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Contribution of plasminos to the shear viscosity of a hot
and dense Yukawa-Fermi gas
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We determine the shear viscosity of a hot and dense Yukawa-Fermi gas, using the standard Green-Kubo
relation, according to which the shear viscosity is given by the retarded correlator of the traceless part of the
viscous energy-momentum tensor. We approximate this retarded correlator using a one-loop skeleton
expansion, and express the bosonic and fermionic shear viscosities, 7, and 7, in terms of bosonic and
fermionic spectral widths, I', and I'.. Here, the subscripts & correspond to normal and collective
(plasmino) excitations of fermions. We study, in particular, the effect of these excitations on thermal
properties of n,[I"y]. To do this, we determine first the dependence of I', and Iy on momentum p,
temperature 7', chemical potential y and &, = m9/ m?c, in a one-loop perturbative expansion in the orders of
the Yukawa coupling. Here, m{ and m? are T- and p-independent bosonic and fermionic masses,
respectively. We then numerically determine #,,[I",] and #,[I", |, and study their thermal properties. It turns
out that whereas I';, and I", decrease with increasing 7 or u, I'_ increases with increasing 7 or u. This
behavior qualitatively changes by adding thermal corrections to m$ and m(}, while the difference between
Iy and I'_ keeps increasing with increasing T or . Moreover, 1;, (17;) increases (decreases) with increasing
T or . We show that the effect of plasminos on 57, becomes negligible with increasing (decreasing) T ().
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I. INTRODUCTION

One of the main goals of the modern experiments of
ultra-relativistic heavy-ion collisions is to clarify the
nature of the phase transition of QCD. As predicted from
numerical computations on the lattice, at a temperature of
about 150 MeV, quark matter undergoes a phase transition,
during which hadrons melt and a new state of matter—a
plasma of quarks and gluons—is built. There is strong
evidence for the creation of the quark-gluon plasma (QGP)
in heavy-ion experiments at the Relativistic Heavy-lon
Collider (RHIC) and the Large Hadron Collider (LHC) [1].
The experimental results show that the elliptic flow, v,,
describing the azimuthal asymmetry in momentum space,
is the largest ever seen in heavy-ion collisions [2]. The
elliptic flow v, is proportional to the initial eccentricity
€, = |(r?e*®)|/(r*) of a given collision, which describes
the asymmetric region of overlap in a collision between
two nuclei and results in an anisotropy in the transverse
density of the system at the early stages of the collision [3].
The collective response of the system—well-described by
viscous hydrodynamics—transforms this spatial anisotropy
into a momentum anisotropy. Thus, v, is proportional to ¢,,
with the proportionality factor depending on the shear
viscosity # of the medium [3]. The latter characterizes the
diffusion of momentum transverse to the direction of
propagation. The comparison between the experimentally
measured v, and the results arising from second-order
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viscous hydrodynamics has suggested that the new state
of matter created at RHIC and LHC is an almost perfect
fluid, having a very small shear viscosity to entropy density
ratio /s [4,5] (see also Ref. [6] for a recent review on
the status of #/s). However, as was reported in Ref. [6], in
all hydrodynamic simulations performed so far, the shear
viscosity is assumed to be temperature independent.

The shear viscosity is one of the transport coefficients,
which describe the properties of a system out of equilib-
rium, and can theoretically be determined using two
different approaches: the kinetic theory approach, based
on the Boltzmann equation for the corresponding momen-
tum distribution function [7-9], and the Green-Kubo
approach in the framework of linear response theory
[10], in which all transport coefficients are formulated in
terms of retarded correlators of the energy-momentum
tensor [11,12]. The advantage of the second method is
that it provides a framework where the transport coeffi-
cients can be computed using equilibrium thermal field
theory. Other alternative methods to compute transport
coefficients are direct numerical simulations on a space-
time lattice [13], using a two-particle-irreducible effective
action [14], and holographic models [15]. A novel dia-
grammatic method was also presented in Ref. [16]. The aim
of most of these computations is to determine the depend-
ence of 77 on temperature and chemical potential [17-19] or
on external electromagnetic fields [20].

In this paper, we use the Green-Kubo formalism to
determine the dependence of the shear viscosity of a
Yukawa-Fermi gas on temperature, chemical potential,
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and bosonic and fermionic masses. Thermal corrections to
the masses of bosons and fermions will be considered too
and their effect on the shear viscosity will be scrutinized. Our
approach is similar to what was recently presented by Lang
et al. in Refs. [18,19]. In Ref. [18], an appropriate skeleton
expansion was used to approximate the retarded correlators
appearing in the Kubo relation for the shear viscosities of a
real Agp* theory and an interacting pion gas. Using the
standard Killen-Lehmann representation of a retarded two-
point Green’s function in terms of the interacting bosonic
spectral function, p,, the shear viscosity of the scalar and
pseudoscalar bosons, 7, is then expressed in terms of the
real and imaginary parts of the retarded two-point Green’s
function. The latter, denoted by I';, defines, in particular, the
spectral width of the bosons and is inversely proportional to
their mean free path. To approximate the bosonic correlators,
a systematic Laurent expansion of 7, in orders of ', is
performed. The series is then truncated at the leading I}
order. Then, by computing I';, perturbatively in orders of the
small coupling constant of the theory up to the first non-
vanishing contribution, the 7" dependence of the bosonic
shear viscosity is numerically determined. In Ref. [19],
almost the same method was used to determine the fermionic
shear viscosity, 7, of a strongly interacting quark matter,
described by a two-flavor Nambu—Jona-Lasinio (NJL)
model [21], which consists of a four-fermion interaction
with no gluons involved. To do this, 7/ is first expressed in
terms of the fermionic spectral function, p;, and then—
working, as in Ref. [22], in a quasiparticle approximation—a
generalized Breit-Wigner shape for the fermionic spectral
function is used to formulate 7, in terms of the quasiparticle
mass M and width I';. Using then four different para-
metrizations for 'y, the thermal properties of 7 is explored.
Eventually, the constant quasiparticle mass M is replaced
with the 7- and p-dependent, dynamically generated con-
stituent quark mass of the NJL model, and the thermal
properties of 7 are qualitatively studied in the vicinity of the
chiral transition point.

In the present paper, we will compute the shear viscosity
of an interacting boson-fermion system with the Yukawa
coupling. In this theory, the shear viscosity consists of a
bosonic part and a fermionic part. Following the method
presented in Ref. [18], we will first derive #;, in terms of I,
in a systematic Laurent expansion up to O(I')). Performing
then a one-loop perturbative expansion in orders of the
Yuwaka coupling, we will determine I';, as a function of
momentum p, temperature 7, chemical potential u and
&o = m})/m$, where mj) and m{ are constant bosonic and
fermionic masses. Using #,[",], we will study the 7 and u
dependence of the bosonic shear viscosity for various &,.
We will then add the thermal masses of bosons and
fermions to m{ and m?, and study the effect of thermal
masses on [, and 77,. Thermal corrections to the masses of
bosons and fermions are computed using the standard
hard-thermal-loop (HTL) method (see e.g. Ref. [23]). Let
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us notice that, according to the description in Ref. [24], this
ad hoc treatment of thermal masses seems intuitive and
is justified, since it equals the HTL treatment with an
approximate fermion propagator. However, it is not equal
to the full HTL result [23].

We will then focus on the fermionic part of the shear
viscosity, and derive its dependence on the fermionic
spectral width. This builds the central part of the analytical
results of the present paper. Here, in contrast to the
approximations made in Ref. [19], we use the spectral
representation of the retarded two-point Green’s function
presented for the first time in Ref. [25] (see also Ref. [26]).
The latter was used in Refs. [23,27-35] within the context
of Yukawa theory, the NJL model, QED and QCD. In
Ref. [25], it was shown that a fermionic system at finite
temperature has twice as many fermionic modes as one at
zero temperature. Besides propagating quarks and anti-
quarks, there are also propagating quark holes and anti-
holes. Thus, thermal fermions have, apart from normal
excitation, a collective excitation, referred to as either a
hole or a plasmino [26]. The latter appears as an additional
pole in the fermion propagator, and as a consequence of the
preferred frame defined by the heat bath. Hence, the two
poles lead to two different dispersion relations, both with
positive energy. It turns out that in the chiral limit m% — 0,
the normal excitation has the same chirality and helicity,
while the collective excitation possesses opposite chirality
and helicity [26]. Denoting the spectral widths, correspond-
ing to the normal and collective (plasmino) excitations,
with I, and I'_, respectively, we will use the aforemen-
tioned Laurent expansion to derive a novel analytic relation
for 17, in terms of I',. up to O(I"}). We will then determine
the p, T, p and &, dependence of I'y in a one-loop
perturbative expansion in orders of the Yukawa coupling.
Using 7,[I"], it is then possible to explore the thermal
properties of 5, for various &,. Adding thermal corrections
to the bosonic and fermionic masses, the effect of thermal
masses on I' ;. and 77, will also be studied. Let us notice at
this stage that in the literature [17,29,33], the difference
betweenI', and I'_, as well as their p dependence are often
neglected, and ', (p) is approximated by I';(0) « ¢*T,
where g is the coupling constant of the theory [17,33]. We,
however, will explicitly determine the p dependence of I,
and I'_, and use it in the numerical computation of 7.
Then, we will assume I', = I"_, and we will determine the
difference between #,[I"; #I'_] and "y =T"_] in terms
of T and u. It turns out that, depending on 7 and/or y,
ne[ly =T'_] is larger than n,[I"| #T"_].

The organization of this paper is a follows. In Sec. II, we
will review the Green-Kubo formalism, and present the
shear viscosity in terms of retarded correlators of the
traceless part of the viscous energy-momentum tensor. In
Sec. III, we start with the Lagrangian density of the Yukawa
theory, and derive the bosonic and fermionic contributions
to the shear viscosity, in a one-loop skeleton expansion, in
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terms of bosonic and fermionic spectral density functions,
pp and py. Eventually, using an appropriate Laurent
expansion in orders of bosonic and fermionic spectral
widths, 1, [I",] and ,[I";] are determined (see Secs. III A
and III B as well as Appendices A and C). In Sec. IV, the
spectral bosonic and fermionic widths, I, and I'y are
separately computed in a one-loop perturbative expansion
in orders of the Yukawa coupling (see Sec. IVA for the
bosonic and Sec. IV B for the fermionic spectral widths). In
order to derive the imaginary part of the retarded two-point
Green’s functions, corresponding to bosons and fermions,
the standard Schwinger-Keldysh real-time formalism [36]
is used. We will mainly use the notations of Refs. [37] and
[38]. In Sec. V, we will present our numerical results. Here,
the 7', 4 and &, dependence of I';, and 'y, as well as the
thermal properties of #,[I',] and n,[I";], will be explored.
As it turns out, I', and I', decreases with increasing 7 or p.
In contrast, I'_ increases with increasing 7 or u. Whereas
this behavior changes when thermal corrections are added
to m) and m%, T’y and I'_ still exhibit different 7 and u
dependencies. This difference increases with increasing T
or u. As concerns the shear viscosities, 7, (17;) increases
(decreases) with increasing T or u. Moreover, it turns out
that the contribution of plasminos to 77, becomes negligible
with increasing (decreasing) 7 (1). A summary of our
results is presented in Sec. VL.

II. SHEAR VISCOSITY IN RELATIVISTIC
HYDRODYNAMICS

An ideal and locally equilibrated relativistic fluid is
mainly described by the dynamics of the corresponding
energy-momentum tensor

Ty = eutu” + PA*, (2.1)
where € is the energy density, P is the pressure and u,,(x) =
y(x)(1,v(x)) is the four-velocity of the fluid, which is
defined by the variation of the four-coordinate x* with
respect to the proper time z. Here, the Lorentz factor
y(x)=(1-v*(x))"". In Eq. (2.1), A* is defined by
A = g" — yFu¥, with the metric ¢** =diag(+,—,—,—).
It satisfies u, A" = 0. Moreover, for the four-velocity u,,,
we have u, u* = 1. If there are no external sources, the

"
energy-momentum tensor (2.1) is conserved,

9,Ty = 0. (2.2)
Apart from Eq. (2.2), an ideal fluid is characterized by the
entropy current conservation law d,s* =0, where the
entropy current, s, = su,, includes the entropy density s.
In a system without conserved charges, ¢ and P satisfy
€+ P = Ts, where T is the local temperature of the fluid.

To include dissipative effects to the fluid, the viscous
stress tensor 74 is to be added to 7% from Eq. (2.1). The

total energy-momentum tensor then reads
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" =Ty + o, (2.3)
where 7 satisfies u,7#¥ = 0. In an expansion in orders of
derivatives of Uy, the viscous stress tensor is determined
using the second law of thermodynamics, T0,s* >0,
which replaces the conservation law d,s* = 0 of the ideal
fluid. The viscous stress tensor is often split as

™ = g 4+ AP, (2.4)
where 7 is the traceless part (7, = 0) and II is the
remaining part with nonvanishing trace. Each part of 7" is
then parametrized by a number of viscous coefficients.
In the first-order derivative expansion, 7#* is characterized
by the shear and bulk viscosities, # and ¢, that appear in
the traceless part of 7/,

2
Y = n <V”u’“ + V”u” - g AﬂprM/)) 5 (25)

and in the part of 7** with nonvanishing trace,

1= {Viu,, (2.6)
respectively. Here, V¥ = A#(,. Using the properties of
AM in d = 4-dimensional space-time, A**u, = 0 as well as
ALAL = AP, we get

1

€ = uu, T, P = —gAWT’““,

(2.7)

as well as
Tt = | APFAY + APV A 2 AMFYAPO | T 2.8
T = + - g po- ( . )

Here, 7#¥ = n~'2* is introduced. In the rest of this paper,
we will focus on the shear viscosity #. Following Zubarev’s
approach [10] and within linear response theory, it is
determined by the Kubo-type formula [18],

n= '168/ X /_t dﬂ(;l'””(()),ﬁ'”y(x/, t’)), (2.9)

where the inverse proper temperature f, =yf with
p=T"", and

1 b Hry ,—Ht _
(x.7) =5 /0 de(X[H Y e B — (V) ])y.  (2.10)

Here, H is the free part of the Hamiltonian of a
fully interacting theory, which is given in terms
of the energy-momentum tensor 7*, via pH =
J d&xps(x, 7)ut(x,7)To,(X, 7). Moreover, (---), is the
thermal expectation value with respect to the equilibrium
statistical operator py, and is defined by (-), = tr(-py) [18].

125005-3



N. SADOOGHI AND F. TAGHINAVAZ

The correlator appearing in Eq. (2.9) can be expressed as a
real-time integral over a retarded correlator,

(X(0). V(7)) ~ —}3 / LX) V() (211)

with

(X(0), Y(7))g = =i6(z = £'){[X(2), Y(£')])o.

In the large-time limit # — oo, when the system approaches
global equilibrium, the approximation appearing in
Eq. (2.11) becomes exact. Combining at this stage
Egs. (2.9) and (2.11), and evaluating the resulting
expression in the local rest frame, where f, = f5, the
Kubo-formula for the shear viscosity reads

L ar [ arm (7)
n= 10 . . R ’

with the retarded Green’s function

(2.12)

(2.13)

Mg (1) = —i6(—1) / Pre(#(0), A (x. )])ge (2.14)

and 7#* given in Eq. (2.8). Equivalently # is given by

i d

=— 2.15
10dp, 2.15)

n HR(p0)|p0:O'

It arises by replacing the Fourier transformation of Il (#) =
[ 40 e=iro'TI(py) in Eq. (2.13), and integrating over ¢ and
¢ using the functional identity [18]

/ " ar / * dte-ivo! 27i8(py) d
e — =2rio(pg) —.
-0 t 0 de

It is the purpose of this paper to determine the thermal
properties of the shear viscosity of a Yukawa theory by
computing Il from Eq. (2.14) in a weak coupling
expansion in orders of the Yukawa coupling. To this
purpose, we will first introduce a Yukawa theory including
a real scalar and a fermionic field, and then, using an
appropriate weak coupling expansion up to the one-loop
level, we will determine # for these fields separately.

(2.16)

III. SHEAR VISCOSITY OF A YUKAWA THEORY:
GENERAL CONSIDERATIONS

In this section, we will first review the method presented
in Ref. [18], and determine the bosonic part of the shear
viscosity of a Yukawa theory in terms of the bosonic
spectral width. We will then use this method as a guideline,
and derive the fermionic part of the shear viscosity of the
Yukawa theory in terms of fermionic spectral widths. Here,
we will explicitly consider the contributions of the normal
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and collective (plasmino) excitations of fermions, with
different spectral widths. This is in contrast with the result
recently presented in Ref. [19], where within a quasiparticle
approximation, a Breit-Wigner type formula was presented
for the fermionic shear viscosity in terms of one and the
same fermionic spectral width.

Let us start with the Lagrangian density of a Yukawa
theory,

. 1 1 ~
L=yliy-0=mpy + 50,00 =5 mip* + gy,
(3.1)

where, ¢ is a real scalar field and y,y are fermionic
fields. Moreover, m; and ms correspond to the masses of
bosons and fermions, respectively. According to Eq. (2.13),
the shear viscosity # for this theory is given by a two-point
Green’s function of the tensor field 7#, which is defined
in Eq. (2.8) in terms of the energy-momentum tensor T,,.
The energy-momentum tensor of the Yukawa theory is
given by

T, = iy, 0y + 0,00,0 — Ly, (3.2)

where L is given in Eq. (3.1). As it turns out, 7,,, and
consequently the shear viscosity include a bosonic part
and a fermionic part. In what follows, we will denote
them by 7, and 7, where the subscripts correspond to
bosons (b) and fermions (f). To compute these two parts
separately, we will use Eq. (2.15). Introducing the imagi-
nary time 7 = it in Eq. (2.14), the thermal Green’s function,

IT;(7), reads

My (c) = / PAT (O, (x ) ). (33)

where 7, stands for the time-ordering prescription.
According to the above descriptions, it is given by

My7(7) = M(z) + T17(2), (3.4)
with the bosonic part
() =2 / d3xnPro
X (0p9(0)9,0(0)0up(X. 7)0p00(X. 7))o, (3.5)
and the fermionic part
HJ; (’L’) ) / d3x;,]a/}/m
X ((0)7,0,w (O (x. D)y daw(x. 7))y (3.6)

In the above relations, 77“/”/”’ is defined by
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2
na/}pﬂ = Aa[)’A/m + A/t’o"A/)a _ § A(mA/}p. (37)

By performing a Fourier transformation into the
momentum space, using @(p,7) = [ dxe®*p(x,7) and
w(p.7) = [ d®xe®*y(x, 1), evaluating the resulting four-
point functions arising in Egs. (3.5) and (3.6) using an
appropriate expansion up to the one-loop skeleton expan-
sion, as was described in Ref. [18], and eventually
neglecting the disconnected parts of the Green’s functions,
the bosonic part of I1;(z) reads

p .
H;;(wn) = 4/ dre'®n*®
0

&p appo 2
| ey PaPpPpPsG7(P.7),  (3.8)

and the fermionic part of I1(z) is given by

po dp
H;(Con) _2A dTelw”T/<2ﬂ_)3 ”aﬁ/mpﬂpﬁ

X tr[S7(p. 7)7oST(P. —7)7p)- (3.9)
Let us notice that in the above relations Gy(p.7) and
Sr(p,7) are exact (dressed) bosonic and fermionic two-
point functions, respectively. They are defined by

Gr(p.7) =V {T[p(0)p(p.7)])o.  (3.10)

and

Sr(p.7) = V- UT [ (0)w(p. 1)l)o.  (3.11)
Moreover, in Egs. (3.8) and (3.9), the bosonic and
fermionic Matsubara frequencies are given by w, =
2naT and w, = (2n + 1)zT, respectively. As aforemen-
tioned, the expressions presented in Egs. (3.8) and (3.9) are
the one-loop contributions in the skeleton expansion. The
latter is diagrammatically presented in Fig. 1. In what
follows, we will separately evaluate the bosonic and
fermionic thermal two-point functions (3.8) and (3.9).
The results will then be used to determine the bosonic

4 N
) ® + + +
\ 4
\_ - ’
FIG. 1. The skeleton expansion of Il;(zr) from Eq. (3.3).

Dashed and solid lines denote the dressed bosonic and fermionic
two-point functions G7(p, 7) from Eq. (3.10) and S7(p. 7) from
Eq. (3.11), respectively. In our computation up to the one-loop
skeleton expansion, only the first two diagrams in the above
series are considered.
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and fermionic parts of the shear viscosity # in term of
bosonic and fermionic spectral widths.

A. The bosonic contribution to 7 in the one-loop
skeleton expansion

To evaluate the bosonic part of the shear viscosity 7, we
will use the method described in Ref. [18], whose main
steps will be reviewed in what follows.

Let us first consider Eq. (3.8). According to the standard
Killen-Lehmann representation, the two-point Green’s
function G;(p, ®,) is given in terms of the bosonic spectral
density function p,(p, ) as

1 [+o  py(p,o)
Gr(p,w,) =— do——-. 3.12
o) =5 [ a2 P2 G
Plugging this relation into
+00 .
Gr(p.7)= > e Gr(p.w,),  (3.13)
and adding over bosonic Matsubara frequencies

w, = 2nxT, we arrive at

Gr(p.r) = - / " dwel py (p. @) 1 + ny(@)], (3.14)

27 )
where, the bosonic distribution function n, (@) reads

1

W. (3.15)

ny(w) =

To derive Eq. (3.14), we have used the symmetry property
Pu(p, —®) = —p,(p, ), which yields, in particular, |z| on
the rhs of Eq. (3.14). Further, by plugging G;(p,7) from
Eq. (3.14) into Eq. (3.8), and integrating over z, we arrive
after analytical continuation, iw, — pg + i€, at

b d3p appo
Mz (po) =4 (27[)317 PaPpPpPo

% / ©0 d(l)ld(l)z ( ) ( )
14 , )P, ,

x ny(@)n, (@) We(@12, po)s

(3.16)

where 7% is defined in Eq. (3.7), @, = @, + w5, and
W.(w1. po) is given by

1 1
p0+i€—w12_p0+i€+a)12'

W@z, po) = (3.17)

At this stage, we use the definition of the bosonic spectral
density function p; in terms of the retarded two-point
Green’s function, Gg(p),
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pp(p) = —23m[Gg(p)], (3.18)

to formulate p,, in terms of the bosonic renormalized energy

Ey(p) =\ o} + Re[Zx(p)], (3.19)
with @7 = p? + m3, and the bosonic spectral width
1
r =—-—— b 2
b(p) = =5 - Im[Zk(p)). (3.20)
Using
Gx'(p) = p* = mj — Zi(p)
=[po+il,(p)P - Ej(p).  (3:21)

the bosonic spectral density function (3.18) is given by

pb(p’a))
-~ 4ol (p, @)
[@? = E}(p. @) = T3(p. @,)]* + 40°T (. )
(3.22)
where E, = E,(p,w,) and T, =T,(p,w,) are to be

evaluated on mass shell. Now, by plugging p,(p, @) from
Eq. (3.22) into Eq. (3.16), and using [18]

i d

T
10dpg We(@12. po) = —55/(0)12), (3.23)

we arrive first at

4/} apo +oo
Ny = 575/( )3f1ﬂ papﬂpppg/ doF,(p, w),

[5e]

(3.24)
with w =1, =3(w; —w,) and where F,(p.w) is
given by
Fi(p. )

_ 20%eP” 7
(e = 1) [E} — (0 — i’ [E} — (0 + i, )]
(3.25)

Further, by plugging Eq. (3.25) into Eq. (3.24) and
integrating over @, using the same procedure as in
Ref. [18] (which will be described below), we arrive at
the bosonic part of the shear viscosity of the Yukawa theory
in terms of the renormalized energy E, from Eq. (3.19) and
the bosonic spectral width I';, from Eq. (3.20),
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ﬂ o p6 eﬁEb 1

ap? L om
302 )y P E @ —pen, T 0T

= (3.26)

To derive Eq. (3.26), the pole structure of Fj,(p, ) from
Eq. (3.25) is to be considered. Following Ref. [18], the
integral over w in Eq. (3.24) is to be performed by closing
the contour in the upper half-plane, i.e. by considering only
two poles w* = +E,, + il", from four poles w* and —w®,
and eventually expanding the resulting analytical expres-
sion in orders of small I',. This results in

2ri ZFb

W= (1)

ePE pa
(PEr — 12 16E2T,

+om).  (3.27)

Let us notice that apart from the aforementioned poles o™
and —w™, there are also an infinite number of poles arising
from the denominator ¢#® — 1 in Eq. (3.25). But as it was
shown in Ref. [18], the contributions of their residues are
proportional to I'?, and, if we assume that ', is small
enough, they are suppressed relative to the leading I'; ! term
in Eq. (3.27). Therefore, by plugging Eq. (3.27) into
Eq. (3.24), and considering the local rest frame of the
fluid, we arrive at the bosonic part of the shear viscosity
from Eq. (3.26). To perform the p integration in Eq. (3.26)
and study eventually the T dependence of #,,, the p and T
dependence of E, and I}, are to be determined perturba-
tively in an appropriate loop expansion in orders of the
Yukawa coupling. In this paper, we will approximate
E, = w; and will determine in Sec. IV only I', at the
one-loop level. The result will eventually be used to
determine the 7 dependence of #,. As concerns the u
dependence of 7, we will use the same relation, Eq. (3.26).
In this case, the  dependence of #,, arises only from I';, on
the rhs of Eq. (3.26).

B. The fermionic contribution to 7 in the one-loop
skeleton expansion

To determine the fermionic part of the shear viscosity 7,
we will follow the same steps as in the previous section,
and will present 7, in terms of fermionic spectral widths
I',, corresponding to normal and collective excitations
of fermions. The resulting expression builds the central
analytical result of the present paper.

To start, let us first consider Eq. (3.9). Using the standard
Killen-Lehmann representation, the fermionic two-point
Green’s function Sy (p,w,) can be given in terms of the
fermionic spectral density function p,(p,®) as

1 +o0
2 / de

Plugging this relation into

Pf(l’, )

Sr(p @) = W+ iw

(3.28)
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+00
Sr(p. ) =T > e Sp(pw,),  (329)

n=-—oo

and adding over fermionic
w, = (2n+ 1)zT, we arrive at

Matsubara frequencies

1 +o0
Sr(p.7) =5 / dwe™p(p, w)

x [0(7)(1 — nf(a))) — 9(—r)nf(a))], (3.30)
with the fermionic distribution function
(@) = 5o (331)
nelw) =—F—"7". .
4 efo +1

Plugging S;(p,z) from Eq. (3.30) into Eq. (3.9), and
integrating over 7, using

7
// d‘[e(iw”_wl +w,)t
0

x[0(7)(1 = ny(wy)) = 0(=7)ns(@)]
X [0(=7)(1 = ny(ws)) = O(z)ns(@,)]

_ (I=ng(@))ng(@y) = (1 = nyp(=wy))ng(=w,)
iw, — w0 + w0,

’

(3.32)

we arrive first at

1 [ &
f _ P appo
M7 (w,) =5 5 / ok 7% p,pe

< [ doydon(1 = ny(n))ny (@)

8 tr(p (@1, P)Yap (@2, P)7p)
iw, —w + o,

_ tr(/)f(_wh _p>yapf(_w27 _p)yﬂ) (3 33)
iwn + | — CU2 ’ '

where %77 is defined below Eq. (3.6). To evaluate [1;(w,,),
let us use at this stage, in analogy to the bosonic case, the
definition of the fermionic spectral density function p in
terms of the retarded two-point Green’s function Sg,

pr(p) = =28m[Sk(p)]. (3.34)

and the decomposition of Si(p) in terms of the fermion
self-energy Z{e’

Sz (p) =7 p—ms+Zh(p). (3.35)

Using the method, described in detail in Appendix A, the
spectral density function of fermions is given by

PHYSICAL REVIEW D 89, 125005 (2014)

pr(p) = 2L+(p. o) 32 (p.0y)
7 lw—E (p.o? + T3 (p.awy)”
ZF_(p,a)f) N
- g- pva) ’
o E-(p. )P + T(pray) -0
(3.36)
where co? =p>+ m% and
R 1
ge(p,wp) = —[row;F(r-p—mys)].  (3.37)

In Eq. (3.36), E, and I';. are defined by [see Appendix A
for more details]

1 . .
E.(p.wy) = wp 5 tr(3. (p. ) Re[Zh(p. ).

P (b o) = 45000 (b o) SmThp o)) (338)

In Ref. [29], almost the same expression for p; as in
Eq. (3.36) was introduced. However, in contrast to
Eq. (3.36), only one spectral width for the fermion appears
in the relation presented in Ref. [29]. Apparently, ', =1T"_
is assumed. In what follows, we do not make this
approximation, and after deriving 7, in terms of I';, we
will explore the effect of I', and I'_ on the thermal
properties of 7. Let us notice at this stage, that the plus
and minus signs appearing on E, and 'y correspond to
the normal and collective (plasmino) modes of the fermions
[25]. In the chiral limit m; — O, they correspond to the
same and opposite helicity and chirality of massless
fermions, respectively [26].

Let us now consider Eq. (3.33), which will be simplified
in what follows. Using the symmetry properties of E.(p)
and T (p),

E.(p,—ws) = —E,(p.wy),

Iy(p,—ws) = +T4(p, wy), (3.39)

which we could verify only at the one-loop level, we obtain

(=P, —) = pp(p, w)

B 2my { Iy (p.wy)
o7 [w—E(p.op) +T7(p. oy)
I'_(p.wy)

o E o P+ 2. wf>}‘ (340)

Using Eq. (3.40) together with the properties of the traces
of Dirac y matrices, we have

tr(p (=P, —@1)7o07 (=P, —®2)7p)

= tr(ps (P> @1)7aPf (P @2)7p)- (3.41)
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Now, by implementing this relation in Eq. (3.33), we arrive
after analytical continuation, iw, — py + i€, at

3
1 / &dp oo
2722 ) (2x)}

—+o00
X
—0

X (1 =ng(w;))ns(@) W (@1, po),

I (Po)

PpPs

dwydwytr(pr(w1.P)Yap (@2, P)75)
(3.42)

where @, = w; — w, and W, is defined in Eq. (3.17). To
derive the fermionic part of the shear viscosity 7, from
Eq. (2.15), we follow the same steps as in the previous
section for the bosonic case. Plugging Eq. (3.36) into
Eq. (3.42), and after performing a straightforward math-
ematical computation, where mainly the relations

G WelPr @l = =50 @) (343
and
U@%%MI%Q@%MwﬂM
— pip;(9h9) + Ghgh)}-
0(§avadsr,) = %;{Zw,?go(lgopﬂwfpi(gggé + 9hgk)

+ pip;(ghgh + Ghgh) (3.44)

in the local rest frame of the fluid are used, we arrive at

8

n=1s- ( puE /_oo doF ;(p.w), (3.45)
with
e/}m p2 r
F:p,ow)=——— -+ @
B ) MMU”{@Qw£w+H

r_ 2
+ (w+E_)?+ r%)

) or. }
[(@—E.)? +T3][(w+ E_)* + 2]
(3.46)

where @ =Jwy =3 (w; — ), and Ey = E.(p.w;) as
well as I'y =T, (p,w,) are defined in Eq. (3.38). To
evaluate the integration over @ in Eq. (3.46), the pole
structure of F,(p,w) is to be considered. Similar to the
previous case of bosonic fields, the contributions of the
poles arising from the denominator e#” 4 1 in Eq. (3.46)
turn out to be proportional to I'2, and, assuming that
I', and I'_ are small enough, they can be neglected.

PHYSICAL REVIEW D 89, 125005 (2014)

As concerns the residue of the remaining poles, we
have to close the contour in the upper half-plane and
consider only two residues w* = £E, + il"y. Expanding
the resulting expression in a Laurent series in orders of I,
and using

+o00 eﬁw 1—‘2
/ do——5 2 2. 12
o (" + 1) [(0FEL)” +T7]
ePEx 1

TP 1) ary

/+°° i r,r_
w
o (@=EL)? +T1[(0+ E_)* +T2]
oPE: Iy —T, (3.47)
T )
— (B + 1) [E; + lSF+HEf +il]
where
EfEE+—|—E_, F}tEF+iF_, (3.48)

we arrive, after performing the integration over three-
dimensional angles in Eq. (3.45), at the fermionic part
of the shear viscosity of the Yukawa theory,

2p
=5 fy P ZZ{ P+

L
p> 4mf(Ff -T))
) [F_ [Ef +isT][E, + ’T.?J } +0O(TY). (3.49)

Here E;= Ef(p,a)f) I, =T.(p,wy) and T}

(p wy) are defined in Egs. (3.38) and (3.48). Let us
notlce that the first term of the above relation for 7, is
comparable with the shear viscosity corresponding to
fermions appearing in Ref. [9] in a relaxation-time approxi-
mation. Moreover, it resembles the 7, presented recently
in Ref. [19]. There, the authors expressed 7, first in terms
of the fermionic density function, ps, which in contrast to
Eq. (3.36), possessed a generalized Breit-Wigner shape,
including only a quasiparticle mass M and a fermionic
width I'y. Using this ansatz for p, they then arrived at 77, in
this quasiparticle approximation [see Eq. (22) in Ref. [19]].
We, however, will work with Eq. (3.49) and after determin-
ing I'}. in a one-loop perturbative expansion, in the next
section, will study the thermal properties of n,[I";] for
various masses m;, and my. We will then determine the
difference between #;I'y =T_] and n/I'y #T_]. In
Appendix C, we generalize the method presented in this
section for the case of nonvanishing chemical potential.
We will show that in this case Eq. (C1), replaces Eq. (3.49),
and can be used to explore the thermal properties of 7, at
finite 7 and pu.
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IV. PERTURBATIVE COMPUTATION
OF BOSONIC AND FERMIONIC
SPECTRAL WIDTHS

In this section, we will perturbatively compute the
bosonic and fermionic spectral widths of the Yukawa
theory from Egs. (3.20) and (3.38) at the one-loop level.
To do this, the imaginary part of the one-loop bosonic and
fermionic self-energy diagrams will be evaluated using
the standard Schwinger-Keldysh real-time formalism [36].
In what follows, we will closely follow the notations of
Refs. [37] and [38]. According to this formalism, the free
propagator of scalar bosons is given by

G.. G._
g:< Gy )
G, G__

where G, a, b = & read

(4.1)

Si(p) = (r-p+my) (— i

p —mjzc—i-ie

PHYSICAL REVIEW D 89, 125005 (2014)

i
G :—7_2 6 2 _ 2,
P) = =y =2y )37 = )

G._(p) = =2x[0(=po) + np(|po))16(p* — m3),
G_.(p) = =2x[0(po) + ny,(Ipol)16(p* = m}),

2y (po)B(p? - m}).

1
G__(p) = N R (4.2)
p-—my, —ie

Here, m,; is the boson mass and n,(p,) is the bosonic
distribution function defined in Eq. (3.15). Similarly, the
free fermion propagator is given by

Si—(p) = =2a(y - p + ms)[0(=po) — ns(|po|)16(p* — m3),
S_.(p) = =2a(y - p + ms)[0(po) — ns(|po)I6(p* — m3),

S__(p) =@ p+my) (ﬁ

—m

Here, m is the fermion mass and n,(py) is the fermionic
distribution function defined in Eq. (3.31). Combining
Gy,a,b==x and S,,,a,b ==, the physical retarded
(R) and advanced (A) two-point Green’s functions for
scalar bosons, Gg/4, and fermions, Sg /4, are given by
Gr=G,, +G,_,

Ga=Gi +G, (45)

and

Sp=8+S5,_, Sa=8.,.+8_,. (4.6)

To determine the spectral widths, I', and 'y from
Egs. (3.20) and (3.38), the imaginary parts of the bosonic
and fermionic one-loop self-energies, X% and 2’;, are to be
computed. In the real-time formalism, this is done using the
finite-temperature cutting rules [37,38]. The main ingre-
dients of these rules are specific propagators and vertices,
which for the Yukawa theory, are demonstrated in Fig. 2.
Here, G, and S, with a, b = + are the retarded (+) and
advanced (—) part of the bosonic and fermionic Green’s
functions. They are defined in the following decomposition
for a generic Green’s function, D, with a, b = +:

Dap(x) = 0(1)Dyy, (x) + 0(=1)D, (x). (4.7)

S.. S,
S = <S++ S* > (4.3)
_+ —_—
with the components
2 ()07 = ) ).
< 2y (oo =) ). (4.4)

|
Using the definitions D,;,, a, b = + and D = {G, S}, from
Egs. (4.2) and (4.4), we get the following identities:

D, =D-_=D' =D, =D_,,

D, =Dt =Di_=D;_=D,_. (4.8)

In what follows, we will separately compute the imaginary
part of the one-loop self-energy corrections to bosonic and

a b

O ';‘ - =Ghm), - *-p-O =G, (p)
a b a 4
O—— =54 —50 =5,

FIG. 2. Feynman rules that are necessary to compute the
imaginary part of the bosonic and fermionic one-loop self-energy
diagrams of the Yukawa theory (see Figs. 3 and 4). The
definitions of G, and S&, with a,b = + in terms of G, and
S.» from Eqgs. (4.2) and (4.4) are presented in Eq. (4.8).
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fermionic two-point Green’s functions. The results will
eventually be used to determine the bosonic and fermionic
spectral widths.

A. Bosonic spectral width in the one-loop
perturbative expansion

Let us consider the bosonic spectral width I', from
Eq. (3.20), which when evaluated at w, = (p*> + m3)'/?
reads

Ly(p. @) = —5—Sm[Zg(p. wp)]. (4.9)

To determine the imaginary part of 25 (p) at the one-loop
level, we will use the diagrammatic representation of the
cutting rules [37,38], demonstrated in Fig. 3. Using the
propagators and vertices presented in Fig. 2, the imaginary
part of £%(p) reads

2 4
Sm{zj(p)] = % / éTI;tr<81+(k—p>Si+

=82, (k= p)ST_(k)).

(k)
(4.10)

where, according to Eq. (4.7) with D,, = S, S, and S,
are the retarded and advanced parts of the fermionic
Green’s function S, a, b = £ from Eq. (4.4), respectively.
To derive the spectral width of bosons, we use the identities

integration over k, and some straightforward manipulations
first—arrive at

g [ &k (4mj—m})
Lol @) = 8—%/ (27)? (‘fle

x{8(wy — 0y — @)[1 = ng(w)) = ny(w)]

+ (@, — w1 + o) [np(w)) = ny(ws)]

= 8(wp + @1 — @) [ng(w1) = np(w)]

= 8(wp + w1 + ) [1 = np(wy) = np(wr)]}.

(4.11)

Here, w7 = k* + m} and 03 = (k - p) + m7. The factor

(4m7 — m3) on the rhs of Eq. (4. 11) arises by considering

PHYSICAL REVIEW D 89, 125005 (2014)

from the Dirac § functions, appearing in S, from
Eq. (4.10), with S,;,a,b = = given in Eq. (4.4). Using
now the definition of the fermionic distribution functions
ns(w) from Eq. (3.31), we get

&’k sinh(2)

2

_ 9
16w, / (27) cosh(?21) cosh (222)
(4 = m)
X [ ———

Fb(p7 a)b)

Sl — w1 —
w10 {6(@), — w1 — ;)
= 8(w, — @) + @;) = 5(wy, + @ — @)

Note that in the rest frame of the scalar bosons with p = 0,
only the first term on the rhs of Eq. (4.11), proportional to
8(wp — w; — w,) will contribute. It leads to m;, > 2my, as a
constraint on the relation between bosonic and fermionic
masses. Thus, keeping in mind that ', (p, ®,) is Lorentz
invariant, it is in general given by

7 / &’k sinh(£22 =3t
16w, ) (27)? cosh(%4:) cosh(%22)
5 (4m7 —mj)

(p7 wb)

5wy, — 0 — ). (4.13)

W1

After performing the integration over k, using the method
described in Appendix C, the bosonic part of the spectral
width of the Yukawa theory, evaluated in a one-loop
perturbative expansion, reads

Fh(p7wh)
_FTrE-4)
1671'52 1 — 7127

1+ cosh% <1 +

(& -4)(1-7))
(& -4)(1-7}))

x In

1
: (4.14)
1 4 cosh ( ~

Here, £ =2 and y, = 22, with w} = p? + mj. Moreover,
] .

kK, = w,/T. In Appendix C, we generalize the result

presented in Eq. (4.14) to the case of nonvanishing

chemical potential, 4. In this case, the one-loop contribu-

the on-mass-shell relations, k> = m and (k—p)* = ? tion to the bosonic spectral width is presented in Eq. (C14).
MTk—»p NTk—p
T[] = 4 Ly s
Jk Jk

FIG. 3.
diagram for scalar bosons, % in the Yukawa theory.

Diagrammatic representation of the cutting rules leading to the imaginary part of the retarded part of the one-loop self-energy
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jﬁp
e RS
’ N

\
m2h) =5 ——0 =

jk

,j-’iﬁ’

e AN

Do+ A ‘— P
1

+ 3 O '

jk

FIG. 4. Diagrammatic representatlon of the cutting rules leading to the imaginary part of the retarded part of the one-loop self-energy

diagram for fermions, E in the Yukawa theory.

In Sec. V, we will use Egs. (4.14) and (C14) to study the
thermal properties of I',. Eventually I';, will be inserted into
Eq. (3.26) and the thermal properties of 7;, for various & will
be studied.

B. Fermionic spectral width in the one-loop
perturbative expansion

As we have demonstrated in the previous section,
fermions possess two different spectral widths ', defined
in Eq. (3.38). They can be perturbatively computed by
evaluating the imaginary part of the retarded fermion
self-energy ZR in an appropriate loop expansion. In what
follows, in analogy to the bosonic case, the standard finite-
temperature cutting rules from Refs [37,38] will be used to
evaluate the imaginary part of ER at the one-loop level.
Using the Feynman rules presented in Fig. 2, and the

|

2 3
IL(p,wy) = 8g—a)f (;1”]; 010 @0, Fp - k £ mi{6(w; — w; —
+ 8wy — ) + @) [ng(w) + ny(w;
+8(ws + oy — @) [ng(w)) + ny(w:)]}].

According to our notations from Fig. 4, wj =p* + m;
corresponds to the momentum of the external
fermion propagators, and wi = kj = k* +m} and @5 =
(ko — po)* = (k = p)? + m3 to the internal fermion and
boson propagators, respectively. Here, in contrast to the
bosonic case, only two terms on the rhs of Eq. (4.16),
proportional to &(w; — @y +®,) and §(w; + @ — @,),
contribute to the final results of I, and I'_. This is because
of the specific kinematics of the f — bf process in the
rest frame of the particles. Here, b and f correspond to a
boson and a fermion, respectively. Thus, the fermionic
spectral widths are determined after some algebraic manip-
ulations, where the definitions (3.15) and (3.31) of bosonic
and fermionic distribution functions are used. For I',, we
obtain

F+(p7wj)
_ 7 / &k (4m—mj)  cosh("y)
32(1)f (271’)2 W, COSh(/}w') Slnh(/}mz)

X {5(a)f —wy + 0)2) - 5(60f + o,

—wy)}.  (4.17)

diagrammatic representation of Sm[Z{e] demonstrated in
Fig. 4, we arrive first at

4
Smish(p)l =5 [ 45157 0067, (k- p

(2z)*
= SI_(K)GZ, (k= p)]. (4.15)

where D%, a,b =+ and D,, = {G,S} are defined in
Eq. (4.7). Using the identities (4.8), with D = {G, S},
together with the definitions of G,;, and S;,, a, b = =+ from
Egs. (4.2) and (4.4), we arrive after performing the
integration over kg in Eq. (4.15) and some straightforward
manipulations, at the fermionic spectral widths I"., defined
originally in Eq. (3.38),

@) [1 = ny(@y) + ny(,)]

N} + (w0 £p - kFm{S(wp + @1 + @2)[1 = ny(wy) + ny(w,))

(4.16)

I
As concerns I'_, it is given, according to Eq. (3.48), by
I' =T, —T7, where I'; is given by

2 3 Boy
_ g d’k cosh(=7)
I'Z7(p,ws) ==
7 (P ) 8 /(277) 2w cosh(£2) s1nh(ﬂ“’2)

x{8(w; — o) + @) + 8(w; + 0 — @)}
(4.18)

Performing the integration over k in Eq. (4.17), and by
making use of the method presented in Appendix B, I'", reads

F+ (5’ Vj, Kf, T)
_ PTriE —4)

32 1= y]%

1 — cosh(2=_)
x 4 In — =
cosh(Y_+Z=,)—cosh(Y_ —Z,)
1 h(2=_ —k
“In + cosh( RN GRS
cosh(Y_ +Z=,) +cosh(Y, - =)
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Here, £ =22 and y, = 2L w1th w
we have

=p>+ m% Moreover,

1

= =Feex /@ -a0-7)],

K
Lr£),

Y.
2

(4.20)

with «; = w;/T. Similarly, the integration over k in
Eq. (4.18) can be performed analytically. This is done
in Appendix B, where the final result for Iy is presented
in Eq. (B14). In Appendix C, the same method is used for the
case of nonvanishing chemical potential and I', and I'; are
determined at the one-loop level. The results for I' and Iy
are presented in Eqs. (C17) and (C19), respectively.

In Sec. V, we will study the qualitative behavior of the
dimensionless quantities I', /¢*T and I'; /¢*T in terms of
the dimensionless variables &, y » and k. We will then study
the T and u dependence of I', and I'_, and will show that
in a certain regime of the parameter space I'y =T", —T"_
is not negligible. Plugging the resulting expressions for
'y and Iy into Eq. (3.49) and assuming that E; ~ o, =
(p* +m3)'/?, we will eventually explore the thermal
propert1es of the fermionic part of the shear viscosity.

V. NUMERICAL RESULTS

In this section, we will mainly study the 7 and u
dependence of the bosonic and fermionic spectral widths
I', and ', as well as the thermal properties of the bosonic
and fermionic parts of the shear viscosity, 77, and n,. We
will first determine the 7 and u dependence of these
quantities for constant & = m)/m" 7> including the T- and
u-independent bosonic and fermionic masses, " , and m! e
respectively. We then consider the standard thermal cor-
rections of bosonic and fermionic masses [23], arising from
standard HTL approximation,

2 2
g 3u
(mp)? = (T2 += >

T

2 2
hy2 _ 9 2 M
T bl
()™ = 16( * n2>
and will add these thermal corrections to the original
constant m) and m$. Using the definition

(5.1)

_ mb(TJ")
E(T.p) = (T ) (5.2)
with
my(T. p) = my + m (T, p),
me(T,p) = mf +m(T, ), (5.3)

we will then determine the 7 and ¢ dependence of ', I'. as
well as 7, and 7y, including the thermal corrections to

PHYSICAL REVIEW D 89, 125005 (2014)

bosonic and fermionic masses. According to the descrip-
tions in Refs. [23,24], and since in the Yukawa theory the
vertices do not receive any HTL corrections, the above
treatment of thermal masses equals the HTL treatment
with an approximate fermion propagator. In this way, the
apparent drawback of our one-loop perturbative treatment
of n,[I'y] and n¢[['y] is partly compensated. For the
fermions, we mainly focus on the difference between I',
and I'_, arising from normal and collective (plasmino)
excitations of fermions at finite 7" and y, respectively. In the
literature, the spectral widths I', and I"_ are often assumed
to be equal (see e.g. Ref. [29]). We will show that
depending on T and/or u, their difference is not negligible.
To study the effect of plasminos on 77, we will determine 7,
once for I'y # I'_ and once for I'y, =I"_, and compare the
corresponding results.

A. Bosonic contributions

1. Bosonic spectral width

Let us first consider Eqgs. (4.14) and (C14), where the
bosonic spectral width I’ is presented as a function of
dimensionless parameters, y;, = o 2ok, = wy/T with a)b
p> +mj and ‘E::Z_'; as well as 7, =pu/T for py=0
[Eq. (4.14)] and u ;EIO [Eq. (C14)]. We consider first the
constant-mass approach, and replace all m;, and m; with m‘;
and m?., respectively. We then focus on the &, dependence
of I', for fixed «;, y;, and 7. In Fig. 5(a), the £, dependence
of the dimensionless quantity gI;—bT is plotted for 7, = 0 and
kp = 20 as well as y, = 0.5, 0.6, 0.7, 0.8 [from bottom (red
dashed line) to top (blue solid line)]. In Fig. 5(b), the &,
dependence of 2is plotted for 7, = O and y, = 0.8 as well
as k, = 1, 2, 3, 4 [from bottom (red dashed line) to top
(blue solid line)]. We observe that % remains constant for

&p = 10 in both cases. Moreover, for fixed values of &,

and «;, (y;), the ratio gth increases with increasing y; (k)

[see panels (a) and (b) of Fig. 5].

In Fig. 6(a), the &, dependence of L »1s plotted for 7, = 4
and x;, =20 as well as y, = 0.5, 0. 6 O 7, 0.8 (from bottom
to top). In Fig. 6(b), the same dimensionless quantity is
plotted for 7, = 4 and y, = 0.8 as well as ;, = 1, 2, 3, 4

L
» PT
remains constant for &, 2 10, and increases with increasing
v» (k) for flxed Values of &, and x;, (y;). In Fig. 6(c), the &,
% is plotted for fixed k;, = 20 and y;,, = 0.8
as well as 7, = 4, 6, 8, 10 [from top (red dashed line) to
bottom (blue solid line)]. In contrast to the previous cases,
—& decreases with increasing 7, and fixed .7, and &.

(from bottom to top). Similar to the case of 7, =0

dependence of

These results indicate that I', decreases with increasing T
and/or p. This conclusion is compatible with the observed
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©
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FIG. 5 (color online). The ¢, dependence of Fz—bT
for 7, =0 and (a) k, = 20 as well as y, = 0.5, 0.6, 0.7, 08

(from bottom to top) and (b) y, = 0.8 as well as x, = 1, 2, 3, 4
(from bottom to top). As it turns out, 1:” remains constant for
&y 2 10. For fixed values of &, and x;, (y;)
increasing y; (k;) [see panel (b)].

s 2”T increases with

result demonstrated in Figs. 7 and 8, where the 7 and u
dependence of I'y, is studied for various fixed parameters.

In Fig. 7, the T dependence of I, is plotted for
@, =300 MeV, m?f =5MeV and p=0MeV [Fig. 7(a)]
as well as ¢ = 150 MeV [Fig. 7(b)]. The Yukawa coupling
is chosen to be g=0.5. Similarly, in Fig. 8, the pu
dependence of I'y, is plotted for w;, = 300, m? =5 MeV
and 7 =10 MeV [Fig. 8(a)] as well as T = 100 MeV
[Fig. 8(b)]. The red, gray and blue lines in Figs. 7 and 8

(a) Tf:4, Kb:20 (b)

71 =47y,=08

PHYSICAL REVIEW D 89, 125005 (2014)

correspond to mg = 100, 150 and 200 MeV, respectively.
The dashed lines include the contributions of constant
masses m?) and m?c for bosons and fermions, respectively,
and the solid lines include the contributions of thermal
corrections of fermion and boson masses, m(T,u) and
mf(T u) from Eq. (5.3). As it turns out, I', decreases with
increasing T and y. Having in mind that I';! is essentially
proportional to the mean free path of the bosons, 4, [18], the
fact that I';, decreases with increasing T and y means that 4,,
increases with increasing 7" and . However, for constant T
and y, heavier bosons seem to have smaller 4,, as expected.
Although, according to Figs. 7 and 8, adding 7- and
u-dependent (thermal) masses of bosons and fermions to
the bare masses mg and mjl shifts Iy, to larger values, but the
qualitative interpretation concerning 4, remains unchanged.
According to Eq. (3.26), indicating that 5, ~I';!, the
thermal behavior of 4, is expected to be reflected in the
thermal behavior of 7, as it will be shown below.

2. Bosonic part of the shear viscosity

The bosonic part of the shear viscosity is presented in
Eq. (3.26), with I',, given in Eq. (4.14) for 4 = 0 and in
Eq. (C14) for u #0. To determine #,, we neglect the
contribution of Re[Z5(p)] in E, from Eq. (3.19) and set
E, ~w,. In Fig. 9, the T dependence of 5, is plotted for
1 = 0. The black solid and red dashed lines in Fig. 9(a)
correspond to the constant ratios .fo 40 MeV and
&y = 80 MeV. The latter arises from mb =200,400 MeV
and m% = 5 MeV, respectively. In Fig. 9(b), the T depend-
ence of 5, is plotted for 4 = 0. But, in this case, in contrast
to the plot in Fig. 9(a), ,, includes thermal masses m,, (T, u)
and mf(T,u) from Eq. (5.3) with mg = 200,400 MeV
and m§ = 5 MeV. In Fig. 9(b), & denotes the ratio m{) /m)
in &T,p) from Eq. (5.2). In Figs. 10(a) and (b), the same
quantities are plotted for x4 = 120 MeV. Comparing the
plots of 5, for different constant masses in Figs. 9(a)
and 10(a), it turns out that 77, decreases with increasing &,.
The same is also true for (T, u) [see Figs. 9(b) and 10(b)].
These results are compatible with our findings in

(C) kp =20,7y,=0.8

x 1073

25! ]
200
1.5

x 107"

Iy
9’7

o/~ 1.0
|

0.5

0.0

oO—‘I\)CO-PU‘IO’\I

FIG. 6 (color online).

The &, dependence of 5z

(b)y, =08aswellask, = 1,2, 3, 4 (from b(;]ttom to top). As it turns out, — remains constant for &, 2

1ncreases with increasing y,, for all values of «,, (panel a) and with increasing «,, for all values of yb (panel b). (c) The &, dependence of

0 10 20 30 40 50
éo

b for 7, = 4 and (a) k, = 20 as well as y;, = 0.5, 0.6, 0.7, 0.8 (from bottom to top), and

10. For a fixed value of afo, ng

& for fixed k, = 20,7, = 0.8 and 7y = 4, 6,8, 10 (from top to bottom). As in the previous cases, Lb_ remains constant for &, > 10 for all

gT

Values of k, 7, and 7. For fixed values of k;,y, and &, gth decreases with increasing 7;.
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(a) wp = 300 MeV, u =0 MeV
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FIG. 7 (color online). The T dependence of I', for w, =
300 MeV and (a) g =0 MeV as well as (b) u = 150 MeV.
The red, gray and blue lines (from bottom to top) correspond
to mY =100, 150, 200 MeV and m?c =5 MeV, respectively.
The dashed lines include only the constant-mass contributions of
bosons, m) = 100, 150, 200 MeV, and fermions m(} =5 MeV.
The solid lines include, in addition to the constant-mass con-
tributions, the thermal corrections of the boson and fermion
masses as functions of 7" and y [see Eqgs. (5.1)—(5.3)]. Here, the
Yukawa coupling g = 0.5 is used.

Figs. 7(a) and 7(b), since for constant 7" and u, n;, is
approximately proportional to T';' [see Eq. (3.26)].
Moreover, as expected from Fig. 7, 7, increases with
increasing 7. Comparing the results for constant and
(T, u)-dependent masses in Figs. 9 and 10, it turns out
that, as expected from Fig. 7, adding the thermal correc-
tions to the constant bosonic and fermionic masses
decreases the value of 7,. Moreover, for both constant
and T- or/and u-dependent masses, the difference between
n, for different & as well as &) increases with increasing 7.
However, since the scales in the plots of Fig. 9 and Fig. 10
are different, the difference between 77, for &, and & seems
to be negligible for the case y # 0 compared to the case
u =0. When we compare the plots of Fig. 9 with the
plots of Fig. 10, it seems that 7, decreases with increasing
u. This conclusion contradicts the result from Figs. 7 and 8,
together with the fact that #, ~1";1 from Eq. (3.26).
This apparent contradiction may lie in the fact that for
u # 0, the p integration in Eq. (3.26) is taken in the interval
p € [0, (u* — m%?)'/2] for the constant fermionic mass m},

PHYSICAL REVIEW D 89, 125005 (2014)
(@) wp =300MeV, T =10 MeV

FIG. 8 (color online). The u dependence of I', for w, =
300 MeV and (a) T = 10 MeV as well as (b) 7 = 100 MeV.
The red, gray and blue lines (from bottom to top) correspond to
mY =100, 150, 200 MeV and m?c =5 MeV, respectively. The
dashed lines include only the constant-mass contributions of
bosons, m = 100, 150, 200 MeV, and fermions, m?» =5 MeV.
The solid lines include, in addition to the constant-mass con-
tributions, the thermal corrections of the boson and fermion
masses as functions of 7 and p [see Egs. (5.1)—(5.3)]. Here, the
Yukawa coupling g = 0.5 is used.

and p € [0, [u? — m3(T, u)]'/?], with the (T u)-dependent
fermionic mass m(T,u) from Eq. (5.3). Hence, the u
dependence of I', is not the only source of the y depen-
dence of #,. In Fig. 11, the u dependence of g, is
demonstrated for constant 7 = 120 MeV and &, = 40
as well as (7T,pu)-dependent &(T,u) with & =40. As
expected from Figs. 7 and 8, 7, increases with increasing
u. Recently, in Ref. [39], the shear viscosity of a hot pion
gas, 1,,, was determined by solving the relativistic transport
equation in the Chapman-Enskog and relaxation-time
approximations. It is shown that for zero pion chemical
potential, 77, increases with 7. Although the setup discussed
in Ref. [39] is slightly different from ours—the self-
interaction of pseudoscalar pions is described by the
Lagrangian density of chiral perturbation theory—our
results for zero u and finite 7' coincide with the results
presented in Ref. [39]. Our results from Figs. 9-11—i.e.
that 7, also increases with 7" or y—show that 7" and y have
the same effect on the bosons propagating in a dissipative
hot and dense medium. As we have argued in the previous
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FIG. 9 (color online). (a) The T dependence of 7, is plotted
for 4 =0 and the T-independent &, = 40,80 arising from
mY = 200,400 MeV and m())c =5 MeV. (b) The T dependence
of 7,, including the 7-dependent thermal corrections to bosonic
and fermionic masses, is plotted for mg = 200,400 MeV and
mjoc =5 MeV. Here, £ denotes the ratio mg / m? in &(T, u) from
Eqgs. (5.2)—(5.3).

section, the mean free path of bosons, 4, increases with
increasing 7 and/or u. The results of the present section
show that the thermal properties of 1, are directly reflected
in the thermal properties of #;,. Moreover, as it turns out
heavier bosons have smaller 7, and 4,,, as expected.

B. Fermionic contributions

1. Fermionic spectral width

In this section, we will focus on the T and u dependence
of the fermionic spectral widths I, with an emphasis on the
difference between them. As aforementioned, in the chiral
limit m, — 0 and at finite (T,pu), 'y and I'_ correspond to
the normal and collective excitations of fermions, respec-
tively. The latter is referred to as either a hole or a plasmino.
Moreover, in the chiral limit, Iy (I"_) corresponds to
excitations with the same (opposite) chirality and helicity.
The difference between I', and I'_ is often neglected in the
literature [29]. We, however, highlight this difference and
study its impact on the fermionic shear viscosity in different
regimes of temperature and chemical potential.

In Eqgs. (4.19) and (C17), I',. is presented for vanishing
and nonvanishing g in terms of the dimensionless param-

eters yp = %’Kf = a)f/T with wj% = p2 + mjzc and & = :Z—;’

PHYSICAL REVIEW D 89, 125005 (2014)
(@) u = 120 MeV
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FIG. 10 (color online). (a) The T dependence of 1, is plotted for
u =120 MeV and (T, u)-independent &, = 40, 80 arising from
mY) = 200,400 MeV and m?c =5 MeV. (b) The T dependence of
Ny, including the 7- and p-dependent thermal corrections to
bosonic and fermionic masses, is plotted for m2 = 200,400 MeV
and m? =5 MeV, leading to &' = 40, 80.

as well as ;= p/T. Similarly, T’ (s, k7, 773 &) for u =0
and p # 0 are presented in Egs. (B14) and (C19), respec-
tively. Using I'_ =T", —T";, T'_ can be determined from
the difference between I'y and I';. Similar to the bosonic
case, let us replace m,, and m, with (T, u)-independent mg
and m}, respectively, and focus first on the & = mj)/m

. . . r .
dependence of the dimensionless quantity gz—*T as a function
of the dimensionless parameters y;, ks and 7.

T =120 MeV

o — & =40
< -- & =40
3 9
9
o2
x
= 1}

Ot: :

0 50 100

FIG. 11 (color online). The y dependence of 7, is plotted for
T =120 MeV and &, = &} = 40.
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(a) Tf = 4, Kf = 20

(b) s =4,y =08 (c)

PHYSICAL REVIEW D 89, 125005 (2014)
Kf = 20, Yf = 0.8

x 10?
N w S (¢}

r,
9’T

FIG. 12 (color online).

The &, dependence of grz—*T
()7, =0.8aswellask, = 2,4,6,8 (from bottom to top). (c) The &, dependence of r—*

bottom to top). As it turns out, for a fixed .fo,

for7; = 4 and (a) k; = 20 as well as yy = 0.5,0.6,0.7, 0.8 (from bottom to top), and

forx; = 20,7, = 0.8 and 7, = 0, 3,6,9 (from

1ncreases whenever one of the parameters ¢ K¢ Or 7 increases and the other two

parameters are held fixed. It can be shown that the same is also true for 5 s

In Fig. 12(a), the &,
7y =4 and k; = 20 as well as y, = 0.5, 0.6,0.7,0.8 [from
bottom (red dashed line) to top (blue solid line)]. Similarly,

in Fig. 12(b), the &, dependence of % is plotted for 7, = 4
and yy = 0.8 as well as x; = 2,4, 6,8 [from bottom (red
dashed line) to top (blue solid line)]. Finally, in Fig. 12(c),
the &, dependence of grz—*T is plotted for fixed x; = 20 and
Yr= 0.8 as well as Ty = 0, 3, 6,9 [from bottom (red dashed
line) to top (blue solid line)]. In contrast to the bosonic case,
for a fixed 50,

Vi KpOL Ty 1ncreases and the other two parameters are held

- increases whenever one of the parameters

fixed. Neglecting the tiny difference between F* and l;r’

the same can easily be shown to be true for & 7 Let us notice
at this stage, that to derive the final results for 'y foru =0
and y # 0, the condition m) > 2m was necessary. It is
easy to show that I'y diverges once mj = m} = 0. This

was also indicated in Ref. [34], where it was noted that
the nonzero boson and fermion mass difference,
om* = m3 — m%, ensures the smoothness of the fermion

(a) wf =300 MeV, = 150 MeV (b) wr

=300 MeV, x = 150 MeV (©) wy

self-energy, and consequently Iy, in the far-infrared
(IR) limit.

Although the &, dependence of L and I 7 as functions of
the dimensionless parameters y, K'f and 7 are practically
identical, the T' (i) dependence of I' | and I'_ turns out to be
different for fixed values of y (T') and &,. In Figs. 13 and 14,
the T and u dependence of I', [panel (a)], I'"_ [panel (b)]
and F_; [panel (c)] are plotted for w; =300 MeV and
p =150 MeV (Fig. 13), as well as for w; = 300 MeV and
T = 150 MeV (Fig. 14). The red, gray and blue solid
and dashed lines correspond to mg =300, 450, 600 MeV
and m(} =5 MeV. The dashed lines correspond to I';. and
I';as functions of the (T, u)-independent &, = 60,90, 120,
and the solid lines correspond to the same quantities,
including the thermal masses of bosons and fermions, with
&y = mp/m$ = 60,90, 120. According to the results in
Figs. 13 and 14, it turns out that the absolute value of
the difference between I', and I'_, |I';|, increases with
increasing 7 and constant p (Fig. 13), as well as with
increasing u and constant 7 (Fig. 14). It decreases

=300 MeV, 1 = 150 MeV

r, (MeV)

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
T (MeV) T (MeV) T (MeV)

FIG. 13 (color online). The T dependence of (a) I',, (b) I'_ and (c) Ff =TI, —T_ is plotted for constant oy = 300 MeV and
;4 = 150 MeV. The red, gray and blue solid and dashed lines (from bottom to top) correspond to m{ = 300,450,600 MeV and
md = =5 MeV. Whereas the dashed lines correspond to I';. and I as functions of (7, u)-independent &, = 60, 90, 120, the solid lines
correspond to the same quantities including the thermal corrections to bosonic and fermionic masses with £ = 60,90, 120. It turns out
that the absolute value of the difference betweenI", andI'_, i.e. |Ff |, increases with increasing T, and decreases with increasing &, and
&l Moreover, for small & or & and fixed (7, /4), I'_ is always larger than I", .
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(a) wf =300 MeV, T = 150 MeV (b) ws =300 MeV, T = 150 MeV (c) ws =300 MeV, T = 150 MeV
0.0F===
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FIG 14 (color online). The p dependence of (a) Iy, (b) I'_ and (c) Ff =TI, —T'_ is plotted for constant w; =300 MeV and

= 150 MeV. The red, gray and blue solid and dashed lines (from bottom to top) correspond to m? = 300,450,600 MeV and
md = 5 MeV. Whereas the dashed lines correspond to I". and I';as functions of the (7', u)-independent &, = 60, 90, 120, the solid lines
correspond to the same quantities including the thermal correctlons to bosonic and fermionic masses with &I’ = 60, 90, 120. Similar to
their 7 dependence, demonstrated in Fig. 13, it turns out that |7 | increases with increasing u, and decreases with increasing &, as well as

zfg . Moreover, for small &, or 55 and fixed (7, u), I'_ is always larger than T",.

(@) wy = 300 MeV, 1 = 150 MeV

50 100

150
T (MeV)

FIG. 15 (color online).

(b) ws = 300 MeV, T = 150 MeV

I (MeV)

(a) The T dependence of I'y. for w; =300 MeV and y = 150 MeV, including the thermal corrections to

bosonic and fermionic masses. (b) The y dependence of 'y for w; = 300 MeV and T' = 150 MeV, including the thermal corrections to
bosonic and fermionic masses. The dashed (solid) lines correspond to I', (I"_). The red, gray and blue dashed and solid lines (from
bottom to top) correspond to &) = 60,90 and £f = 120, respectively.

with increasing &, and cfg . Moreover, for small values of &,
or & and fixed (T, u), I'_ is always larger than I, .

To compare I', and I'_ more directly, their 7 and p
dependence are plotted in Fig. 15 for constant
w; =300 MeV and u =150 MeV [panel (a)] and
T = 150 MeV. Here, I', includes only thermal bosonic
and fermionic masses. The dashed (solid) lines correspond
to Iy (I'_). The red, gray and blue dashed and solid lines
correspond to & = 60,90, 120, respectively. As it turns
out, whereas for smaller & = m!) /m?, I',, the spectral
width of normal fermion excitations, decreases with T or g,
for larger &l it increases with increasing 7" or u. In contrast,
I'_, the spectral width of the plasmino excitations, increases
with T or p, independent of £5. Assuming, in analogy to
the bosonic case, that the spectral widths I', and I'"_ are
inversely proportional to the mean free paths of the normal
and plasmino excitations of the fermions, 4, and A_, the
above results suggest that at higher temperature or chemical
potential, plasminos have smaller A_, while for normal
fermions, the thermal behavior of 4, depends strongly on

the relation between the masses of the fermions and bosons
included in our Yukawa-Fermi gas. Heavier (normal)
fermions have smaller 4,, as expected. Let us mention
that, according to the plots in Figs. 13 and 14, [I';| =
T, —T'_| increases with increasing 7' (u) and fixed u (T)
as suggested from the fact that holes (plasminos) are more
significant at higher temperatures [25]. In what follows,
we will study the impact of this difference on the fermionic
part of the shear viscosity.

2. Fermionic part of the shear viscosity

In Sec. III B, the fermionic part of the shear viscosity,
1y, was computed in terms of I'y and I'_ for vanishing
chemical potential [see Eq. (3.49)]. In Appendix C, we
present 7, for nonvanishing chemical potent;al [see
Eq. (C1)]. Neglecting the contribution of Re[X ] in £,
from Eq. (3.38) and in &£, from Eq. (C2), and replacing
E, and &,, appearing in Egs. (3.49) and (C1), with w;
and @, = oy + p, respectively, we have plotted the T
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FIG. 16 (color online). The T dependence of 7, is plotted for
1 = 120 MeV and T-independent &, = 40, 80 arising from m?, =
200,400 MeV and mf} =5 MeV. (b) The T dependence of 7y,
including the T- and u-dependent thermal corrections to bosonic
and fermionic masses, is plotted for mg = 200,400 MeV and
m? =5 MeV, leading to 53 = 40, 80.

dependence of 7, for fixed 4 = 120 MeV and &, = 40, 80
in Fig. 16(a) and for g = 120 MeV and & = 40,80 in
Fig. 16(b). In contrast to the 7" dependence of 7, from
Fig. 10, we observe that 77, decreases with increasing T, 175
is in general larger than 7, and at a fixed temperature and
for a fixed chemical potential, 77, increases with increasing
&y [Fig. 16(a)] as well as éfg [Fig. 16(b)]. The fact that for a
fixed T and u, n decreases with increasing &, is compatible
with the results arising from Fig. 12, where it is shown that
I'. increases with increasing &;, and confirms the fact that
for small values of &, (or 55 ), My~ 1";1. But, in general, it
seems that the thermal property of 7, is dominated by the
thermal behavior of I'_. The fact that 5, is inversely
proportional to the fermionic spectral width coincides with
the results presented in Ref. [30], and indicates that 7,
increases with an increase in the mean free path.1

In Fig. 17, the u dependence of 7 is plotted for T' =
120 MeV and &, = 40 (blue solid line) and 55 =40 (red
dashed line). In contrast to the u dependence of 7, from
Fig. 11, ny decreases with increasing u at a fixed temper-
ature. Moreover, at a fixed T and p, ny decreases when the

n Ref. [30], no difference was made between the mean free
paths of normal and plasmino excitations.
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FIG. 17 (color online). The u dependence of 7 is plotted for
T =120 MeV and &, = &8 = 40.

thermal corrections to the bosonic and fermionic masses
are taken into account. This is again in contrast with the
observed results for #;, in Fig. 11.

As we have shown in Figs. 13, 14 and 15, I'y and
I'_ have different thermal properties. To study how this
difference can affect n;, we define a quantity A, as the
difference between # rasa functional of 'y, =T"_, and p ¢ as
a functional of '} #1"_,

A=nl, =T ]—nl #T].  (54)

(a) u =120 MeV

2.0
— =40
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- d-w
O]
Ry \
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(b) T = 120 MeV
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FIG. 18 (color online). (a) The T dependence of A, defined
in Eq. (5.4), is plotted for u = 120 MeV and &, = 55 = 40.
(b) The u dependence of A is plotted for 7 = 120 MeV and
& = ng =40. As it turns out, A decreases (increases) with
increasing 7 (1) and constant-mass ratio &, as well as &J.
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Let us recall, that in the literature the difference between I
and I'_ is often neglected, and so far, A =0 has been
assumed. In Figs. 18(a) and (b), the 7" and y dependence of
A is plotted for constant y = 120 MeV [panel (a)] and T =
120 MeV [panel (b)], and for &, = 40 (blue solid lines) and
ég = 40 (red dashed lines). It turns out that in the whole
range of 7 and p, A is positive. This means that the value of
1y increases, when the difference between I'y and I'_ is
neglected. Moreover, for fixed u (T) and constant &, or &,
A decreases (increases) with 7' (u). In other word, as it is
shown in Fig. 18(a), whereas at lower temperatures and
for an intermediate value of y, the difference between
nelL =T_] and n,'y #T_] is relatively large, and
becomes larger by including the thermal corrections to
the bosonic and fermionic masses, it can be neglected at
higher temperatures. In contrast, the difference between
nel =T_]and 5", # I'_]is negligible at fixed temper-
atures and for small values of the chemical potential. It
increases with increasing p and is enhanced by adding the
thermal corrections to the bosonic and fermionic masses.

VI. SUMMARY AND OUTLOOK

The shear viscosity # is a transport coefficient, that
characterizes the diffusion of momentum transverse to the
direction of propagation. It plays an important role in the
physics of the QGP. In the past few years, there have been
several attempts to explore its thermal properties, in
particular in the vicinity of the QCD chiral transition point.
The aim is to determine the position of the transition
temperature of QCD, using the thermal properties of 7, in
addition to and independently of the equation of state [2].
In this paper, we studied the thermal properties of the shear
viscosity of an interacting boson-fermion system with the
Yukawa coupling. We followed the method presented in
Ref. [18] to derive the bosonic part of the shear viscosity
of this theory in terms of the bosonic spectral width, I',.
The latter was then determined in a one-loop perturbative
expansion in orders of the Yukawa coupling. Using 7, [[",],
it was then possible to study the thermal properties of 7,
in addition to its dependence on the masses of bosons
and fermions.

We took the method used in Ref. [18], as our guideline,
and determined the fermionic part of the shear viscosity of
the Yukawa theory in terms of the fermionic widths I', and
I"_. The expression n,[I";] from Egs. (3.49) and (C1) for
vanishing and nonvanishing chemical potential, contains
the central analytical results of the present paper. Here, I",
and I'_ are the spectral widths, corresponding to the normal
and collective (plasmino) excitations of fermions. They
were studied very intensively in the literature and led e.g. to
structures in the low-mass dilepton production rate, which
might provide a unique signature for the QGP formation in
relativistic heavy-ion collisions [27]. However, to the best
of our knowledge, the difference between their spectral
widths is often neglected (see e.g. Refs. [17,23,33]), and, as
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in Refs. [19,29], the fermionic spectral density function, py,
is given in terms of one and the same fermionic spectral
width. We, however, used the structure of p presented in
Ref. [30], including both I", and I'"_, and following the
method presented in Ref. [18], determined #,[I";] in an
appropriate Laurent expansion. Moreover, we completed
the results presented in Ref. [30], and evaluated I'; in a
one-loop perturbative expansion in orders of the Yukawa
coupling, and studied their thermal properties. Then, by
plugging ', into the proposed relation for the fermionic
shear viscosity, n¢[I';] from Egs. (3.49) and (C1), we
determined the thermal properties of 7y, and studied its
mass dependence. Apart from various results on the thermal
properties of I',, ', as well as 7, and 7, discussed in the
previous section, we showed that, depending on the
temperature and/or chemical potential, #,[I"; #T'_] is
smaller than #,[I", =T_].

It shall be noted that our one-loop computation, includ-
ing bare fermion and boson masses, is incomplete and can
be improved, for instance, by considering the full HTL
correction to the fermion propagator. The latter plays a
crucial role in determining I';, and I'y, and consequently
1, and ng. This drawback is partly compensated in the
present paper by adding thermal corrections to the bosonic
and fermionic masses. This ad hoc treatment of thermal
masses seems to be natural, since, as was also discussed in
Refs. [23,24], it equals the HTL treatment with an
approximate fermion propagator. Moreover, since it is
known that the HTL/hard-density-loop treatments are only
valid for soft momenta p < g7, gu, even the HTL treatment
can be improved by studying the ultra-soft fermionic
excitations, with p < ¢?T, g>’u. They were recently dis-
cussed in Refs. [34,35], in the framework of the Yukawa
theory. An important question related to the perturbative
treatment of transport coefficients, in general, and shear
viscosity, in particular, is the appearance of the so-called
pinch singularities, which would break the perturbation
theory based on a loop expansion. A useful description
of these singularities was presented in Ref. [16]: in the
quasiparticle approximation, where the propagators are
given by the energy and spectral widths of the quasipar-
ticles, the pinch singularity is essentially related to the IR
behavior of the product of retarded and advanced propa-
gators, which appears in the perturbative loop calculations.
Once the spectral width is zero, the above-mentioned
product becomes IR divergent. The consequence is that
higher-loop diagrams, if they are sufficiently IR sensitive,
become as important as the one-loop contribution, and a
resummation of an infinite number of ladder diagrams will
be necessary. In Ref. [11], a detailed power counting was
presented for Ap> and A¢* theories, and it was shown that
all ladder diagrams contribute in the same leading order. In
Ref. [34], a similar power counting was performed for the
ladder diagrams contributing to the fermion self-energy of a
Yukawa theory, and it was shown that in contrast to the
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above-mentioned scalar theories with cubic and quartic
interactions, and also in sharp contrast to QED and QCD,
the ladder diagrams are indeed suppressed, and conse-
quently the one-loop self-energy diagram with dressed
propagators (including the thermal masses) gives the
leading-order contribution to the fermion self-energy.
The main reason for this suppression is the fact that the
Yukawa coupling constant receives no correction in the
leading-order HTL approximation. Or, as was stated in
Ref. [34], “the ladder diagrams giving a vertex correction
do not contribute in the leading order in the scalar
coupling”. As concerns higher-loop contributions to the
spectral width and shear viscosity of the Yukawa theory,
it seems therefore that no ladder resummation may be
necessary, and the one-loop computation, including the
thermal masses, may provide the leading-order contribution
to these quantities. A recent perturbative computation
of the shear viscosity of the Yukawa theory up to two-
loop order confirmed this conclusion [40]. It was, in
particular, shown that the two-loop diagrams, having the
same power of coupling as the one-loop diagram, is
substantially suppressed compared to one-loop contribu-
tion. According to the arguments presented in Ref. [40], it
is indeed expected that by increasing the number of loops,
the suppression successively grows, so that the one-loop
results of the shear viscosity of the Yukawa-Fermi gas
can be considered as the leading order. A more detailed
analysis of ladder resummation corresponding to the shear
viscosity of the Yukawa theory will be postponed to a
future publication.

In Sec. IV, the leading-order contributions to the bosonic
and fermionic spectral widths of the Yukawa theory were
determined by computing the imaginary part of two one-
loop bosonic and fermionic self-energy diagrams (see
Figs. 3 and 4). Let us notice at this stage, that these
one-loop contributions correspond to 1 — 2 scattering
processes (Landau damping), which seem to build the
leading-order contribution to the spectral widths of the
Yukawa theory. This is again in contrast to the situation
apprearing in QED, where, as was argued by Gagnon and
Jeon in Ref. [29], apart from the special case of 1 — 2
collinear scatterings including massless electrons, the
perturbative series of the spectral widths starts from the
leading 2 — 2 scattering processes, arising from two-loop
self-energies. This is because of the fact that in QED,
in contrast to the Yukawa theory, the imaginary parts of
the one-loop boson (photon) and fermion (electron) self-
energies vanish, as can be easily checked, and as was also
stated in Ref. [29]. Hence, an on-mass-shell massless
excitation cannot decay into two on-mass-shell excitations,
as expected. We can therefore conclude that in the Yukawa
theory, the 2 — 2 scattering processes, arising from two-
loop contributions to the bosonic and fermionic self-
energies provide the subleading contribution to the spectral
widths of this theory relative to 1 — 2 scattering processes,
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arising from the one-loop self-energy diagrams demon-
strated in Figs. 3 and 4 of the present paper.

Let us finally notice that one of the possibilities to extend
the present computation is to apply it to a QCD-like model,
e.g. quark-meson or NJL models, including spontaneous
or dynamical chiral symmetry breaking, and to study the
behavior of # in the vicinity of the chiral transition point.
The latter project is currently under investigation. The
results will be reported elsewhere.

APPENDIX A: SPECTRAL DENSITY
FUNCTION OF FERMIONS

In this appendix, we will apply the method presented in
Ref. [28] for massive fermions, and will show that the
spectral density function of fermions is given by Eq. (3.36).
To start, let us consider the Killen-Lehmann representation
of a free fermion propagator in terms of the free spectral
density function pf,

+oo dp pO(p’ PO)
So(p, ) :/ 2—;;07_(0 (Al)
Plugging
P3P, po) = 2x(p -y + my)sgn(po)d(pg — w7), (A2)

with % = p* + m7, into Eq. (A1), and integrating over py,
we arrive at the following decomposition of S in terms of
two independent matrices §., defined in Eq. (3.37):

1 R 1
al a)+a)f

So(p. @) = — g (A3)

a)—a)f

To determine the inverse propagator of free fermions, we
introduce the new matrices

. 1
d. = - [row,F(r.p + my)] (A4)
@y
that satisfy
(Q,i)} = Q?v @i@li =0,
@%Qi = f]/;Vo, Qigq: = VOQI:F- (AS)

The inverse propagator of free fermions is then given by

So'(p.w) = —(0+@p)f, — (@—07)f-.  (A6)
To determine the dressed spectral density p/(w, po) for the
dressed fermion propagator S(p, ), let us now consider the
inverse fermion propagator,

57 (p.w) = S5 (p.w) + &/ (p. w), (A7)
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where X(p, ) is the fermion self-energy, including all one-
particle-irreducible radiative corrections, corresponding to
the two-point Green’s function of fermions. By decom-
posing X/ as

Y (p.w) =9 X (0,p) —§ 2 (A8)

(w,p),

and combining the resulting expression with Eq. (A6), we
arrive, according to Eq. (A7), at

7' (pow) =~ (0 +wp+2) - (0w —Z).

(A9)

Using the identities (AS5) for g, and g, it is easy to show
that X, from Eq. (A8) is given by

1
By inverting Eq. (A9), and by making use of the properties
(AS), the dressed fermion propagator reads

1 1
S(p,w) =— g, — Jg_.

(Al1)

Using at this stage the definition p, = —23m([Sg], and
introducing

Ey = s + Re[zX], (A12)

as well as

L =3mZf], (A13)
we arrive at p,(p, @) from Eq. (3.36). Let us finally notice
that £, and I'y defined in Eq. (3.38), arise by plugging
Eq. (A10) into Egs. (A12) and (A13) and neglecting the
imaginary part of g, , defined in Eq. (3.37).

APPENDIX B: COMPUTATION
OF EQS. (4.14) AND (4.19)

In this appendix, we will perform analytically the three-
dimensional k-integration in Egs. (4.13) and (4.18) to arrive
at Egs. (4.14) and (4.19), respectively. We also present the
final result for I'.

Let us start by considering the integral

&k
T = /mﬁ(wb —w) — o) f(wy, 0, 0,),

(B1)

where f(w;, ®, w,) is a generic function of w;, i = b, 1,2.
According to the definitions in Sec. IVA, w? = p? + m3,
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=k>+m} and w; = (k —p)* +mj. Denoting the
angle between k and p by 6, and inserting

1
1 :E/d(cosep)

into the integration over k, appearing in Eq. (B1), we
arrive at

(B2)

I 1 &k d(cosb,)
B (27)2w, 2w,
x 8wy — w1 — ;) f(wp, w1, )

1 &k / doy 42\
2/ (2n)20, d(cosb,)

x 8(wp — wy — ) f(@y, @1, @)
= —% dw, f (@, 0, 0, = o, — o). (B3)

To derive the above relation, the identity
2=’ 2 -2|p|lk 0 B4
w3 = wi + p* - 2|p|[k| cos 0, (B4)

arising from the definition of , in terms of p and k is used.
The latter identity can also be used to determine the range
of integration over w; in Eq. (B3). Having in mind that

2 2 2
w7 +Pp° —

—1<cosl, = < +1, (B3)
: 2[k||p|
we arrive at
mj + 4m%p?
w%—wlwb+b442‘f[)§0, (B6)
my
whose solution yields ), < w; < a}, with
p
a;}t52< | |\/§2 > (B7)
and £ = % Plugging
2 2 2 Po
g*(4m% — mj) sinh(=%)
[y, 01, 0,) = : (B8)

4y, cosh(Z21) cosh(222)

from Eq. (4.13) into the expression on the rhs of Eq. (B3),
we arrive after some straightforward manipulations
at Eq. (4.14).

To derive Eq. (4.19), let us now consider Eq. (4.18),
where in contrast to the previous case two ¢ functions
5(a)f:Fw1 + w,) contribute to F+ HaVing in mind that
in the fermionic case w? = p’ +mf, w? = k2 + mf
and o} = (k- p) +m2, we obtain @3 = @ +p*—
2|p|[k|cos 6, 4 mj — m7. Following now the same steps
leading from Eq. (B1) to Eq. (B3), we arrive at
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/ @k 5( + ;) f( )
— (o, Fw, o) flwr, 0, ®
(27) 20, 2a,  CFTO1 T @2 B 1 02
1
= —_-— d N N - . B9
8ﬂ|p|/ a)lf(wf w1, ) C01:|:60f) (B9)

As concerns the range of integration over @w;, we can use

2 _ 2 42 2 2
w7 — w5 + P° + mjy —my

—1500591,: 2K[[p| < +1
to get
my
0} % (& = oy, + 07+ (€ -2 <0,
(B10)
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Here, the + signs before the second term correspond to
W, = wFwy, respectively. Solving the above equation, we
arrive for w, = w, — @y at my < w; < af, with

L o8 =2) +[plgvE -4
af = . . (BI1)
and for w, = w, + @y at f; < w; < B, with
2 _0) £ |ple/E—4
T Y YR S

Plugging Eqgs. (B11) and (B12) into Eq. (B9), and using the
resulting expression, the three-dimensional & integration in
Eq. (4.18) can be performed analytically. We arrive after
some algebra at Eq. (4.19).

To evaluate FJ: from Eq. (4.18), we follow the same
procedure as above. Using

&k
/m[é(wf - + wz) + 5(a)f +w; — w2)]f(a)f,a)1,a)2>

1 af BF
- - da)la)lf(a)f,a)l,a)z =W — a)f) + da)la)lf(a)f, w1, W = W + O)f) s (B13)
4ﬂ|p| mg ﬂ;
with
£ ) e cosh(@)
Wp, W], W) = = ,
A cosh(%21) sinh(%22)
and
1
/ duu(coth u)*! = 5 [u(u +2In(1Fe™2")) — Liy(Fe™24)],
we arrive at
2 —
_ 9T 1 — cosh(2=_) > . 51T
rr=-—-——— 1 2In(l —e™*)) - L u -
—— Lo e a2 - )~ L)
= = 4
+ [w(u +21In(1 — 7)) = Lip(e™)]|z" — [u(u +2In(1 + €72")) — Lip(—e™)]| | j_z
-2
=
— [u(u+21In(1 + e724)) — Liz(—e_2“)]|;_x;,}, (B14)

where k¢, =, and Y, are defined below Eq. (4.19) and in
Eq. (4.20).

APPENDIX C: SHEAR VISCOSITY AND
SPECTRAL WIDTH OF FERMIONS FOR
NONVANISHING CHEMICAL POTENTIAL

In this appendix, we will first determine the fermionic
spectral widths I' . and shear viscosity 7, for nonvanishing
chemical potential. To do this, we will follow the method

described in Sec. III B and Appendix A. We will then use
the method presented in Sec. IV and Appendix B, and
derive the one-loop contribution to the bosonic and
fermionic spectral widths for nonvanishing temperature
and chemical potential.

1. Fermionic contribution to 7, for u # 0

In what follows, we will show that in the one-loop
skeleton expansion, the fermionic part of the shear viscos-
ity ny, is given by
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B(Es—sp)

2p
anlsﬂ_Z 0 ZZ{ eﬂE —su) +1)

“’fs

2 4m3(TF =T
X {p_ mf( +f S). - } },
L (& +isTF][Ey + il

(C1)

where £, =&, +&_ and I'y =T, +T'_, similar to the
definitions in Eq. (3.48). Here, in contrast to E, defined in
Eq. (3.38), the £ appearing in £, are given by

.
E4(p.02) = 0. %2 (3 (b0 Re[h(p.ay)).  (C2)
where o, = op 4 p. To derive Eq. (C1), we start, as in
Appendix A, with the Killen-Lehmann representation of
the free fermion propagator in terms of the free spectral
density function, p9,

So(p.w) = /_:

where p?.(p, Do) is defined in Eq. (A2). Integrating over p,
we arrive at a decomposition, similar to what is demon-
strated in Eq. (A3),

, C3
2 pgt+u—w (C3)

So(p. ) o r
’a) —_ - - —_—
olP P 9+ a)+a)_g

(C4)

Here, w, = wys+p and g, are defined in Eq. (3.37).
Following now the same steps as described in Appendix A,
we arrive first at the dressed fermion propagator for
nonvanishing y,

1 1
Sp.w)=- g, — g_, (C5
(p.) ‘U_(w++z+)g+ w+(w—+z—)g (©)
where X, are given in Eq. (A10). Using at this stage
py = —23m(Sg], we arrive at

2F+(vaf) N
ps(p,®) = 9+(p. @y)
! 0~ & (.o + T2 (poay) P

2F—(p7wf) N
- g—(p’w )’
[0+ E_(p.w)? + T2 (p.wy) !

i
S = . A Y
+(p)=(r p+mf)< P

—(p) ==2x(y - p+mg)[0(po)(1 —ns(x,))

S__(p)=(r p+my) <+

p? — my — i€

+-(p) = =2a(y - p +mp)[0(=po)(1 = np(=x,))
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with £ defined in Eq. (B2) and I';. in Eq. (3.38). Then, by
plugging the standard representation

1 [He
Sr(p.) =5 [ " do

into Eq. (3.29) and performing the summation over
Matsubara frequencies w,,, we arrive at

Pf(P»CU)

—_ C7
iw,—o+u (€7)

1 [+
$1(p.0) =5 [ doehor

27 J_
x (0(=7)n} (@)

f(pa )

= 0(r)(1 = nj(w))). (C8)

which replaces Eq. (3.30). Here, fermionic distribution
functions, including u, are defined by

(€9)

Plugging now S7(p,7) from Eq. (C8) into Eq. (3.9), and
following the same steps leading from Eq. (3.33) to
Eq. (3.49), we arrive at 7,[I"y] from Eq. (C1).

2. Bosonic and fermionic spectral widths for g # 0

To determine the one-loop contributions to I', and
', for nonvanishing chemical potential, we will follow
the method described in Sec. IV, and will compute the
imaginary part of the one-loop bosonic and fermionic
self-energy diagrams, using the Schwinger-Keldysh real-
time formalism [36]. Since the chemical potential is only
introduced for fermions, the free propagator of scalar
bosons remains unchanged [see Egs. (4.1) and (4.2)]. As
concerns the free fermion propagator, it is given for
nonvanishing y by

(S S
S— (S_+ S) (C10)
with S, a, b = =+ slightly different from Eq. (4.4),
T 205 — m2)B(pon (x,) + e(—p())nf(—x,,)]),
—0(po)ns(x,)]
—0(=po)ny(=x,)].
1 2m5(p% — m2)[0(po)ny (xy) + (-~ po>nf<—x,,>}) (i)
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where x,, is defined by x,, = p 4 u and n(w) is given in Eq. (3.31). According to Eq. (4.9), the bosonic spectral width, I,
is given by the imaginary part of £5. At the one-loop level, Sm[Z%(p)] is given in Eq. (4.10). Using S, a, b = + from
Eq. (C11), we arrive at

Ty(p, @) :9_2/ dk_(4mj —mj)
bR D Sa)b (27[)2 w1y

= 8(wy + @) — @) [nf (@) = nf (0,)] = 8(wp + @1 + @) [1 = nf (@) = ny ()]} (C12)

{8(wp — @) — @))[1 = n7 (@) — ”;(602)] + 6(wy, — w + @) [n7 (01) — ny(@,)]

Here, njf are defined in Eq. (C9). Following the same steps leading from Eq. (4.11) to Eq. (4.13), we first arrive after some
work at

g (4mi —mp) [ Pk sinh(£22) 8wy, — @) — )
Fb(p’a)b) = A 2 Bwi+u) B(wr—pt) ’ (C13)
16w, (27)* cosh (A2t cosh (A2 W)
and finally, after performing the integration over k, using the method demonstrated in Appendix B, at
27 ,2(£2 4y | cosh(zy) + cosh® (1 +1 /(& -4 - yi))
gTrE -4 2 ¢ , (C14)
1

e J1—y2 |cosh(z;) + cosh’e (1 -3

where apart from &, k,,, 7, which are defined below Eq. (4.14), 7, = u/T. .
As concerns the one-loop contribution to the fermionic spectral widths I';. from Eq. (3.38), let us consider Sm [E’,;] from
Eq. (4.15). Using G, and S, a,b = £ from Egs. (4.2) and (B11), we arrive first at

(& -401-1))

2 k1
i8g—a)f oo [wp,Fp - k £ mi{6(0f — @ — 2)[l = n7 (@) + n,(0,)]
+8(0; — o1 + @) [ny (1) + ny (@)} + [wj01 £ p - kFm{5(w) + o1 + @2)[1 = ng (w;)

+ 1y (0)] + 8(0f + @y — @) [nf (1) + ny(@2)]}], (C15)

I'.(p, a’f) =

with njf(a)) and n,(w) defined in Egs. (B9) and (3.15), respectively. Following the arguments described in

Sec. IV B, the relevant expression of I' | for nonvanishing y is given by

2 Bk (4m? = m3) cosh(PL)  (S(w) -, + S(ws + o) —
F+(p,a)f) g / ( ¥ h)COS( 3 )x (wf ) + w,) (wf ) — ;) (C16)

N 32wy (27)?  ww, sinh([%) Cosh(ﬂ(“"2+")) h cosh(ﬂ(“"z_”>)
Performing the three-dimensional integration over k, using the method described in Appendix B, we finally arrive atI', in

terms of the dimensionless variables &, 7,k and 7, defined in Sec. IV B,

2 2(2 4 _ =
g TVf(f ) 1 —cosh(2E_)
+ 5 "y "y 5 —_
[ (f Vi Kp Ty 1) 32 1 7/,2‘ cosh(l_ + = ) COSh(Y_ :4+)

1+ cosh(2E_ — (x + 7)) } } (C17)

" [cosh(Y_ +Z4) +cosh(Y, —E, +14)

Here, =, and Y. are defined in Eq. (4.20). The difference between I', and I'_ is, according to Eq. (3.48), defined by
I'; =T, —T'_. For nonvanishing u, Iy is first given by

g2/ Ak cosh(w) {5(a)f -+ @) 8o+ o — a)z)} (C18)

I>(p,os) ==
7(pwy) 8 ) (27)’w, sinh(”%) cosh(W) COSh(M)
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and, after integrating over the three-momentum k, using the method described in Appendix B, it reads

¢#T 1 — cosh(2Z2_)

Iy =-

= )

— [u(u+21n(1 + 7)) — Liy(—e™2)]

Y +(’<f;’f

———1krln —
8rkyy /1 — y { f [cosh(Y_ +Z,) —cosh(Y_ —

+ [u(u +21In(1 — e7*)) — Liy(e™*)] ‘;Ef + [u(u +21In(1 — e7*)) — Liy(e™*)]

Twpiny — u(u+21In(1 + e72")) — Liy(—e™)]

{ 1+ cosh(25_ — (k7 + 1)) ]

+7¢In = =
)] I cosh(Y_ +E,) +cosh(Y, —Z, + )

=4
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