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We study kink scattering processes in the ð1þ 1Þ-dimensional φ6 model in the framework of the
collective coordinate approximation. We find critical values of the initial velocities of the colliding kinks.
These critical velocities distinguish different regimes of collisions. The exact equation of motion for the φ6

model is also solved numerically with the same initial conditions. We discuss advantages and disadvantages
of the collective coordinate approximation, and also outline its applicability limits. Resonance phenomena
and the so-called escape windows are also observed in the kink collisions.

DOI: 10.1103/PhysRevD.89.125009 PACS numbers: 11.10.Lm, 11.27.+d

I. INTRODUCTION

Topological defects are of growing interest in physics.
They arise in a great amount of models from classical and
quantum field theory to condensed matter [1–3]. In this
context, one-dimensional topological defects play a special
role: on the one hand, many physical phenomena involve
the formation of effectively one-dimensional topological
structures; for example, a three- or two-dimensional
domain wall in the direction perpendicular to it presents
a one-dimensional topological field configuration (kink)
interpolating two different vacua of the model. On the other
hand, the case of ð1þ 1Þ dimensions can be more easily
investigated, hence the use of ð1þ 1Þ-dimensional systems
as simplified models. Note that it is an actively developing
area, with many important results obtained recently: the
topological defect deformation procedure [4,5], the con-
struction of a topological defect carrying Uð1Þ charge in a
system with two scalar fields— one real and one complex
[6,7], Q balls in scalar theories with Uð1Þ symmetry [8,9],
and many others. There are interesting results in scalar
systems with an interaction with a spinor field [10–12].
Apart from that, supersymmetric models with more com-
plex vacuum manifolds and several types of kinks con-
necting the different vacua have also been discussed [13].
Special attention should be paid to configurations of strings
or vortices [1,14,15]. In particular, there are important
results on quantum stabilization of strings [16–18] and
strings/vortices/monopoles dynamics [19–23].
The collective coordinate method has been successfully

applied to study solitary wave interactions in various
systems. The idea of the method is to treat an originally
constant parameter of a kink (for example, its position) as a

time-dependent variable that we will call a collective
coordinate. Originally, this method was used to describe
kink-kink interactions in the λφ4 theory [24]. It was also
applied to study collisions of domain walls in a super-
symmetric model [13]. The problem of the collision of
parallel domain walls was solved in the collective coor-
dinate approximation with the distance between domain
walls being the single collective coordinate. For sufficiently
slow collisions, the results of the collective coordinate
approach agreed well with the exact numerical solution of
the equations of motion. This work also showed that,
depending on the initial velocity, there are two different
regimes of the evolution of the system, and found the
critical velocity that separates these regimes. In Ref. [25]
the collective coordinate approximation was applied to the
interaction of two solitons of the nonlinear Schrodinger
equation. In this context, see also Refs. [26,27], which
develop a relativistic generalization of the collective
coordinate method and perform the quantization of the
rotational motion of the skyrmion. A general discussion of
the collective coordinate method involving the discrete
(vibrational) mode of a kink is given in the review [2].
In this work we study the kink scattering in the ð1þ 1Þ-

dimensional φ6 model in the framework of the collective
coordinate approximation. We consider different topologies
and various initial velocities of the colliding kinks. We
compare the results obtained in the framework of the
collective coordinate approximation with those obtained
by solving the field equations numerically at the same
initial conditions. We analyze the differences and outline
the scope of applicability of the collective coordinate
approximation. Solving the exact equations of motion
numerically, we observe the so-called escape windows
[28,29]; note that this feature of the kink scattering cannot
be described by the collective coordinate approximation
with 1 degree of freedom. Our analysis does not confirm the
discrepancy between the results of the collective coordinate
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approximation and a numerical solution of the exact
equation of motion, reported recently for one of the
topological sectors of the model [the type ð−1; 0; 1Þ, see
below in Sec. V] by the author of Ref. [30].
Our paper is organized as follows. In Sec. II we provide

some general facts about topological localized solutions
with finite energy in different models in ð1þ 1Þ dimen-
sions. Section III is devoted to the description of the
properties of the φ6 model and its static topological
solutions (kinks). In Sec. IV we give the details of the
collective coordinate method and formulate the problem of
a collision of two kinks. In Sec. V, we present our main
results, along with some technical details of our calcula-
tions, and compare them with the results of other authors.
We conclude with a discussion of the results and prospects
for future research.

II. STATIC SOLUTIONS IN ð1þ 1Þ DIMENSIONS

We consider a real scalar field φðt; xÞ in ð1þ 1Þ dimen-
sions, with its dynamics determined by the Lagrangian

L ¼ 1

2

�∂φ
∂t

�
2

−
1

2

�∂φ
∂x

�
2

− UðφÞ; ð1Þ

whereUðφÞ is a potential, defining the self-interaction of the
field φ. The Lagrangian (1) yields the equation of motion for
φðt; xÞ:

∂2φ

∂t2 −
∂2φ

∂x2 þ
dU
dφ

¼ 0: ð2Þ

The vacua of the model are defined by the minimal points of
UðφÞ: φð1Þ

0 , φð2Þ
0 , etc. Further, we consider a model with a

non-negative potential UðφÞ having two or more degenerate
minima with Umin ¼ 0.
If we are interested in static solutions φ ¼ φðxÞ, then

Eq. (2) becomes

d2φ
dx2

¼ dU
dφ

: ð3Þ

The energy functional for the Lagrangian (1) is

E½φ� ¼
Z

∞

−∞

�
1

2

�∂φ
∂t

�
2

þ 1

2

�∂φ
∂x

�
2

þUðφÞ
�
dx: ð4Þ

For static fields E½φ� takes the form

E½φ� ¼
Z

∞

−∞

�
1

2

�
dφ
dx

�
2

þUðφÞ
�
dx: ð5Þ

In order for the integral in (5) to be convergent, i.e., for the
configuration energy to be finite, it is necessary that

lim
x→−∞

φðxÞ ¼ φðiÞ
0 ð6Þ

and

lim
x→þ∞

φðxÞ ¼ φðjÞ
0 : ð7Þ

If (6) and (7) hold, then both terms in square brackets in (5)
fall off at x → �∞ and the integral can be convergent.
From Eq. (3), one can easily obtain a first-order differ-

ential equation of motion

1

2

�
dφ
dx

�
2

¼ UðφÞ;

or

dφ
dx

¼ �
ffiffiffiffiffiffiffi
2U

p
: ð8Þ

If there are two or more degenerate minima of the potential
UðφÞ, the set of static solutions with finite energy splits
into disjoint classes (topological sectors) according to
their asymptotic behavior at x → �∞. Solutions with
φðþ∞Þ ≠ φð−∞Þ are called topological, while those with
φðþ∞Þ ¼ φð−∞Þ—nontopological. A configuration be-
longing to one topological sector can not be transformed
into a configuration belonging to another topological sector
through a continuous deformation, i.e., via a sequence of
configurations with a finite energy. For more details see,
e.g., Refs. [2,3].
One can introduce a conserved topological current, for

example,

jμtop ¼
1

2
εμν∂νφ:

The corresponding conserved topological charge is deter-
mined only by the asymptotics of the field φðxÞ and does
not depend on its behavior at finite x:

Qtop ¼
Z

∞

−∞
j0topdx ¼ 1

2
½φðþ∞Þ − φð−∞Þ�: ð9Þ

Configurations with different topological charges neces-
sarily belong to different topological sectors; however,
configurations belonging to different topological sectors
may have the same topological charge.
As already mentioned, the function UðφÞ is considered

to be non-negative. This allows one to introduce the
following useful definition:

UðφÞ ¼ 1

2

�
dW
dφ

�
2

; ð10Þ

where WðφÞ is a smooth (continuously differentiable)
function of the field φ called the superpotential. Using
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the representation (10), the energy (5) can be written
as [3]

E ¼ EBPS þ
1

2

Z
∞

−∞

�
dφ
dx

� dW
dφ

�
2

dx

with

EBPS ¼ jW½φðþ∞Þ� −W½φð−∞Þ�j;

where the subscript “BPS” stands for Bogomolny, Prasad,
Sommerfield [31]. Thus the static configuration that sat-
isfies the equation

dφ
dx

¼ � dW
dφ

ð11Þ

has the minimal energy E ¼ EBPS among all the configu-
rations in a given topological sector. The solutions that
satisfy Eq. (11) are called BPS-saturated (or simply BPS)
configurations.
For a more detailed review of the properties of models

with one scalar field in ð1þ 1Þ dimensions see, for
example, [1–3,32].

III. THE φ6 MODEL

Consider the φ6 model with a real scalar field in ð1þ 1Þ
dimensions [33], defined by the Lagrangian (1) with the
potential

UðφÞ ¼ 1

2
φ2ð1 − φ2Þ2: ð12Þ

This potential has three minima— vacua of the theory:
φð1Þ
0 ¼ −1, φð2Þ

0 ¼ 0, and φð3Þ
0 ¼ þ1; see Fig. 1. According

to Eq. (10), the superpotential of this model is

WðφÞ ¼ φ2

2
−
φ4

4
:

Static topological solutions (kinks) can be easily found by
solving the first-order differential equation of motion:

dφ
dx

¼ �φð1 − φ2Þ: ð13Þ

Its solutions belonging to different topological sectors are

φðx − ~x0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1� tanhðx − ~x0ÞÞ

r
: ð14Þ

The constant ~x0 is arbitrary due to the translational
invariance of the system and is related to the position of
the kink. Equation (14) can be rewritten in a slightly
different form

φðx − x0Þ ¼
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3e�2ðx−x0Þ
p ð15Þ

that will be used below. The constants x0 and ~x0 are
related by

x0 ¼ ~x0 � ln
ffiffiffi
3

p
:

For example, the kink

φð0;1Þðx − x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3e−2ðx−x0Þ
p

interpolates between the vacua φð2Þ
0 ¼ 0 and φð3Þ

0 ¼ 1, i.e.,
it belongs to the topological sector (0,1), while the kink

φð−1;0Þðx − x0Þ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3e2ðx−x0Þ
p

represents the sector ð−1; 0Þ, and so on. The mass of
each kink is 1

4
. A moving kink can be obtained by the

Lorentz boost.

IV. COLLECTIVE COORDINATE
APPROXIMATION

The idea of the method as applied to ð1þ 1Þ-
dimensional systems is the following. The initial field
configuration φðxÞ is chosen in the form of two kinks φð1Þ

k
and φð2Þ

k that are far apart, i.e., are separated by a large
distance much greater than the typical scale of the kink,
e.g.,

φðxÞ ¼ φð1Þ
k ðxþ aÞ þ φð2Þ

k ðx − aÞ þ const: ð16Þ

This configuration is not an exact solution of the equation
of motion; however, at a ≫ 1 the overlap between the kinks
is exponentially small, hence (16) is exact up to exponen-
tially small terms.

1.0 0.5 0.5 1.0

0.1

0.2

0.3

U

FIG. 1. The potential of the φ6 model.
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Further, let us suppose a to be a function of time,
a ¼ aðtÞ, thus allowing the kinks to move towards or away
from each other, with 2aðtÞ being the distance between the
kinks. As a result we have a system with 1 degree of
freedom aðtÞ. The dynamics of the system is governed by
the Lagrange function Leffða; _aÞ that can be derived by the
substitution of Eq. (16) in the Lagrangian (1) followed by
the integration over x. We emphasize that one must take
into account that a ¼ aðtÞ when calculating ∂φ

∂t . The
resulting Lagrange function has the following general form:

Leffða; _aÞ ¼
1

2
mðaÞ _a2 − VðaÞ: ð17Þ

The specific dependencies mðaÞ and VðaÞ are determined
by the model under consideration and by the initial
configuration (16). Apart from the equations of motion
following from Leffða; _aÞ, one needs to specify the initial
separation between the kinks að0Þ and the initial speed
j _að0Þj of the kink.
The dependence aðtÞ can be obtained by solving the

Cauchy problem for the Euler-Lagrange equation which, in
this case, is a second-order ordinary differential equation:

d
dt

∂Leff

∂ _a −
∂Leff

∂a ¼ 0:

For the effective Lagrange function (17) we have

mäþ 1

2

dm
da

_a2 þ dV
da

¼ 0: ð18Þ

The collective coordinate approximation ansatz (16)
does not take into account the Lorentzian change of the
shape of the moving kinks. The framework of the collective
coordinate approximation thus neglects the relativistic
effects (as well as the excitation of the kinks’ internal
degrees of freedom). This restricts the applicability of the
method to small initial velocities. The consequences of
these approximations will be discussed in detail below.
Note that relativistic effects have been taken into account

in some studies that applied the collective coordinate
approximation. For example, the authors of Ref. [34] used
the collective coordinate method to study the evolution of a
spherically symmetric domain (a bubble) of a vacuum
immersed in a different vacuum, in a model with a
spontaneously broken symmetry. They used a relativistic
Lagrangian in order to describe the dynamics of the domain
wall; the speed of the wall could reach ultrarelativistic
values during the collapse of the bubble.

V. KINK COLLISIONS IN THE φ6 MODEL

We applied the collective coordinate method to study the
collisions of the φ6 kinks. We consider the following kink-
kink collisions: ð−1; 0Þ and (0,1), ð0;−1Þ and ð−1; 0Þ,
ð−1; 0Þ and ð0;−1Þ. For future convenience, we write out

here all the kinks interpolating the different vacua of the
model. We denote the topological sector of the configura-
tion by ðφð−∞Þ;φðþ∞ÞÞ, so that

φð−1;0ÞðxÞ ¼ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e2x

p ;

φð1;0ÞðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3e2x
p ;

φð0;−1ÞðxÞ ¼ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e−2x

p ;

φð0;1ÞðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3e−2x
p .

Note that

φð1;0ÞðxÞ ¼ −φð−1;0ÞðxÞ ¼ φð0;1Þð−xÞ ¼ −φð0;−1Þð−xÞ:

In addition, we use the notation where, for example,

φð0;1;0ÞðxÞ ¼ φð0;1Þðxþ aÞ þ φð1;0Þðx − aÞ − 1

is called the configuration of the type (0,1,0), etc.
In what follows, we use the superscripts “(eff),” “(eom),”

and “(mech)” to distinguish between the values of the
critical velocities obtained, respectively, from a numerical
solution of Eq. (18), from a numerical solution of the exact
equation of motion (2), or from classical mechanics argu-
ments within the collective coordinate approximation (17).

A. Evolution of the configuration ð−1;0;1Þ
The suitable collective coordinate approximation ansatz

(16) is in this case

φð−1;0;1ÞðxÞ ¼ φð−1;0Þðxþ aÞ þ φð0;1Þðx − aÞ: ð19Þ

The plot of φð−1;0;1ÞðxÞ at a ¼ 10 is presented in Fig. 2. The
effective Lagrange function (17) for aðtÞ has the following
mðaÞ and VðaÞ:

mðaÞ ¼ I−ðaÞ;

15 10 5 5 10 15
x

1.0

0.5

0.5

FIG. 2. Ansatz (19) at a ¼ 10.
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VðaÞ ¼ 1

2
IþðaÞ þ

1

2

Z
∞

−∞
φ2
ð−1;0;1ÞðxÞð1 − φ2

ð−1;0;1ÞðxÞÞ2dx;

where

I�ðaÞ ¼
1

2
� 18e4a

Z
∞

−∞

dx

ð1þ 3e−2ðx−aÞÞ3=2ð1þ 3e2ðxþaÞÞ3=2 .

The profiles of mðaÞ and VðaÞ are shown in Figs. 3 and 4.
Evidently the potential VðaÞ is repulsive. Therefore, we

should expect to see an elastic reflection of the kinks, at
least when the initial velocities are not too large. This is
confirmed by our numerical analysis.
From the shape of VðaÞ, Fig. 4, we expect to find a

critical value of the initial velocity vðeffÞcr of the colliding
kinks. This critical velocity separates two different modes

of the collision: at vin < vðeffÞcr the elastic reflection should

be observed, while at vin > vðeffÞcr the kinks should pass
through each other and escape to infinities with the final
velocities vf < vin. Since the shapes of the ð−1; 0Þ and (0,1)
kinks differ only slightly, in both cases (vin < vðeffÞcr and

vin > vðeffÞcr ) we observe a collision of these two kinks
which is followed by their escape. However, there is an

essential difference between these two collision regimes:
the kinks that are reflected elastically remain in their
respective topological sectors, whereas the kinks that pass
through each other exchange their topological sectors [of
course, the type of the whole configuration, ð−1; 0; 1Þ, does
not change]. In other words at vin > vðeffÞcr , the kink ð−1; 0Þ
incident from the left interpolates between the vacua 0 and
1 after the collision, and analogously for the initial kink
(0,1) which switches to interpolate between the vacua −1
and 0. The difference between the shapes of the two initial
kinks is crucial: it means that, after the collision, the kinks
are no longer the exact solutions of their new topological
sectors. Their masses are larger than the masses of these
exact solutions, and this reflects itself in the fact that
the potential VðaÞ has different asymptotic values as
a → �∞, Vð−∞Þ > Vðþ∞Þ.
In Fig. 5 we show aðtÞ obtained numerically from

Eq. (18) for several initial velocities vin ¼ j _að0Þj < vðeffÞcr .

Since vin < vðeffÞcr , a decreases to some amin > 0 and then
begins to increase, as expected in the regime of reflection.
On the other hand, when vin > vðeffÞcr then a continues to

decrease through zero and changes its sign. The change of
the sign of a means that the kink ð−1; 0Þ has passed to the
right and changed its sector to (0,1), while the kink (0,1)
has passed to the left and changed its sector to ð−1; 0Þ.
Within the collective coordinate approximation, Eq. (18)

gives the value of the critical velocity vðeffÞcr > 1. The value
of the critical speed is larger than the speed of light (recall
c ¼ 1 in our units), which is obviously due to the Lagrange
problem (17) not being Lorentz invariant [recall that the
relativistic effects are not taken into account in our
collective coordinate approximation ansatz (16), (19)].
This extreme value clearly indicates that the issue of
whether there exists a critical speed in this collision con-
figuration cannot be answered by the collective coordinate
method.

4 2 0 2 4
a

0.1

0.2

0.3

0.4

m

FIG. 3. The dependence mðaÞ for the configuration (19).

4 2 0 2 4
a

0.55

0.60

0.65

V

FIG. 4. The dependence VðaÞ for the configuration (19).

0 10 20 30 40 50
t

2

4

6

8

10

a

FIG. 5. The half-distance a between the kinks as a function of
time t for the configuration (19) at að0Þ ¼ 10 and different initial
velocities: vin ¼ 0.3 (solid curve), vin ¼ 0.6 (dashed curve),
vin ¼ 0.9 (dotted curve). Collective coordinate approximation.
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To check the accuracy of the collective coordinate
approximation we solved the partial differential equation (2)
numerically with the same initial conditions, i.e., initial
positions and velocities of the kinks. We note here that the
Lorentz factor was taken into account for the numerical
solution of Eq. (2).
In Fig. 6, we compare the values of aminðvinÞ resulting

in the collective coordinate approximation with those
obtained by the numerical solution of the equation of
motion. This figure shows the relative difference between
the values of amin, obtained by the two methods, as a
function of the initial velocity vin:

δamin ¼
aðeffÞmin − aðeomÞ

min

aðeomÞ
min

· 100%: ð20Þ

Note that our results show significantly better agreement
between the two methods than reported in Ref. [30], where
the collective coordinate approximation was found to
overestimate the exact result by about 50% at initial
velocity vin ¼ 0.3.
Solving Eq. (2) numerically, we could not find a critical

velocity vðeomÞ
cr that would separate the reflection and

transition scattering regimes. However, we conjecture this
value to be very close to unity. The difficulty that we
encountered in trying to distinguish between the reflection
and transition regimes is apparently due to the fact that in
the latter regime the two kinks that pass through each other
and change their topological sectors quickly evolve into the
respective exact solutions of their new sectors. The emerg-
ing configuration thus becomes indistinguishable from that
corresponding to a reflection of the two kinks. See the next
section for a more detailed discussion of the evolution of
the kinks after they transit through each other and change
the topological sectors, thus ceasing to be exact solutions of
their sectors.
We note here that we could not observe the passage of

the two colliding kinks through each other; hence, the
conclusions about the details of this process are rather

speculative. This is why in Figs. 3 and 4 the sections of the
curves corresponding to negative values of a are shown by
dashed lines, so as to stress that the evolution of the ansatz
in this region of the collective coordinate remains to be
investigated.

B. Evolution of the configuration ð0; −1;0Þ
The initial ansatz for this type of configurations is

φð0;−1;0ÞðxÞ ¼ φð0;−1Þðxþ bÞ þ φð−1;0Þðx − bÞ þ 1; ð21Þ

with bð0Þ ¼ const ≫ 1, j _bð0Þj ¼ vin defining the initial
positions and velocities of the colliding kinks, see Fig. 7.
The effective Lagrange function parameters are

mðbÞ ¼ IþðbÞ;

VðbÞ ¼ 1

2
I−ðbÞ þ

1

2

Z
∞

−∞
φ2
ð0;−1;0ÞðxÞð1 − φ2

ð0;−1;0ÞðxÞÞ2dx;

where

I�ðbÞ¼
1

2
�18e−4b

Z
∞

−∞

dx

ð1þ3e2ðx−bÞÞ3=2ð1þ3e−2ðxþbÞÞ3=2 :

The plots of mðbÞ and VðbÞ are shown in Figs. 8 and 9.
The function mðbÞ reaches its maximum at a small

positive value of the variable b. In addition, the curve in
Fig. 8 is not symmetric with respect to the vertical line
passing through its maximum.
The plot of VðbÞ has the form of an asymmetric well, and

Vmin > 0 albeit close to zero. Quite importantly, V tends to
different asymptotical values as b becomes large and
positive or large and negative; numerically,

V1 ¼ lim
b→þ∞

VðbÞ ≈ 0.500;

V2 ¼ lim
b→−∞

VðbÞ ≈ 0.523:

0.1 0.2 0.3 0.4 0.5 0.6 0.7
vin

5

10

15

20

amin

FIG. 6. The relative difference (20) between the values of amin,
obtained by the two methods, as a function of the initial
velocity vin.

15 10 5 5 10 15
x

1.0

0.8

0.6

0.4

0.2

FIG. 7. Ansatz (21) at b ¼ 10.
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When b is large and positive, the overlap of the two kinks
in (21) is exponentially small; at the same time, each
kink is the exact BPS-saturated solution of its topological
sector. For this reason, the value of V1 is simply the sum
of the masses of the solitary kinks φð−1;0Þðx − bÞ and
φð0;−1Þðxþ bÞ. The situation changes when b is large
and negative, which corresponds to the passage of the
two kinks through each other during the collision. As the
result, the two kinks change their topological sectors,
analogously to the collision in the sector ð−1; 0; 1Þ con-
sidered in Sec. VA: now, the kink φð0;−1Þðxþ bÞ connects
the vacua 1 and 0, whereas the kink φð−1;0Þðx − bÞ connects
the vacua 0 and 1 [the ansatz (21) in this case also changes
its type to (0,1,0)]. Again, the two kinks are not the exact
BPS-saturated solutions of their new topological sectors,
which translates into V2 being larger than V1 and, as in the
previously discussed collision configuration, into the exist-
ence of two collision regimes and the critical velocity that
separates these two regimes. As before, the case vin < vðeffÞcr

corresponds to the elastic reflection of the two kinks,
whereas the values of vin > vðeffÞcr result in the transition of
the kinks through each other and their escape to infinity [in
this latter case the final configuration is of the type (0,1,0)].
Numerically we find vðeffÞcr ≈ 0.32485. Note that the critical
velocity can also be estimated from a simple classical

mechanics argument, which yields vðmechÞ
cr ¼ 0.302, in a

good agreement with the collective coordinate method. In
Figs. 10 and 11 we show the plots of bðtÞ obtained from
(18) with the obvious replacement a → b, for different
initial velocities.
As in the previous case, we also studied the evolution of

the initial configuration of the type (21), solving the exact
equation of motion (2) numerically, with the same initial
separation and initial velocities. Note that, in order to
account for the relativistic effects due to the motion of the
kinks properly, one can simply apply Lorentz boosts to
stationary kinks. All calculations were performed at
bð0Þ ¼ 10. In contrast to the case of the collective
coordinate approximation, at low initial velocities we
observed the formation of a quasibound state of the two
kinks ð0;−1Þ and ð−1; 0Þ at low initial velocities

vin < vðeomÞ
cr ≈ 0.289. This value of vðeomÞ

cr reproduces the
corresponding result of Ref. [28]. The evolution of this
configuration in time can be described as follows. After the
first collision the kinks pass through each other, forming a
configuration of the type (0,1,0), and continue moving until
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b

0.6

0.7

0.8

0.9

m

FIG. 8. The dependence mðbÞ for the configuration (21).

4 2 0 2 4
b
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0.2

0.3

0.4

V

FIG. 9. The dependence VðbÞ for the configuration (21).
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t
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15

b

FIG. 10. The dependence bðtÞ for the configuration (21) for
bð0Þ ¼ 10 and different initial velocities below vðeffÞcr : vin ¼ 0.1
(solid curve), vin ¼ 0.2 (dashed curve), vin ¼ 0.3 (dotted curve).
Collective coordinate approximation.
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FIG. 11. The dependence bðtÞ for the configuration (21) for
bð0Þ ¼ 10 and different initial velocities above vðeffÞcr : vin ¼ 0.4
(solid curve), vin ¼ 0.6 (dashed curve), vin ¼ 0.9 (dotted curve).
Collective coordinate approximation.
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there is a certain (negative) distance between the kinks. At
this point, the kinks stop and reverse, passing through each
other for the second time and returning to the configuration
ð0;−1; 0Þ. These steps are then repeated, with the maximal
distance between the kinks getting smaller with each
successive collision, which is illustrated in Fig. 12. A plot
of φðt; 0Þ for vin ¼ 0.2 is shown in Fig. 13.
The formation of the quasibound state of the two kinks

(the so-called bion) can be qualitatively explained by a
repeated radiation of small waves. Indeed, as the two initial
kinks move through each other and change their topologi-
cal sectors, they cease being “almost exact” solutions of
their sectors, as discussed above. This results in the kinks
starting to decay into the “true” kinks of their new sectors,
emitting small waves and losing energy and momentum.
Then, due to the mutual attraction between the kinks (see
Fig. 9), the motion of the kinks is reversed and they pass
through each other again, returning to their initial topo-
logical sectors. However, due to the emission of the small
waves at the preceding stage of the collision, both kinks are
no longer the “almost exact” solutions of their initial

sectors, hence they continue emitting small waves, again
decaying into the true kinks of these sectors and radiating
away more energy and momentum. As the result of this
relaxation process, a long-lived quasibound state of the
kinks is formed. This state is continuously emitting small
waves and slowly decaying.
On the other hand, the evolution of the initial ansatz in

the regime vin > vðeomÞ
cr , as results from numerically solving

the exact equations of motion, is qualitatively similar to
what is obtained in the collective coordinate approxima-
tion. Namely, the kinks pass through each other, form a
configuration of the type (0,1,0), and escape to infinities.
This is illustrated in Figs. 14 and 15, where the space-time
evolution and the plot of φðt; 0Þ are shown for vin ¼ 0.6.
We see therefore that the collective coordinate approxi-

mation results in either elastic reflection of the two kinks at

vin < vðeffÞcr or in their transition through each other at

vin > vðeffÞcr , and no (quasi-)bound state of the two kinks can
be found. The comparison with the numerical solution of
the exact equations of motion shows that the collective

FIG. 12. Space-time picture of the evolution of the configura-
tion ð0;−1; 0Þ for bð0Þ ¼ 10 and vin ¼ 0.2. Numerical solution
of Eq. (2).

20 40 60 80 100 120 140
t

1.0

0.5

0.5

t,0

FIG. 13. The dependence φðt; 0Þ for the configuration (21) for
bð0Þ ¼ 10 and vin ¼ 0.2.

FIG. 14. Space-time picture of the evolution of the configura-
tion ð0;−1; 0Þ for bð0Þ ¼ 10 and vin ¼ 0.6. Numerical solution
of Eq. (2).
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t
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FIG. 15. The dependence φðt; 0Þ for the configuration (21) for
bð0Þ ¼ 10 and vin ¼ 0.6.
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coordinate method fails to describe the details of the
low-velocity kink-kink collisions, in particular, the absence
of elastic reflection at all velocities. Note that the formation
of a long-lived bound state of two kinks has been known for
models such as λφ4 and sine-Gordon for a long time, see,
e.g., [2] and [24] and references therein.
Note also that the formation of the bound state can be

modeled in the collective coordinate framework. This can
be achieved, for instance, by introducing effective friction
in the system of the two kinks, which would allow for a loss
of energy and hence make the system fall into the potential
well in Fig. 9—thus forming a bound state of the two kinks.
In this connection, we refer the reader to, e.g., Ref. [24].

C. Evolution of the configuration ð−1;0; −1Þ
Finally, we consider the collision of the kinks ð−1; 0Þ

and ð0;−1Þ. The corresponding initial configuration is

φð−1;0;−1ÞðxÞ ¼ φð−1;0Þðxþ cÞ þ φð0;−1Þðx − cÞ: ð22Þ

The plot of φð−1;0;−1ÞðxÞ at c ¼ 10 is shown in Fig. 16. The
effective Lagrange function parameters are

mðcÞ ¼ IþðcÞ;

VðcÞ ¼ 1

2
I−ðcÞ þ

1

2

Z
∞

−∞
φ2
ð−1;0;−1ÞðxÞð1−φ2

ð−1;0;−1ÞðxÞÞ2dx;

where

I�ðcÞ ¼
1

2
� 18e4c

Z
∞

−∞

dx

ð1þ 3e−2ðx−cÞÞ3=2ð1þ 3e2ðxþcÞÞ3=2 :

The plots mðcÞ and VðcÞ are shown in Figs. 17 and 18.
Note that at c < 0 the ansatz (22) becomes a configu-

ration of the type ð−1;−2;−1Þ. Hence the potential VðcÞ
increases linearly with jcj, due to φ ¼ −2 not being a
vacuum of the φ6 model. As a consequence, the colliding
kinks can penetrate each other only by small distance and
we expect to observe an elastic reflection of the two kinks at

any initial velocity. To illustrate that, we show in Fig. 19
the profiles of cðtÞ for several values of the initial
velocity j_cð0Þj.
The numerical study of the exact evolution in this sector

shows that, similarly to the type ð0;−1; 0Þ considered
before, there is a critical velocity vðeomÞ

cr ≈ 0.0448 such that
at vin < vðeomÞ

cr , a slowly decaying quasibound state of the
two kinks is formed (with an important exception discussed
below), whereas at vin > vðeomÞ

cr the two kinks are reflected
off each other almost elastically. These collision regimes
are illustrated by Figs. 20 and 21, in order. Note that the
value of vðeomÞ

cr ¼ 0.0448 that we obtain differs slightly
from that of Ref. [28] that quotes vcr ¼ 0.0457.
A very peculiar feature of the collisions in this sector

(also not captured by the collective approximation) is the
so-called escape windows, narrow ranges of the initial
velocity in the domain vin < vðeomÞ

cr where the kinks escape
to infinity after two (three, etc.) collisions instead of
forming the bion, Fig. 22. Our numerical calculation
finds an escape window at vin ≈ 0.04420 and a few more
escape windows at different values of vin in the range
½0.04423; 0.04428�, whereas at vin < vðeomÞ

cr outside the
escape windows we observe the formation of a long-lived
bion.
The origin of the escape windows is the resonant energy

exchange: during the first collision, a part of the kink’s
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FIG. 16. Ansatz (22) at c ¼ 10.
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FIG. 17. The dependence mðcÞ for the configuration (22).
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FIG. 18. The dependence VðcÞ for the configuration (22).
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kinetic energy is transferred into the vibrational mode of the
kink, which cannot then escape to infinity after the first
reflection, hence the kinks collide again. If a certain
resonance condition holds, energy stored in the vibrational
mode can be returned back into the kinetic energy, and the
kinks are then able to escape. Originally, escape windows
were discovered in the λφ4 model [35] and in a modified
sine-Gordon model [36]. Note that the resonant energy
exchange can also occur not in the second but in any
subsequent collision, so that the kinks escape to infinities
after colliding three, four times, etc.
In contrast to the λφ4 model, the φ6 model does not have

a vibrational (shape) mode in the kinks’ excitation spectra.
Instead, in the collisions of φ6 kinks a vibrational mode of
the two kinks is excited, as shown in Ref. [28] (where a
very comprehensive study of escape windows in the φ6

model was given). A similar mechanism is involved in the
so-called quasiresonances in the double sine-Gordon
model [37].
We solved the partial differential equation (2) and the

ordinary differential equation (18) with the use of the
computer algebra system “Mathematica.” The ordinary
differential equation was solved by the Livermore solver

for ordinary differential equations with the automatic
switching for nonstiff (Adams) and stiff (BDF) methods.
The partial differential equation was solved by the method
of lines in the domain x ∈ ½−l; l� and t ∈ ½0; T� [l ≫ að0Þ,
bð0Þ, or cð0Þ], with the appropriate initial and boundary
conditions for each initial kink-kink configuration.

VI. CONCLUSION

The aim of the present study has been a detailed
comprehensive investigation of the applicability of the
collective coordinate approximation with 1 degree of
freedom to modeling of the kink-kink collision processes.
Unlike previous authors, we performed modeling in all the
configuration types [note that in the pairs ð0;−1; 0Þ and
(0,1,0), ð−1; 0;−1Þ and (1,0,1), as well as ð−1; 0; 1Þ and
ð1; 0;−1Þ, each of the two configurations is dynamically
equivalent to the other; hence, only one configuration is
needed to be considered in each pair]. We also compare the
results of both methods and draw conclusions about the
applicability of the collective coordinate approximation in
each of these cases. In the sector ð−1; 0; 1Þ we do not
confirm the discrepancy reported by the author of Ref. [30].
In the sectors ð0;−1; 0Þ and ð−1; 0;−1Þ we discovered,
solving the exact equation of motion (2) numerically, that

5 10 15 20 25 30
t

2

4
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8

10

c

FIG. 19. The dependence cðtÞ for the configuration (22) for
cð0Þ ¼ 10 and different initial velocities: vin ¼ 0.3 (solid curve),
vin ¼ 0.6 (dashed curve), vin ¼ 0.9 (dotted curve). Collective
coordinate approximation.
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FIG. 20. The dependence φðt; 0Þ for the configuration (22) for
cð0Þ ¼ 10 and vin ¼ 0.043. Bion formation.
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FIG. 21. The dependence φðt; 0Þ for the configuration (22) for
cð0Þ ¼ 10 and vin ¼ 0.2.
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FIG. 22. The dependence φðt; 0Þ for the configuration (22) for
cð0Þ ¼ 10 and vin ¼ 0.044. Escape window.
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the two colliding kinks can form a long-lived bound state
(a bion). We provide a qualitative explanation of the
process of the bion formation, based on the dynamics of
a kink that leaves its topological sector and stops being a
nearly exact solution. In the sector ð−1; 0;−1Þ, we confirm
the existence of escape windows.
The kink scattering in the sector ð−1; 0; 1Þ at sufficiently

small initial velocities can be modeled reasonably well in
the framework of the collective coordinate approach. The
basis for this conclusion is a good agreement between the
results of the two methods used in this work.
At the same time, the exact evolution of the kinks in low-

velocity vin < vðeomÞ
cr collisions exhibits a capture of the

kinks by each other and the resulting formation of a long-
lived quasibound state of the two kinks. This phenomenon
occurs in the kink-kink collisions where the asymptotics at
the positive and the negative infinities are the same, i.e., in
the sectors ð0;−1; 0Þ and ð−1; 0;−1Þ. Note that in all these
cases the interaction between the kinks is attractive.
However, within the framework of the collective coordinate
approximation without effective friction it appears impos-
sible to describe a bound state of the two kinks.
In the sector ð0;−1; 0Þ the kinks can pass through each

other and escape to infinity. This process is observed both
in the collective coordinate approach and in the exact
numerical dynamics. The values of the critical velocity
obtained by the two methods are rather close (within 10%).
In addition, one encounters the resonant energy ex-

change between the translational and the vibrational modes
of the two colliding kinks in the sector ð−1; 0;−1Þ. This
mechanism leads to the escape windows at vin < vðeomÞ

cr ,
which are well studied and described for the φ6 model in
[28]. Of course, within the collective coordinate approxi-
mation with 1 degree of freedom we can observe no
resonance phenomena. Note that in Ref. [38] it was shown,
however, that the escape windows can be reproduced within
the collective coordinate method if the interaction with the
vibrational mode of the kink is taken into account. A recent
publication [29] should be mentioned here, where the
vibrational modes of the kinks have been taken into account
in the framework of the collective coordinate approach. It
allows one to simulate resonance phenomena such as the
escape windows or the quasiresonances.
Thus, the collective coordinate approximation with 1

degree of freedom provides, in general, a good description
of the kink-kink collision process at intermediate initial
velocities. At low initial velocities in the sectors ð0;−1; 0Þ
and ð−1; 0;−1Þ the exact dynamics is qualitatively different
from that predicted by the collective coordinate approxi-
mation. At the same time, at ultrarelativistic initial veloc-
ities notable quantitative discrepancies are observed.

Note that in the sector ð−1; 0; 1Þ the interaction between
the kinks has a repulsive character and a bound state of the
kinks cannot be formed. The collective coordinate
approach works well also for small initial velocities in that
sector.
Our analysis of the collective coordinate approximation

applied to kink-kink collisions in the φ6 model demon-
strates the following apparently rather general properties of
this method. First, the applicability of the collective
coordinate approximation is limited to nonrelativistic
kinks’ velocities, since the chosen ansatz and the effective
Lagrange function are not Lorentz invariant by construc-
tion. This results in large deviations from the exact
evolution at relativistic velocities of colliding kinks.
Although this shortcoming of the method can be fixed
by properly taking into account the Lorentz invariance, this
would also result in significantly more complex equations
of motion describing the dynamics of the collective
coordinate. Second, there are phenomena occurring at
low velocities of the colliding kinks in the presence of
an effective attractive interaction between the kinks, such as
the resonant energy exchange or the kink-kink capture. The
collective coordinate approximation with a single collective
coordinate does not include the degrees of freedom that are
responsible for the correct description of these phenomena.
For instance, this method does not reproduce the escape
windows or the formation of a bion. On the other hand, the
regime when the two kinks only interact with each other for
a short time (e.g., when there is a repulsive force between
the kinks or when their collision velocity is large enough) is
described well within the collective coordinate approxi-
mation. Apparently, these limitations of the method are
quite general and hence our analysis of the φ6 kink-kink
collisions could provide a “rule of thumb” useful in studies
of other models in the collective coordinate approximation.
In conclusion, we emphasize that the present study opens

wide prospects for further research. In particular, as already
mentioned, the kink ð−1; 0Þ in the sector (0,1) starts to
decay and as a consequence changes its velocity. We
suppose that this phenomenon may be described by
analyzing the impact of the decay on the kink’s zero
(translational) mode.
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