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We calculate the self-force of a constantly accelerating electric dipole, showing, in particular, that
classical electromagnetism does not predict that an electric dipole could self-accelerate, nor could it levitate
in a gravitational field. We also resolve a paradox concerning the inertial mass of a longitudinally
accelerating dipole, showing that the combined system of dipole plus field can be assigned a well-defined
energy-momentum four-vector, so that the principle of relativity is satisfied. We then present some general
features of electromagnetic phenomena in a reference frame described by the Rindler metric, showing in
particular that an observer fixed in a gravitational field described everywhere by the Rindler metric will find
any charged object supported in the gravitational field to possess an electromagnetic self-force equal to that
observed by an inertial observer relative to which the body undergoes rigid hyperbolic motion. It follows
that the principle of equivalence is satisfied by these systems.
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I. INTRODUCTION

In 1984 Cornish proposed that according to classical
electromagnetism, a sufficiently small or highly charged
electric dipole (to be precise, a rigid body consisting of two
point charges separated by a short rod) could undergo self-
accelerated motion [1]. That is, after being placed in the
right initial conditions, it would experience a self-force in
the direction of its acceleration that was sufficient to
maintain the acceleration, without the need for any applied
external force. It follows that such a dipole could also
self-levitate in a gravitational field.
This claim was accepted uncritically at the time [2], and

the argument continues to be repeated [3]. We will show
that the claim is wrong—but for interesting reasons. It turns
out to be an example of a more general phenomenon that
has long been misunderstood, and it continues to be widely
misunderstood, namely the correct treatment of equations
of motion when self-force is non-negligible.
It has been known for over a century that classical

electromagnetism has difficulties in treating pointlike
charges [4–8]. If a pointlike particle with a finite charge
could exist, then it would produce around itself an electro-
magnetic field whose strength diverges near the particle and
whose total energy is infinite. One might “live with” this
problem by adopting the concept of “renormalization,”
arguing that only energy differences are physically relevant
and, by the use of a suitable procedure to regularize the
divergent integrals, sensible predictions could be obtained.
However it turns out that this is not sufficient on its own,
because it leads to equations of motion that have patho-
logical runaway solutions. Cornish was well aware of this
background and merely drew attention to a previously
unnoticed but especially simple case.
In the case of the rigid spherical shell, the

pathological cases can be ruled out by insisting that

an entity of given charge and observed mass cannot
have a radius below a certain minimum [7,9–11]. This
is connected to the fact that no physical entity can have
a negative mass—a simple enough fact, but one which
can be hidden when electromagnetic energy and
momentum has to be taken into account. We will show
that the resolution in the case of the dipole is similar.
The dipole case remains interesting, however, because
the case for self-acceleration seems to be straightforward
at first sight.
We also consider the fact that the electromagnetic self-

force of a dipole depends on its orientation with respect to
its acceleration. This appears to imply the inertial mass
depends on the orientation, but that would contradict
relativity and the principle of equivalence, because the
field energy does not have such a dependence. Therefore it
was considered paradoxical [12–15]. We resolve this
paradox by appealing to the inertia of pressure.
An alternative resolution was offered by Ori and

Rosenthal [14,15], based on a different, but well-motivated,
definition of self-force also described by Pearle [16]. We
reconcile the two approaches.
We also consider the case of a charged body at rest in an

accelerating reference frame in flat spacetime. This is the
frame described by the Rindler metric; it describes the
simplest possible gravitational field (one which causes
acceleration but not tidal effects). We present a general
calculation of electromagnetic self-force in this case. Our
approach to calculating the electromagnetic field agrees
with several earlier treatments [17–19], but not, at first
appearance, with a recent calculation by Pinto [13]. The
difference is resolved by considering what is meant by
observation in or relative to an accelerating frame; this
influences the way forces acting at different positions
should be summed or compared.
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The paper is laid out as follows. Section II treats the
self-force of an accelerating dipole. We first show that self-
acceleration does not occur when the properties of the dipole
are restricted to physically possible values, and then we
address the mass paradox associated with the dependence of
the self-force on orientation. The analysis is tractable when
we model the dipole as two small spheres whose separation
is large compared to their radius. In order to address the
complete problem it is necessary also to consider the case
where the spheres are close together; this is addressed by
numerical calculations in Sec. II C. Section III presents the
fact that there is more than one way to consider what is the
rate of change of momentum of an extended object, owing to
the relativity of simultaneity. Section IV presents the
problem of electromagnetic self-force in the presence of a
simple “gravitational” field (that is, a non-Minkowski metric
but with zero spacetime curvature). An exact treatment turns
out to be quite simple in the case of the Rindler metric.
Section V summarizes the conclusions.

II. THE ACCELERATING DIPOLE

The “dipole” under consideration consists of a pair of
charges�q connected by a short rod of proper length d and
undergoing rigid motion. By “rigid motion” we mean
motion such that at each moment there is an inertial frame
in which both charges are at rest, and their proper
separation is constant; i.e., the separation is the same in
all successive instantaneous rest frames. We need not
assume that the rod is made of rigid material (which would
be impossible)—instead we assume that d is the length it
adopts, in equilibrium, under the influence of the com-
pressive forces from the two charges as they attract one
another, and any other external forces to which it may be
subject, and we consider a case where the external force is
such that d is constant.
In particular, we consider such a dipole undergoing

motion at constant proper acceleration a0 (“hyperbolic
motion”), and in the first instance we treat the case where
the rod is aligned perpendicular to the acceleration.
Figure 1 shows the lines of electric field from one of the

charges, in the instantaneous rest frame. For illustration,
the field Eþ of the positive charge is shown. Note that, at
the location of the other (negative) charge, Eþ is directed
outwards and somewhat in the direction opposed to the
acceleration. Therefore, the force on the negative charge,
owing to the field of the positive charge, is inward and
somewhat in the direction along the acceleration. Similarly,
the force on the positive charge, owing to the field of the
negative one, is also inward and somewhat in the direction
along the acceleration. By forming the sum of these two
forces, one concludes that there is a net electromagnetic
self-force along the direction of the acceleration. This
seems to suggest that this self-force could provide the
force required to make the dipole accelerate, and hence one
would have a self-accelerating dipole.

We have presented this qualitative argument first,
in order to show how natural the suggestion of self-
acceleration is in this case. Next we back it up with some
quantitative statements.
Let the motion be along x and let the charges by

separated by a rod of fixed length d aligned along y.
The field due to each charge at the position of the other has
been obtained by Fulton and Rohrlich [20,21]. In the
instantaneous rest frame it is given by

jExj ¼
4qL2

4πϵ0dð4L2 þ d2Þ3=2 ; jEyj ¼ 2jExjL=d; ð1Þ

where L≡ c2=a0 and the signs are such that the charges
attract in the y direction and each accelerates the other in
the x direction.
Each charge also experiences a self-force which can

be treated by using the Abraham-Lorentz-Dirac (ALD)
equation. In order to do this, we first model each charge
as a small spherical shell of radius R, and then take the
limit R ≪ d. At small but finite R, the electromagnetic
self-four-force of such a shell is given by the ALD
equation,

Fshell ¼
2

3
e2
�
−

_v
R
þ v̈ − _v2vþOðRÞ

�
; ð2Þ

where we introduced e2 ≡ q2=4πϵ0 to reduce clutter,
the dot signifies the derivative with respect to the proper
time, the four-vectors are displayed in index-free notation,
and we took c ¼ 1. If the shell is not exploding under the
influence of its own electromagnetic forces, then the
material constituting it must be in tension. These internal

FIG. 1. Field lines of the electric field in the instantaneous rest
frame of a positively charged small object undergoing constant
proper acceleration in the þx direction. A negative charge
situated anywhere on the dashed line will experience a force
with a component in the þx direction and will itself produce an
electric field similarly tending to accelerate the first charge.
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stresses (Poincaré stresses) also give rise to a self-four-
force, discussed in Appendix A, given by

FP ¼ 1

6
e2

_v
R
þOðRÞ: ð3Þ

In the case of hyperbolic motion the second and third
terms in Eq. (2) are equal and opposite. Hence one finds
that, when R ≪ d, the equation of motion for either charge
of the dipole, when written in the instantaneous rest frame
(and after reinstating c), is

fext þ
4e2L2

dð4L2 þ d2Þ3=2 −
2e2

3Rc2
a0 þ

e2

6Rc2
a0 ¼ m00a0;

ð4Þ

where m00 is the bare rest mass of the spherical shell in the
absence of internal stress.
Let us introduce

mes ≡ e2

2Rc2
ð5Þ

which is the total field energy of a spherical shell of charge
that is permanently at rest (evaluated in the rest frame).
Then we have

fext þ
4e2L2

dð4L2 þ d2Þ3=2 −
4

3
mesa0 þ

1

3
mesa0 ¼ m00a0:

It makes good physical sense to move the Poincaré stress
term to the right hand side of the equation, writing

fext þ
4e2L2

dð4L2 þ d2Þ3=2 −
4

3
mesa0 ¼ m0a0; ð6Þ

where m0 ≡m00 −mes=3. This is good practice because
m0 is the inertial mass of a well-defined physical entity
(the material of the shell, including its internal stresses) that
is being acted upon by forces external to it. This m0 is
often called the “bare mass.” It is also customary to gather
all the terms that are proportional to a0 and introduce
m≡m0 þ ð4=3Þmes ¼ m00 þmes. m is the mass that will
be “observed,” i.e., deduced from measurements of the
acceleration of a single shell under given applied forces, if
one chooses to move all the inertial terms in the self-force
to the right hand side of the equation of motion.
We want to know whether (6) has interesting solutions

when fext ¼ 0. After substituting L ¼ c2=a0 and fext ¼ 0,
Eq. (6) gives a cubic equation for a20. It has a single real
solution for a20, given by

a20 ¼
�
2c2

d

�
2
��

e2

2mc2d

�
2=3

− 1

�
: ð7Þ

This is the main result obtained by Cornish. One observes
that for

d <
e2

2mc2
ð8Þ

one can have a solution of the equation of motion in which
there is a constant acceleration with no applied force. This
is the surprising result whose validity we will question.
It is instructive to consider the force exerted by each

charge on the other, i.e., the term involving d in Eq. (6),
also in terms of inertia. When d ≪ L this term is
approximately e2=2Ld ¼ Δma0 where Δm ¼ e2=2dc2.
Therefore the pair of spheres has its total inertial mass
reduced by

2Δm ¼ e2=dc2; ð9Þ

which is precisely the “potential energy” of a pair of
point charges at rest, separated by d. Of course this
potential energy is really field energy: it is the amount by
which the field energy is smaller, when the charges are
brought to separation d, compared to when they are far
apart, in the case R ≪ d. One may then observe that if
Δm > m, then one would have a negative total effective
mass, and therefore self-acceleration. Thus one deduces
the condition (8) again.
Since energy and momentum are exactly conserved in

the interaction between particles and fields in classical
electromagnetism, the existence of self-accelerated solu-
tions has sometimes been interpreted, somewhat vaguely,
as a way of drawing on the infinite reserves of energy to be
found in the electromagnetic field near a pointlike particle.
However, such an argument will not work, because we do
not need R to be zero, only small, so the field energy is
finite. It begins to look as if energy-momentum conserva-
tion is breaking down.
In fact, there is no such conclusion. The problem with the

result is that the condition (8) cannot be satisfied if m0 ≥ 0.
For then one has m ≥ ð4=3Þmes so

e2

2mc2
≤
3

4
R: ð10Þ

Hence if we model the dipole as two small spherical shells,
as above, then the condition for the self-accelerated
solution is that the centers of the shells are separated
by substantially less than twice their radius. But this
implies that they overlap and therefore the calculation is
invalid.
If one admits m0 ≤ 0, then it should not surprise us that

self-acceleration could occur. As the matter with m0 < 0
accelerates, its kinetic energy gets more and more negative,
and a corresponding energy goes into the fields, since
energy is conserved overall. But the whole situation
remains unphysical.
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A. Longitudinal dipole: Resolution of mass paradox

The self-force for the case of a longitudinally accelerat-
ing dipole is equally easy to extract using the equations for
the field of an accelerating point charge. We consider a pair
of point charges undergoing constant proper acceleration
along the x axis. The condition for rigid motion (i.e.,
constant proper separation) is that the charges have proper
accelerations given by [22,23] ai ¼ c2=xi where xi is the
location of the ith charge in the instantaneous rest frame. It
follows that if the particles are separated by a rod of proper
length d, and the center of the rod has proper acceleration
a0, then the proper accelerations of the two particles are
given by

a0
1� a0d=2c2

;

the trailing particle having the higher acceleration.
The electric field at x1 on the x axis due to an

accelerating point charge q2 located at x2, in the instanta-
neous rest frame, is [24]

Eð1;2Þ ¼ s
4q2x22

4πϵ0ðx22 − x21Þ2
; ð11Þ

where s is the sign of ðx1 − x2Þ and the origin has been
located such that x2 ¼ c2=a2. By interchanging the labels
one finds that the total self-force (ignoring the self-force of
each charge on itself) is

q1Eð1;2Þ þ q2Eð2;1Þ ¼ 4q1q2
4πϵ0ðx21 − x22Þ

¼ 2e2

dc2
a0: ð12Þ

The calculation is exact in the limit d ≫ R; it gives the self-
force in the instantaneous rest frame. The final form on the
right hand side of Eq. (12) suggests an interpretation in
terms of mass, and it shows that in this case the inertial
mass reduction is by twice what one might expect [for
example, it is twice that observed in the transverse case,
Eq. (9)]. This is the paradox noted by Griffiths and Owen
[12] and taken up by Pinto [13] (see also [25]).
The paradox is not that the self-force depends on

orientation, but with reconciling this fact with energy
considerations. To lowest order in a0 the field energy does
not depend on orientation: it is given by −e2=d plus a
contribution that is independent of the positions of the
charges. Therefore it appears as if the energy and momen-
tum of the complete system (dipole plus field) will not be
able to form a four-vector at all orientations. This would
violate basic principles of special relativity. It would also
violate the principle of equivalence, since the passive
gravitational mass of the complete system (matter plus
field) is determined by the energy (divided by γc2), whereas
the inertial mass is determined by the momentum (divided
by γv).

Since energy momentum is exactly conserved in
classical electromagnetism, we can be sure that Eq. (12)
gives the (negative of the) rate of change of the field
momentum. To be precise, it matches the part of the field
momentum associated with cross terms. This was checked
to first order approximation by Griffiths and Owen, and we
can rely on the consistency of the theory to be assured that
it will be true exactly. The only mystery is that this
momentum is not matching up with the field energy in
the appropriate way: we have a “mysterious” factor 2.
The resolution is as follows.
This “2 problem” is just like the famous “4/3 problem” in

the treatment of a charged sphere, and it can be understood
in the same way. We have to take into account the pressure
in the rod [26]. There is no choice about this: the physical
system could be realized by placing two real, physical
charged spheres at the end of a literal rod, and such a rod
will certainly thus be placed in compression. The issue does
not arise in the transverse case because in that case the
pressure forces in the rod are transverse to the motion. In
general, however, the pressure does influence the dynam-
ics. One can think of this either in terms of “hidden
momentum” [22] or in terms of the contribution of pressure
to inertia (cf. Appendix A). When one calculates the
contribution of the pressure to the inertia exhibited by
the rod, one finds its inertia tensor is not isotropic.
Consider the two charged spheres separated by a rod

lying along the direction of acceleration, which we con-
tinue to take as the x direction. Let us treat the material of
the rod as an ideal fluid (imagine a fluid-filled tube with the
charged spheres attached to pistons at each end). In the
instantaneous rest frame, the pressure p in the fluid will
obey the relativistic Navier-Stokes equation, which in the
instantaneous rest frame takes the form

�
ρ0 þ

p
c2

�
Du
Dt

¼ −∇p: ð13Þ

For positive pressure we can take the mass density of the
fluid (ρ0) to be negligible, and for the rigid hyperbolic
motion under consideration, each part of the fluid has a
proper acceleration given by Du=Dt ¼ c2=x. Hence the
solution of the Navier-Stokes equation is

p ∝
1

x
: ð14Þ

If the cross section of each piston is A, then the equations of
motion of the two charged spheres are

fð1Þext þ f1 − p1A ¼ ma1;

fð2Þext − f2 þ p2A ¼ ma2; ð15Þ

where m is the observed mass of each sphere, fðiÞext is the
external force on sphere i, pi are the pressures at the two
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ends of the tube, ai ¼ c2=xi are the accelerations of the
spheres, and fi is the magnitude of the force on sphere i
owing to the field of the other sphere, given by Eq. (11),

f1 ¼
e2

d2L2
x22; f2 ¼

e2

d2L2
x21; ð16Þ

where the two spheres are centered at x1 ¼ L − d=2,
x2 ¼ Lþ d=2. By using (14) in (15) we find

f1 þ fð1Þext −ma1

f2 − fð2Þext þma2
¼ x2

x1
: ð17Þ

Hence

fð1Þextx1 þ fð2Þextx2 ¼ 2mc2 − ðf1x1 − f2x2Þ: ð18Þ

In general there is no compelling reason why the external
forces on the two spheres need be equal. However, if we
suppose that they are, then we find that the total external
force is related to the acceleration of the center of the rod,
a0 ¼ c2=L, by

2fext ¼ 2ma0 −
e2

dc2

�
1 −

a20d
2

4c4

�
a0: ð19Þ

Hence in the limit a0d ≪ c2 we find that the self-force,
after taking internal pressure into account, matches the
result for transverse orientation of the dipole, Eq. (9). This
confirms that the behavior of the momentum is consistent
with the behavior of the energy, for small dipoles or small
accelerations, for these two orientations of the dipole, and
we will show it for all orientations in the next section.
For the case where the external force varies as

fðiÞext ∝ 1=xi, the left hand side of (18) evaluates to
2fextL, where fext is now the value of the force for
x ¼ L, and one obtains (19) again. In this case the total
external force is not 2fext but 2fextð1 − d2=4L2Þ−1.
One may also interpret the physical picture in terms of

“hidden momentum,” as follows. Hidden momentum is
momentum associated with energy transport through the
body [22]. As the rod accelerates, the hidden momentum
continually increases. This increases the inertia of the rod
by the integral of the force along the length of the rod [28],
which is e2=d. This happens to be equal to the electrostatic
field energy, but it is located in a completely different
physical system, namely the material of the rod. Once this
energy is added to the electrostatic field energy, we get a
complete system (charges plus rod plus surrounding field)
which can be treated as isolated and assigned a four-
momentum. In particular, we find that the external force
required to accelerate the dipole (or to keep it at a fixed
location in a gravitational field) does not depend on the
orientation of the dipole, for small a0. In the longitudinal
case, the dipole “pulls itself along” by its own

electromagnetic forces more than in the transverse case;
however, it has to do this in order to provide the hidden
momentum associated with its internal pressure forces as
well as its ordinary momentum, with the net result that its
overall tendency to resist acceleration by outside forces is
the same in the longitudinal as in the transverse case.
The condition for self-acceleration in the longitudinal

case, after taking hidden momentum into account, is the
same as for the transverse case, namely condition (8), but as
before this is outside the range of validity of the calculation
if we insist that the bare mass is non-negative. In either
case, longitudinal or transverse, although we do not expect
self-acceleration, we do expect that a dipole will be
observably lighter than an object otherwise similar but
with two charges of the same sign. The expected difference
in the observed mass between the dipole and the dumbbell
is twice Eq. (9), i.e., 2e2=dc2.
All the above is valid for a0d ≪ c2. More generally, the

self-force given by Eq. (19) does not exactly match that
given by (6). Both of these equations have been derived
without restriction on the value of a0, except for the
restriction imposed by the horizon at x ¼ 0, namely d <
2L so a0d < 2c2, and we are still assuming R ≪ d.
However, comparing the dipole at one orientation with
the dipole at another is nontrivial once the acceleration is
substantial, because it is no longer clear what value should
be considered “the acceleration of the dipole” when differ-
ent parts have different accelerations (the longitudinal
case), nor is it easy to locate the centroid of the field
energy distribution. The following argument shows that a
difference in self-force between the transverse and longi-
tudinal cases is expected at Oða30Þ. The situation is
comparable to the case of an object fixed in a gravitational
field whose strength varies as g ∝ 1=x. Then for a prolate
object of length d at height L, the total gravitational force
when it is oriented vertically exceeds that when it is
oriented horizontally by an amount of order ðd=LÞ2f,
where f is the gravitational force in the horizontal case.
We can apply this fact to the mass distribution associated
with the field energy. The electromagnetic contribution to
the mass is of order e2=dc2, and this mass is mostly
concentrated in a prolate region of size approximately d.
Therefore we expect an orientation-dependent contribution
to the electromagnetic self-force of order

�
d
L

�
2 e2a0
dc2

¼ e2da30
c6

: ð20Þ

B. Dipole at arbitrary orientation

We presented the transverse and longitudinal cases in
detail in order to get clarity about the underlying physical
mechanisms, and because it permits some simple exact
results (in the limit d ≫ R) to be exhibited, such as Eqs. (6),
(7), (12) and (19). For a dipole at arbitrary orientation to its
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acceleration, we shall treat the problem to first order in the
proper acceleration. The electric field produced by the first
charge at the second is given by the standard expressions
for the electric field of a charge in hyperbolic motion, and
by expanding to first order in a0 one finds

Eð2;1Þ ¼ q
4πϵ0

�
d̂
d2

−
a0 þ ða0 · d̂Þd̂

2c2d

�
þOða20Þ; ð21Þ

where d̂ is a unit vector in the direction from the first charge
to the second. The total electromagnetic self-force of the
dipole is therefore, to Oða0Þ,

fðe.m.Þ
self ≃ e2

c2d
ða0 þ ða0 · d̂Þd̂Þ þ 2fðe.m.Þ

sphere; ð22Þ

where fsphere is the force of each charged sphere on itself
(this is in the direction opposite to a0). The pressure force in
the rod varies monotonically from one end to the other, but
to Oða0Þ it is sufficient to use the average along the rod,
which [again to Oða0Þ] is equal to the average of the
magnitudes of the two forces on the ends, i.e., ðe2=d3Þd.
Hence the rate of change of hidden momentum is

e2

c2d3

Z
d=2

−d=2
ðd · a0Þd̂ds ¼

e2

c2d3
ðd · a0Þd; ð23Þ

where, in the integral, s is the distance along the rod. The
hidden momentum may be accounted for by bringing it to
the other side of the equation of motion and regarding it as a
contributer to the self-force. Hence, by subtracting (23)
from (22), and also including the effect of internal stresses
in the spheres, we find the total self-force of the system is

fself ≃ e2

c2d
a0 þ 2fsphere: ð24Þ

Hence the resistance to acceleration by external forces is
independent of the orientation of the rod, for all angles, to
first order in a0, when d ≫ R. The whole situation is
closely related to the Trouton-Noble experiment [29].
Historically the electromagnetic contribution to the mass

of extended entities such as atoms and molecules has
been considered to be of purely theoretical interest,
being too small (of order 10−10 of the rest mass) to be
observed experimentally. However, modern mass compari-
son techniques using ions trapped in Penning traps can
achieve the required sensitivity [30]. It would be interest-
ing, for example, to confirm that the inertial mass of a polar
molecule such as lithium hydride is independent of its
orientation. This would show that the quantum mechanical
source of the internal pressure in the molecule, namely zero
point energy when an electron is confined to a small region,
gives rise to the requisite hidden momentum as special
relativity says it must.

C. Dipole with large spheres

If we avoid the assumption of negative bare mass, then
the remaining possibility, if we are searching for self-
accelerating solutions, is to suggest that there might exist
some charge distribution which gives a net electromagnetic
self-force in the direction of the acceleration, even when the
inertial terms are included. Given that the fields around an
accelerating charge tend to retard any like charge moving
alongside the first one, the most promising distribution
would appear to be a dipolelike form, but made of a pair of
larger spheres, so as to reduce mes as much as possible
without greatly changing the force exerted by each sphere
on the other. Therefore let us consider two oppositely
charged spherical shells, having total charges�q, radius R,
with their centers separated by d (Fig. 2). The calculation in
the previous section already applies to this dipole when
d ≫ R, but we would like to find out whether the case
d≃ 2R (or indeed d < 2R, i.e., intersecting spheres) can
yield self-acceleration.
The electromagnetic self-force of a single spherical shell

of charge undergoing hyperbolic motion has been calcu-
lated exactly [23]. In the instantaneous rest frame, it is

fshell ¼
2e2

Rc2
a0

X∞
n¼0

ðRa0=c2Þ2n
ð2n − 1Þð2nþ 1Þ2ð2nþ 3Þ

≃ e2

LR

�
−
2

3
þ 2

45

�
R
L

�
2

þ 2

525

�
R
L

�
4

þ � � �
�
; ð25Þ

and the condition that the sphere can maintain its proper
size and shape is R < L. This shows that the further terms
in the power series expansion do lower the absolute
magnitude of the self-force of the shell, but one finds this
reduction is not by enough to allow a self-accelerating
dipole, as we now show. The force fdip of each shell on the
other is in the forward direction. It can be estimated for
d ≫ R by using Eq. (1), which gives

fdip ≃ e2

Ld

�
1

2
−

3

16

�
d
L

�
2

þ 15

256

�
d
L

�
4

þ � � �
�
: ð26Þ

−q

d

R
q

FIG. 2. A pair of charged spherical shells separated by a rigid
rod.
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For example, at R ¼ L, d ¼ 2R (i.e., large, touching
spheres) one finds fshell ¼ −ðπ2=16Þe2=L2 and fdip≃
ð8 ffiffiffi

2
p Þ−1e2=L2 ≃ 0.14jfshellj.
In order to confirm this conclusion we need to replace the

rough estimate for fdip by a more accurate value. We did
this by numerical integration, as described in Appendix B.
Figure 3 shows the results. For all values of d=R and R=L
we find that the total self-force opposes the acceleration.
One can prove that the self-force vanishes in the limit

d → 0 as follows. Consider the field Eshell due to a single
charged shell. It is discontinuous at the edge of the shell by
ðσ=ϵ0Þr̂ where σ ¼ q=4πR2 is the surface charge density
and r̂ is a unit vector in the direction radially outwards from
the center of the shell. Therefore the field Ēshell ≡Eshell −
σHðr=RÞr̂=ϵ0r2 is continuous, whereHðxÞ is the Heaviside
step function. The fields Ēshell and Eshell differ by a field
that exerts no net force in the x direction on any charge
distribution that is symmetric about x ¼ L. Therefore we
can use either of them for the purpose of calculating the
self-force of the transversely oriented dipole. By using
Ēshell we eliminate the discontinuity; this allows the rest of
the argument to proceed. Now consider the two contribu-
tions fshell and fdip. Both may be calculated by integrating
Ēshell over a spherical charge distribution. The two charge
distributions in question have opposite signs and infini-
tesimally different locations in the limit d → 0. Therefore
in that limit one must find fshell ¼ −fdip. This is expected
since in this limit the fields produced by the two shells
cancel. For d > 0 one can see from the overall form of the
integrand (Fig. 4) that fdip must fall monotonically as d

increases. Therefore in this physical system the forward
force arising from the presence of opposite charges can just
approach the backward force arising from the presence of
like charges, but cannot exceed it and thus produce self-
acceleration.
The above considerations for d → 0 will also apply if we

model the pair of charged objects using some other shape or
distribution of charge. This suggests that the overall
conclusion, that the total self-force never points in the
direction of acceleration, will hold true more generally.
Further calculations would be needed to confirm this.

III. ALTERNATIVE DEFINITIONS
OF SELF-FORCE

So far we have presented the self-force by adopting the
policy of selecting a reference frame at the outset (the
instantaneous rest frame) and summing the three-forces
acting simultaneously in this frame. This is a valid method.
However, owing to the relativity of simultaneity, it is not the
only one that may be regarded as legitimate and useful.
Consider a composite object that can be decomposed

into a set of discrete entities i. The total four-momentum of
the composite object is

pμ
totðτc; χÞ ¼

X
i

pμ
i ðτi;χÞ; ð27Þ

where χ denotes a spacelike hypersurface, τi;χ is the proper
time on the ith worldline when that worldline intersects χ,
and τc is the proper time on some reference worldline
(e.g., the worldline of the centroid). In other words, χ is the
hypersurface on which the individual four-momenta pμ

i are

0 2 4 6 8 10
0

1

2

3

4

5

6

7

FIG. 3. The contribution fdip to the self-force of a pair of
oppositely charged spherical shells of radius R with centers
separated by d and undergoing rigid hyperbolic motion in the
transverse direction. The force is shown in units of e2=L2, for
nine equispaced values of R between 0.1L and 0.9L. The total
self-force of the pair of spheres is f ¼ 2ðfdip þ fshellÞwhere fshell
is given by Eq. (25). As d → 0 one finds that fdip → −fshell
(see text) so f → 0. The spheres are just touching when d=R ¼ 2.
At d ≫ R, fdip is independent of R and is given by the
d-dependent term in Eq. (6).
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FIG. 4 (color online). The x component of the field Ēshell,
which is the field of an accelerating sphere with a radially
symmetric contribution removed, so as to leave a continuous
function whose integral can be used to calculate the self-force for
the case of a transversely oriented dipole. The figure shows the
case L ¼ 1, R ¼ 1=2 for illustration. Note that jĒshell;xj falls
monotonically with y for points outside the shell.
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evaluated in order to form the sum. Typically, one picks a
spacelike hyperplane (so that the events figχ are simulta-
neous in some frame). If the composite object is isolated,
then the result does not depend on the choice of hyperplace
[22]. If it is not isolated, which is the case for any
calculation of self-force (since then the object in question
is being pushed or pulled by its own electromagnetic field
and by an external force), then pμ

tot does depend on χ. For
an object whose motion is rigid—that is, its motion is such
that at any given event on the world tube there is a reference
frame in which all parts of the object are at rest, and at the
same proper distances—a natural choice of χ is the
hyperplace of simultaneity for the instantaneous rest frame
at the given τc.
Suppose each discrete entity in the composite object

experiences a four-force Fμ
i ¼ dpμ

i =dτi. Having established
a definition of pμ

tot at one instant, one may take an interest in
the rate of change of this quantity,

dpμ
tot

dτc
¼ lim

δτc→0

pμ
totðτc þ δτc; χ þ δχÞ − pμ

totðτc; χÞ
δτc

; ð28Þ

where we have assumed a one-to-one correspondence
between χ and τc, such that δχ → 0 as δτc → 0.
The result (28) depends on what choice is made for the

hyperplane χ þ δχ. So far in this paper we have adopted the
instantaneous rest frame in order to pick χ, and the method
of summing three-forces acting simultaneously in that
frame amounts to choosing for χ þ δχ a hyperplane parallel
to χ and separated from it by a time δt in the given frame.
The result for the spatial part of dpμ

tot=dτc is

dptot

dt
¼

X
i

dpi

dt
; ð29Þ

where the quantities dpi=dt are evaluated on the hyper-
plane χ. For any given worldline we have dτi=dt ¼ 1 in the
instantaneous rest frame; hence we may also write

dpμ
tot

dτc
¼

X
i

dpμ
i

dτi
: ð30Þ

Another interesting choice for χ þ δχ is a hyperplane of
simultaneity for the new instantaneous rest frame at τ þ δτ.
For an accelerating object this is not parallel to χ, and one has

dpμ
tot

dτc
¼ lim

δτc→0

X
i

pμ
i ðτi þ δτiÞ − pμ

i ðτiÞ
δτc

ð31Þ

¼
X
i

dpμ
i

dτi

dτi
dτc

; ð32Þ

where in the sum in (31), each δτi is theproper timeelapsedon
the ith worldline between the intersections of that worldline

with χ and χ þ δχ, and in (32) the quantities dpμ
i =dτc and

dτi=dτc are evaluated on the hyperplane χ. We now have two
different definitions of the rate of change of the total
momentum for the composite body: Eq. (30) is not the same
as Eq. (32). Hence the phrase “the self-force” is ambiguous
until one has specified which definition is adopted.
Ori and Rosenthal [14,15], following Pearle [16], have

described the approach using (32). This approach has the
advantage that for rigid motion, the internal forces cancel
and the electromagnetic self-force one obtains is indepen-
dent of the shape or orientation of the composite object.
However, one should not ignore the internal forces alto-
gether, and indeed in the approach using (30) they play an
important role, as we have shown. [The statements in
[14,15] suggesting the inadmissability of (30) are largely
mistaken because they fail to take into account the fact
that the internal stress tensor need not be spherically
symmetric.]

IV. SELF-FORCE IN A SIMPLE
GRAVITATIONAL FIELD

The general problem of self-force in a gravitational field
is rich and subtle; for recent reviews see [31,32]. Here we
consider only the case of a charged body held fixed in a
spacetime described by the Rindler metric. This metric is
appropriate to a uniformly accelerating reference frame in
flat spacetime. Obviously, this case does not show the
quintessential gravitational phenomena that are associated
with curvature and tidal forces. However, the uniformly
accelerating reference frame is an important basic case that
can be used to explore phenomena that are associated
purely with a spatial dependence of proper time, in the
absence of spacetime curvature. It is also very useful for
gaining physical insight.
We shall be concerned with the purely electromagnetic

force which includes a divergent part (in the limit of
pointlike objects) and a nondivergent part commonly called
radiation reaction. The gravitationally induced self-force
fG discussed in [33] vanishes in flat spacetime, and
therefore we shall not be concerned with it (even though
it may dominate the radiation reaction in gravitational
problems of practical interest).
Pinto [13] has presented a calculation of the field of a

point charge in a reference frame described by the Rindler
metric, by developing a formula for electric potential in
the Rindler frame and evaluating its gradient. He thus
finds that the electromagnetic self-force for a dipole is
independent of orientation, to lowest order in the accel-
eration. Previously the electric field of a point charge in
the constantly accelerating frame was obtained by several
workers [17–19] using another method, namely to start
with the field tensor in Minkowski space and then trans-
form it; see also [34]. The field thus obtained differs from
Pinto’s and gives a self-force for a dipole that depends on
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orientation. We shall show that these differences arise from
the difference between definitions (30) and (32).
Before considering the point charge, we examine the

electromagnetic field in the Rindler frame in general. This
will permit some observations more general than those
given by Bradbury or Rohrlich, and we will bring out an
interesting aspect not explicitly indicated by anyone. The
derivation is quite simple.
We consider a region of flat spacetime. The region is

mapped by a coordinate system ðT; X; y; zÞ describing
an inertial frame (one whose metric is Minkowskian),
and also by another coordinate system ðθ; h; y; zÞ related
to the first by

θ ¼ tanh−1ðT=XÞ; h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − T2

p
ð33Þ

in the region where h is real and positive (we will not
need to consider the rest of spacetime). The metric for
this second system is the Rindler metric, gab ¼
diagð−h2; 1; 1; 1Þ. Any point fixed in the second system
is undergoing hyperbolic motion relative to the first, with
constant proper acceleration 1=h (we take c ¼ 1 through-
out this section). One can see immediately from the metric
that the second system is static; i.e., the set of points at
given ðh; y; zÞ form a rigid lattice with fixed proper
distances between them: it is the “constantly accelerating
reference frame” in flat spacetime [19,22,35].
The coordinate transformation matrix is

Λa
a0 ≡ ∂xa

∂xa0 ¼

0
BBB@

1
h cosh θ − 1

h sinh θ 0 0

− sinh θ cosh θ 0 0

0 0 1 0

0 0 1

1
CCCA ð34Þ

in which the primed (unprimed) indices correspond to
the Minkowski (Rindler) coordinate system. Note the
similarity with the Lorentz transformation.
To calculate the electromagnetic effects we start in the

first coordinate system and use Maxwell’s equations in flat
spacetime to find the fields in the standard way. This means
that we neglect the effect of this electromagnetic field on
the spacetime curvature; thus we neglect some nonlinear
effects which are negligible in the limit of weak fields. We
thus find the field tensor Fa0b0 in the Minkowski coordinate
system. Since this transforms as an ordinary tensor, we
may immediately find its form in the Rindler system, given
by Fab ¼ Λa

a0Λb
b0Fa0b0. The result of this easy calculation

is that the tensor transforms just like it would under a
Lorentz transformation, except that the first row and
column (i.e., F0b and Fa0) pick up an additional factor
1=h. Upon pre- and postmultiplying by gab, which intro-
duces a factor h2, we find that the covariant form Fab has
the first row and column multiplied by h, compared to a
Lorentz-transformed version of Fa0b0 .

To calculate the electromagnetic force on a charged
particle in this field, we use

dpðEMÞ
a

dτ
¼ qFaλ

dxλ

dτ
; ð35Þ

where pa is four-momentum and the superscript (EM)
signifies that we are only writing down the contribution
from electromagnetic effects [36]. [Note, however, that we
shall introduce another definition of the “electromagnetic
force” after Eq. (43).] For example, consider a particle
fixed at height h in the Rindler frame. Its worldline in
the Minkowski frame is x2 − t2 ¼ h2, and therefore
its 4-velocity in the Minkowski frame is ua

0 ¼ ðcosh θ;
sinh θ; 0; 0Þ. Upon transforming we find [37] ua ¼
Λa

aua ¼ ð1=h; 0; 0; 0Þ. The factor 1=h in the 4-velocity
exactly cancels the factor h in the first row of the field
tensor, and we obtain

dpðEMÞ
a

dτ
¼ dpðEMÞ

ā

dτ
; ð36Þ

where the barred coordinates refer to the inertial frame
obtained by the Lorentz boost from the original ðt; x; y; zÞ
frame. Equation (36) asserts that for any given electro-
magnetic field in flat spacetime, the components of the
electromagnetic four-force on a particle fixed in the
Rindler frame, expressed in the coordinate system of that
frame, are the same as those of the electromagnetic four-
force on that same particle, expressed in the coordinate
system of a Minkowski frame relative to which the Rindler
frame is momentarily at rest. Informally, one may say that,
when calculating observations made by an observer at rest
in the constantly accelerating reference frame, we do not
need to worry about the general covariance of electromag-
netism: just Lorentz boost to the instantaneous rest frame,
and you will find the correct four-force.
In the case of the self-force of any arbitrary charge

distribution undergoing rigid acceleration, the consequence
of the above general statement is especially simple: the
electromagnetic self-force is the same in the Rindler frame
as in the Minkowski instantaneous rest frame. That is to
say, the self-force as defined by (30) will agree in the two
frames, and the self-force defined by (32) will also agree in
the two frames.
It follows that all our previous statements about electro-

magnetic forces on an accelerating dipole also apply to
electromagnetic forces on a dipole fixed in a gravitational
field described by the Rindler metric. In particular, if we
adopt the definition (30), then the electromagnetic self-
force is larger when the dipole is oriented along the
gravitational field than when it is oriented transverse to
the gravitational field. Indeed, in view of the pressure forces
in the rod, this must be the case if the principle of
equivalence is to be satisfied. Having taken the internal
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pressure into account, the net result is that the weight of a
dipole is independent of its orientation (assuming that it is
in mechanical equilibrium). However, in the case of the
uniformly accelerating reference frame, Eq. (30) is not the
most natural definition of the total force on an extended
object. Rather, Eq. (32) is more natural. If we adopt that
definition, then we find the electromagnetic self-force is
independent of orientation, to first order in the acceleration.
We will now present this explicitly.
We begin by writing down the field of a charge

undergoing hyperbolic motion with constant proper
acceleration a0, as observed in the inertial (Minkowski)
frame in which the particle is momentarily at rest. If the
particle is at ðX0; y0; z0Þ, then the field at ðX; y; zÞ is given
by [20,22,38]

Ēρ ¼
q
r3

ðρ − ρ0Þð1þ a0ðX − X0ÞÞ
ð1þ a0ðX − X0Þ þ a20r

2=4Þ3=2 ;

Ēx ¼
q
r3
ðX − X0Þ þ a0

2
ððX − X0Þ2 − ðρ − ρ0Þ2Þ

ð1þ a0ðX − X0Þ þ a20r
2=4Þ3=2 ; ð37Þ

where ðρ − ρ0Þ ¼ ððy − y0Þ2 þ ðz − z0Þ2Þ1=2 and r ¼
ððX − X0Þ2 þ ðρ − ρ0Þ2Þ1=2, and we adopted Gaussian
electromagnetic units.
In order to make the comparison with Pinto’s calculation

straightforward, introduce a change of coordinates to
ðt; x; y; zÞ where t ¼ θ=g, x ¼ h − 1=g and g is a constant.
In these coordinates the metric is

ds2 ¼ −ð1þ gxÞ2dt2 þ dx2 þ dy2 þ dz2: ð38Þ

In a general (i.e., not Minkowski) frame, there is more than
one way to define what may be called “electric field.” One
possible definition is the spatial part of the local four-force
per unit charge on a charged particle that is not moving
relative to the frame. This is given by

Ei ¼ Fi
λuλ ð39Þ

[cf. (35)] where uλ is the 4-velocity of the local observer
fixed in the frame. By the argument before Eq. (36),
we have

Ei ¼ Ēi: ð40Þ

Also, since at T ¼ 0 we have x ¼ X − 1=g, it follows that
ðX − X0Þ ¼ ðx − x0Þ, so the electric field in the Rindler
frame, as given by (39), is

Eρ ¼
q
r3

ðρ − ρ0Þð1þ a0ðx − x0ÞÞ
ð1þ a0ðx − x0Þ þ a20r

2=4Þ3=2 ;

Ex ¼
q
r3
ðx − x0Þ þ a0

2
ððx − x0Þ2 − ðρ − ρ0Þ2Þ

ð1þ a0ðx − x0Þ þ a20r
2=4Þ3=2 : ð41Þ

In order that the charge at x0 is fixed in the Rindler frame,
its proper acceleration must match that of the local observer
in the frame, so

a0 ¼
g

1þ gx0
: ð42Þ

The field given by (41) is the field described in [17–19]. If
we use it to calculate self-force, the results will agree with
those found in the Minkowski frame, as already noted.
In the accelerating frame, the most natural way to form a

sum of forces acting at different positions is the one given
by (32). That is, one chooses for the hyperplane χ þ dχ the
next hyperplane of simultaneity as defined by the accel-
erating frame. There remains a choice to be made about
which worldline is the reference worldline, whose proper
time is τc. Previously we suggested that one might use the
centroid of the accelerating composite object, but in order
to study dynamics more generally, one requires a reference
worldline that is independent of the objects under consid-
eration. Therefore one picks the worldline of a point fixed
in the frame. The most natural such point is one at which
g00 has the value −1, since then dτc ¼ dt. For the metric
(38) this is the case for xc ¼ 0, and we have

dτx
dτc

¼ ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ 1þ gx: ð43Þ

We use this in (32). Thus we find that the force per unit
charge that must be summed in order to calculate the
self-force is given by

Ei ¼ ffiffiffiffiffiffiffiffiffiffi
−g00

p
Fi

λuλ ¼ Fi
0; ð44Þ

which for our case is

Ei ¼ ð1þ gxÞEi: ð45Þ

For the case of a single point charge, to first order in g this is

Eρ ≃ qρ
r3

�
1þ g

2
x

�
;

Ex ≃ q
r3

�
xþ g

2
½2x0ðx − x0Þ − ðρ − ρ0Þ2�

�
: ð46Þ

These equations agree with Eqs. (23)–(25) of Pinto [13].
LetEðr0; rÞ be the field at r due to a point charge at r0, as

given by substituting (41) into (45). Then the electromag-
netic self-force of a dipole formed by a pair of small
charged spheres centered at ðxA; yA; zAÞ and ðxB; yB; zBÞ is
(ignoring the force of each sphere on itself)

fself ¼ −q2ðEðrA; rBÞ þEðrB; rAÞÞ: ð47Þ

This force is in the x direction. To fourth order in g we
thus find
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fself ¼
q2

d

�
gþ 3d2 − Δx2

8
ð−g3 þ ðxA þ xBÞg4Þ

�
; ð48Þ

where d ¼ jrB − rAj and Δx ¼ xB − xA. This agrees with
Eq. (26) of [13]. Note that the force is independent of
orientation of the dipole at first order in g, and the lowest
order orientation-dependent term is Oðg3Þ, in agreement
with (20).
This completes the calculation of the electromagnetic

self-force, but not the calculation of the total self-force,
which must also include the effects of internal stress.
However, the pressure in the rod varies as 1=ð1þ gxÞ
when calculated in the inertial instantaneous rest frame, and
therefore it is uniform when calculated in the accelerating
frame, so in the latter frame it does not contribute a net
force when integrated over the whole surface of the rod.
In order to compare (48) with Eq. (24), one should divide

(48) by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00ðx0Þ

p ¼ 1þ gx0, where x0 ¼ ðxA þ xBÞ=2,
and use (42). Thus one finds the lowest order term agrees
exactly with the result for an accelerating dipole observed
by an inertial observer. Therefore the system satisfies the
equivalence principle.

A. Defining the electric field

In the above we discussed two definitions of what may
be called electric field. One natural definition is to take the
spatial part of the four-force per unit charge,

Ei ¼ uλFi
λ; Bi ¼ 1

2
ϵiλμνuλFμν: ð49Þ

This is recommended by Padmanabhan and Padmanabhan
[34], but, as we have discussed, the notion of what is
observed by observers fixed in the frame is better captured
by including the metric in the definition, so that one obtains
(44). This is the definition recommended by Landau and
Lifshitz [6]. In the case of the Rindler frame (but not in
general), the definition (49) has the following desirable
feature: the field thus defined in the Rindler frame is equal to
that observed in the instantaneous inertial rest frame of the
local observer fixed in the Rindler frame. Since all observers
fixed anywhere in the Rindler frame share the same instanta-
neous inertial rest frame, up to rotations (a special feature of
certain frames, such as the Rindler frame), it follows that the
electric field E in the Rindler frame will be independent of a
translation of the coordinate system (a propertynot sharedby
Fi
0). This was noted in [34]; we have merely made an

observation that allows it to be seen easily. Nevertheless, the
fieldFi

0 is the one best suited to examining what is observed
by observers fixed in the frame, especially when comparing
or summing forces observed at different locations.

V. CONCLUSION

To sum up, in this paper we have considered the
electromagnetic self-force of the electric dipole. It is a

mistake to treat a dipole as a pair of pointlike charged
particles of finite charge, because this amounts to assuming
that the object under discussion is equivalent to an
unphysical one, namely one with a negative bare mass.
Therefore one must consider something more realistic. An
object that is physically possible, and that approximates to
an electric dipole, is a pair of charged spherical shells of
small radius R whose centers are a small distance d apart,
moving rigidly (i.e., with fixed proper size and shape).
We first examined the supposed self-accelerating dipole.

We concluded that the self-accelerating solution to the
equation of motion is unphysical, because it is based on the
assumption that a physical object could have negative bare
mass, but that is not allowed in classical physics. In order to
calculate this correctly, one must pay attention to all the
terms, including the inertial term in the self-force of the
charged spheres.
The above conclusion was obtained analytically for the

case d ≫ R, and then extended to all values of d by
performing a numerical integration. We find that the total
electromagnetic self-force is never along the direction of
acceleration, for rigid hyperbolic motion of this system, and
it vanishes in the limit d → 0 (for any fixed value of R).
We also resolved a problem in relating the self-force to

the expected inertia, when one compares the cases of
transverse and longitudinal acceleration. We argued that it
turns on the inertia of pressure (or equivalently, on the
presence of hidden momentum), much like the famous “4/3
problem” for the charged sphere. In other words, one must
include the effects of internal stresses in the physical object
under discussion. The new feature is that the charge
distribution is not spherically symmetric so neither is the
stress-energy tensor. Hence the contribution of the internal
stresses depends on the orientation of the system relative to
its acceleration. In general, the electromagnetic self-force
of a physical object can depend on the orientation of the
object relative to its acceleration (and it does so depend for
an accelerating dipole), but the rate of change of “hidden
momentum” in the object also has such a dependence, with
the net result that, for an isolated system in internal
mechanical equilibrium, the ratio of momentum to velocity
is independent of orientation, to first order in the accel-
eration, and is consistent with the mass-energy equivalence,
as required by special relativity.
We then noted that self-force is open to more than one

definition [Eqs. (30) and (32)]. This means that work based
on the second definition [14–16] does not necessarily
invalidate work based on the first, but in both cases one
must pay attention to all the relevant forces.
We next considered the effects of gravity. We expect, of

course, that the principle of equivalence will be upheld in
any correct general relativistic treatment, but it is well
known that that principle needs careful handling where
self-force is concerned. It is useful to get precise algebraic
statements of what can and cannot be said about self-force
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in a set of scenarios. We showed that an observer at rest in a
gravitational field described everywhere by the Rindler
metric will find any charged object supported in the field to
possess an electromagnetic self-force equal to that observed
in an inertial frame when the same object moves with
constant acceleration and fixed proper size and shape. This
is an exact statement about any charge distribution (not just
a dipole or a sphere).
We showed how a recent calculation [13] of the fields of

a point charge in the Rindler metric may be reconciled with
several earlier calculations [17–19], and [34]. We then used
this to obtain the self-force of a constantly accelerating
dipole, as observed in the constantly accelerating reference
frame in which the dipole is at rest.
All the effects described in this paper can be explored, in

principle, through sensitive mass measurements of polar
molecules.
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APPENDIX A: POINCARÉ STRESSES

The term given by Eq. (3) has been considered by many
authors, starting with Poincaré in 1906 [9,10,39,40]; for a
brief review see Rohrlich [7]. A simple way to calculate it is
as follows. First consider a charged sphere in inertial motion.
We assume the charge is all situated in a thin shell on the
surface of the sphere. In the rest frame, the tension in the
field at any point on the outer surface of this shell is

t ¼ ϵ0
2

�
q

4πϵ0R2

�
2

¼ mesc2

4πR3
:

Since the field inside the shell is zero, this is also the
electromagnetic force per unit area on the shell of charge, in
a radially outward direction (one can also obtain it by
arguing that each element of charge experiences an average
field equal to half that just outside the shell). For mechanical
equilibrium, the material of the sphere must provide a
compensating inward force. We can most simply model
this by treating the sphere as an “ideal fluid,” that is, a
continuous system which has a rest frame in which there is
no sheer stress, only pressure (or tension which is negative
pressure). Then, for mechanical equilibrium, the pressure
inside the sphere must be equal to −t. In the relativistic
equations of motion for an ideal fluid, the energy density
ρ0c2 always enters in company with the pressure p, forming
the combination ðρ0c2 þ pÞ [41]. Consequently the inertia
of a fluid is modified by its pressure. For inertial motion,
mechanical equilibrium is attained if the pressure is uniform
throughout the volume of the sphere. By integrating p=c2

over this volume one finds that the inertial mass of the sphere
is modified by

4

3
πR3p=c2 ¼ −

4

3
πR2t=c2 ¼ −

1

3
mes:

When the sphere accelerates, the tension in the field changes
somewhat, and the tension in the sphere is no longer uniform.
However, suchmodificationsareofhigher thanzerothorder in
R. Therefore the above mass modification, multiplied by
the acceleration, gives the leading order contribution to the
self-force owing to Poincaré stresses, as given in Eq. (3).

APPENDIX B: NUMERICAL CALCULATIONS

Wewish to calculate the self-force for a dipole consisting
of two rigid spherical charged shells of radius R with
centers separated by d and moving with constant proper
acceleration in the transverse direction. Such an entity has
an instantaneous rest frame. In this frame, let fði;jÞ be the net
force on sphere i owing to the electric field sourced by
sphere j. Then, owing to the linearity of electromagnetism,
the total self-force is

fð1;1Þ þ fð1;2Þ þ fð2;1Þ þ fð2;2Þ ¼ 2ðfshell þ fdipÞx̂;
where fshell is given by Eq. ((25) and fdip is equal to the x
component of fð2;1Þ.
Choose the origin of coordinates so that the first sphere is

centered at ðx;y;zÞ¼ðL0;0;0Þ and the second at ðL0; d; 0Þ,
in the instantaneous rest frame, and both are accelerating in
the positive x direction. Then

fdip ¼
Z

Eð1Þ
x ðr2Þdq2; ðB1Þ

where Eð1Þ
x ðr2Þ is the x component of the electric field due

to the first sphere at the location r2 of a point on the second
sphere, and dq2 ¼ ð−q=4πRÞdy2dϕ2 is an element of
charge on the second sphere, in which ϕ2 is an azimuthal
angle about an axis through the centers of the spheres. ϕ2 is
in the range 0 to 2π, and y2 ranges from d − R to dþ R. In
the overall rectangular coordinate system, such an element
is located at ðx2; y2; z2Þ given by

x2 ¼ L0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðy2 − dÞ2

q
cosðϕ2Þ;

y2 ¼ y2;

z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðy2 − dÞ2

q
sinðϕ2Þ;

where the positive square root should be taken. As
explained in [23], to treat motion where the charge
distribution undergoes acceleration at fixed proper dimen-
sions, the electric field in the integrand is given by

Eð1Þ
x ðr2Þ ¼

q
ð4πÞ2ϵ0R

Z
L0þR

L0−R
dx1

×
Z

2π

0

dϕ1f ~Exðx1; x2; y2 − y1; z2 − z1Þg; ðB2Þ
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where

~ExðL; x; y; zÞ≡ −4L2ðL2 þ y2 þ z2 − x2Þ
ððL2 þ x2 þ y2 þ z2Þ2 − 4L2x2Þ3=2 ;

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx1 − L0Þ2

q
cosðϕ1Þ;

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx1 − L0Þ2

q
sinðϕ1Þ: ðB3Þ

In order to handle the discontinuity in Ex, we used the “trick” described in Sec. II C. That is, before carrying out the integral
to obtain fdip we subtracted from Ex a field with the same discontinuity and whose contribution to the integral was zero.
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