trans-
verse polarization of the þ and − topological charge
membrane pairs. From the point of view of quark eigen-
states, the membrane polarization fluctuations described by
θ represent Goldstone fluctuations of the chiral condensate.
We note that the spectral flow in k space on a cell is

implemented by a generally nonperiodic gauge transfor-
mation eikx on the open line segment xm < x < xmþ1 which
zeros out the A1 gauge link. In the 2D case, the Bloch wave
momentum is just given by the mismatch between gauge
phases on opposite sides of the cell,

eikðxmþ1−xmÞ ¼ gðxmþ1Þg−1ðxmÞ: ð33Þ
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To explicitly construct ΘðkÞ for 4D QCD, we choose the x
axis to be transverse to the branes and consider, as in (32),
the gauge variation of the CS charge K0 integrated over a
spatial unit cell that is a thin slab of space between two
adjacent, oppositely charge branes at x ¼ xm and x ¼ xmþ1,

ΘðkÞ − Θð0Þ ¼
Z

xmþ1

xm

δK0d3x ¼ Ωðxmþ1Þ −ΩðxmÞ:

ð34Þ
Here the gauge phases on the two boundaries are given by
WZW 2-forms integrated over the 2 D spatial surface of the
branes,

ΩðxÞ ¼
Z

dydzKyz
2 ðA;ωÞ: ð35Þ

The integrand depends on both the in-brane components
of the color field and on the color gauge phase ωðxÞ ¼
−i log gðxÞ. For a closely spaced brane-antibrane pair, a
fluctuation of the relative color phase is equivalent to a
fluctuation of the transverse gauge link between them. We
will restrict the present discussion to the case where the
gauge field between the branes is smooth and nonsingular.
The construction of cocycles in the presence of singular
gauge fields (vortices) has been treated in Ref. [15]. The
restriction to smooth gauge fields is sufficient to illustrate
the connection between topologically induced spectral flow
and the Berry connection which describes the momentum-
space transport of quark eigenstates. Here we will not study
the more general case in which singularities (e.g. vortices or
other branes) appear between the branes, which will be
required for a full construction of the Berry connection in
the multibrane QCD vacuum. With this restriction, assum-
ing the gauge field is smooth between branes, we can
expand to lowest order in the brane separation,

Ωðxmþ1Þ −ΩðxmÞ ≈ kðxmþ1 − xmÞ: ð36Þ

Here we have defined an effective Bloch wave momentum
parameter

k ¼ ∂Ω
∂x ; ð37Þ

which determines the relative WZW phase on adjacent
branes. Just as in the 2D case, the phase difference across
the unit cell represents the transport of quark charge from
boundary to boundary. The transfer of an integer number of
quarks is described by a periodic but topologically non-
trivial gauge transformation corresponding to integer val-
ued k. Equations (34) and (36) define a constant Berry
connection, just as in the 2D case,

AðkÞ ¼ ∂
∂kΘðkÞ ¼ 2π: ð38Þ

Equation (38) defines the Berry phase for a topological
transition which starts and ends with unpolarized brane-
antibrane pairs. The positive branes have each moved over
by one step and become coincident with the antibrane from
the next pair to the left. For more general connections, the
integral of AðkÞ around the BZ defines θðxÞ, an order
parameter describing the local polarization of the brane-
antibrane pairs in the vacuum. A long wavelength
polarization wave corresponds to a plane wave gauge
transformation by a Bloch wave factor eikx with small k.
For the 2D U(1) case, the Bloch factor is just the relative
phase of the small gauge transformation eikx on adjacent
branes. For 4D QCD the Bloch wave is defined by a slowly
varying SUðNcÞ color gauge transformation gðxÞ. The
Uð1Þ chiral phase θðxÞ that describes the polarization of
brane-antibrane pairs is determined from the color phase
via the WZW 2-form evaluated on adjacent brane surfaces.

IV. CONCLUSION

We have shown that the topological structure of the
vacuum of QCD and the role of θ as a local order parameter
can be formulated in terms of a Berry connection whose
structure and physical significance is closely analogous to
the theory of topological insulators. On a heuristic level, it
is not surprising that a Berry phase construction is the
appropriate way to describe the short range topological
structure of the QCD vacuum. A central feature of most
applications of the Berry connection is the existence of two
distinct time scales in a problem, so that one can distinguish
between “fast” and “slow” variables, with the slow vari-
ables being regarded as parameters in the Hamiltonian for
the fast variables. A Berry connection can then be defined
from the phase of Hamiltonian eigenstates under adiabatic
change of the slow variables. For the vacuum of QCD, the
fast variables are the short wavelength fluctuations of
topological charge in the direction transverse to the branes,
where the sign of the charge alternates rapidly at the scale
of the lattice cutoff. This short range structure is explored
by the Berry connection as we take the Bloch wave
momentum around the BZ. In the continuum limit, what
survives of the short range lattice structure is the bulk
polarization of the membranes, corresponding to small
fluctuations of θ, and the possibility of domain walls
corresponding to boundaries marking discrete changes of
θ by �2π.
The relationship between topological charge membranes

and the chiral condensate has been discussed in [5,16]. The
Berry phase construction provides some additional insight
into this connection. A well-known consequence of the
axial U(1) anomaly is that a global change of θ is equivalent
to a global chiral rotation. The Berry connection defined by
(34) extends this to a local relationship. Because of the
axial U(1) anomaly, the flavor singlet axial-vector current
which is conserved in the chiral limit is not gauge invariant
but rather varies in the same way as the Chern-Simons
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current under a color gauge transformation, δjμ5 ¼ δKμ. In
the gauge variation of the integral (21), the CS charge K0

can be replaced by the integral of the axial U(1) charge
over the lattice cell, i.e. the generator of a chiral rotation on
the cell,

ΘðkÞ − Θð0Þ ¼
Z

xmþ1

xm

δj50d
3x ¼ Ωðxmþ1Þ − ΩðxmÞ: ð39Þ

The Berry phase θ can thus be regarded as a local chiral
rotation angle. In pure glue QCD without quarks, there are
no physical massless Goldstone bosons. As discussed in
([5]), a massless pole must appear in the Chern-Simons
current correlator, as required for nonzero topological
susceptibility. However, this pole is canceled by the
massless pole in the ∂μθ correlator in any gauge invariant
amplitude. For 1-flavor QCD, the quark and antiquark in a
pseudoscalar η0 meson are on an adjacent pair of oppositely
charged branes, and the gauge link between them is
modulated by the spacing between the branes. In this
way, fluctuations of the membrane polarization θ generate
Goldstone fluctuations of the chiral condensate. For the
1-flavor case, the qq̄ Goldstone boson couples to the pure-
glue CS current by quark-antiquark annihilation, which
takes place via topologically nontrivial brane fluctuations
(since it requires the transport of a unit of quark charge
between branes). This generates the η0 mass. For two or

more flavors of quark we can construct nonsinglet
Goldstone bosons with the quark and antiquark on adjacent
branes carrying different flavors. With no qq̄ annihilation,
the long-wavelength fluctuations of the brane polarization θ
generate massless Goldstone pions.
The picture of the chiral condensate which emerges from

the Berry phase construction has some similarity to the
model of the chiral condensate in an instanton liquid [17].
In that model, the condensate is formed from the approxi-
mate ’t Hooft zero modes of the Dirac operator on localized
instantons and anti-instantons. The membrane model of the
chiral condensate that we have discussed here shares one
aspect of the instanton liquid model, in that the condensate
is formed from approximate topological Dirac zero modes.
But in the instanton picture, it is difficult to understand long
range propagation of massless Goldstone bosons in terms
of localized ‘tHooft modes. By contrast, in the membrane
model, the Dirac modes which form the condensate are
surface modes on the boundaries between discrete vacua.
The delocalized nature of the membrane surface modes
makes the long range propagation of Goldstone bosons
much more plausible.
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