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We determine the shear viscosity of a hot and dense Yukawa-Fermi gas, using the standard Green-Kubo
relation, according to which the shear viscosity is given by the retarded correlator of the traceless part of the
viscous energy-momentum tensor. We approximate this retarded correlator using a one-loop skeleton
expansion, and express the bosonic and fermionic shear viscosities, ηb and ηf , in terms of bosonic and
fermionic spectral widths, Γb and Γ�. Here, the subscripts � correspond to normal and collective
(plasmino) excitations of fermions. We study, in particular, the effect of these excitations on thermal
properties of ηf½Γ��. To do this, we determine first the dependence of Γb and Γ� on momentum p,
temperature T, chemical potential μ and ξ0 ≡m0

b=m
0
f, in a one-loop perturbative expansion in the orders of

the Yukawa coupling. Here, m0
b and m0

f are T- and μ-independent bosonic and fermionic masses,
respectively. We then numerically determine ηb½Γb� and ηf½Γ��, and study their thermal properties. It turns
out that whereas Γb and Γþ decrease with increasing T or μ, Γ− increases with increasing T or μ. This
behavior qualitatively changes by adding thermal corrections to m0

b and m0
f, while the difference between

Γþ and Γ− keeps increasing with increasing T or μ. Moreover, ηb (ηf) increases (decreases) with increasing
T or μ. We show that the effect of plasminos on ηf becomes negligible with increasing (decreasing) T (μ).
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I. INTRODUCTION

One of the main goals of the modern experiments of
ultra-relativistic heavy-ion collisions is to clarify the
nature of the phase transition of QCD. As predicted from
numerical computations on the lattice, at a temperature of
about 150 MeV, quark matter undergoes a phase transition,
during which hadrons melt and a new state of matter—a
plasma of quarks and gluons—is built. There is strong
evidence for the creation of the quark-gluon plasma (QGP)
in heavy-ion experiments at the Relativistic Heavy-Ion
Collider (RHIC) and the Large Hadron Collider (LHC) [1].
The experimental results show that the elliptic flow, v2,
describing the azimuthal asymmetry in momentum space,
is the largest ever seen in heavy-ion collisions [2]. The
elliptic flow v2 is proportional to the initial eccentricity
ϵ2 ≡ jhr2e2iϕij=hr2i of a given collision, which describes
the asymmetric region of overlap in a collision between
two nuclei and results in an anisotropy in the transverse
density of the system at the early stages of the collision [3].
The collective response of the system—well-described by
viscous hydrodynamics—transforms this spatial anisotropy
into a momentum anisotropy. Thus, v2 is proportional to ϵ2,
with the proportionality factor depending on the shear
viscosity η of the medium [3]. The latter characterizes the
diffusion of momentum transverse to the direction of
propagation. The comparison between the experimentally
measured v2 and the results arising from second-order

viscous hydrodynamics has suggested that the new state
of matter created at RHIC and LHC is an almost perfect
fluid, having a very small shear viscosity to entropy density
ratio η=s [4,5] (see also Ref. [6] for a recent review on
the status of η=s). However, as was reported in Ref. [6], in
all hydrodynamic simulations performed so far, the shear
viscosity is assumed to be temperature independent.
The shear viscosity is one of the transport coefficients,

which describe the properties of a system out of equilib-
rium, and can theoretically be determined using two
different approaches: the kinetic theory approach, based
on the Boltzmann equation for the corresponding momen-
tum distribution function [7–9], and the Green-Kubo
approach in the framework of linear response theory
[10], in which all transport coefficients are formulated in
terms of retarded correlators of the energy-momentum
tensor [11,12]. The advantage of the second method is
that it provides a framework where the transport coeffi-
cients can be computed using equilibrium thermal field
theory. Other alternative methods to compute transport
coefficients are direct numerical simulations on a space-
time lattice [13], using a two-particle-irreducible effective
action [14], and holographic models [15]. A novel dia-
grammatic method was also presented in Ref. [16]. The aim
of most of these computations is to determine the depend-
ence of η on temperature and chemical potential [17–19] or
on external electromagnetic fields [20].
In this paper, we use the Green-Kubo formalism to

determine the dependence of the shear viscosity of a
Yukawa-Fermi gas on temperature, chemical potential,
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and bosonic and fermionic masses. Thermal corrections to
the masses of bosons and fermions will be considered too
and their effect on the shear viscosity will be scrutinized. Our
approach is similar to what was recently presented by Lang
et al. in Refs. [18,19]. In Ref. [18], an appropriate skeleton
expansion was used to approximate the retarded correlators
appearing in the Kubo relation for the shear viscosities of a
real λφ4 theory and an interacting pion gas. Using the
standard Källen-Lehmann representation of a retarded two-
point Green’s function in terms of the interacting bosonic
spectral function, ρb, the shear viscosity of the scalar and
pseudoscalar bosons, ηb, is then expressed in terms of the
real and imaginary parts of the retarded two-point Green’s
function. The latter, denoted by Γb, defines, in particular, the
spectral width of the bosons and is inversely proportional to
their mean free path. To approximate the bosonic correlators,
a systematic Laurent expansion of ηb in orders of Γb is
performed. The series is then truncated at the leading Γ−1

b
order. Then, by computing Γb perturbatively in orders of the
small coupling constant of the theory up to the first non-
vanishing contribution, the T dependence of the bosonic
shear viscosity is numerically determined. In Ref. [19],
almost the samemethod was used to determine the fermionic
shear viscosity, ηf, of a strongly interacting quark matter,
described by a two-flavor Nambu–Jona-Lasinio (NJL)
model [21], which consists of a four-fermion interaction
with no gluons involved. To do this, ηf is first expressed in
terms of the fermionic spectral function, ρf, and then—
working, as in Ref. [22], in a quasiparticle approximation—a
generalized Breit-Wigner shape for the fermionic spectral
function is used to formulate ηf in terms of the quasiparticle
mass M and width Γf. Using then four different para-
metrizations for Γf, the thermal properties of ηf is explored.
Eventually, the constant quasiparticle mass M is replaced
with the T- and μ-dependent, dynamically generated con-
stituent quark mass of the NJL model, and the thermal
properties of ηf are qualitatively studied in the vicinity of the
chiral transition point.
In the present paper, we will compute the shear viscosity

of an interacting boson-fermion system with the Yukawa
coupling. In this theory, the shear viscosity consists of a
bosonic part and a fermionic part. Following the method
presented in Ref. [18], we will first derive ηb in terms of Γb
in a systematic Laurent expansion up toOðΓ0

bÞ. Performing
then a one-loop perturbative expansion in orders of the
Yuwaka coupling, we will determine Γb as a function of
momentum p, temperature T, chemical potential μ and
ξ0 ≡m0

b=m
0
f, where m0

b and m0
f are constant bosonic and

fermionic masses. Using ηb½Γb�, we will study the T and μ
dependence of the bosonic shear viscosity for various ξ0.
We will then add the thermal masses of bosons and
fermions to m0

b and m0
f, and study the effect of thermal

masses on Γb and ηb. Thermal corrections to the masses of
bosons and fermions are computed using the standard
hard-thermal-loop (HTL) method (see e.g. Ref. [23]). Let

us notice that, according to the description in Ref. [24], this
ad hoc treatment of thermal masses seems intuitive and
is justified, since it equals the HTL treatment with an
approximate fermion propagator. However, it is not equal
to the full HTL result [23].
We will then focus on the fermionic part of the shear

viscosity, and derive its dependence on the fermionic
spectral width. This builds the central part of the analytical
results of the present paper. Here, in contrast to the
approximations made in Ref. [19], we use the spectral
representation of the retarded two-point Green’s function
presented for the first time in Ref. [25] (see also Ref. [26]).
The latter was used in Refs. [23,27–35] within the context
of Yukawa theory, the NJL model, QED and QCD. In
Ref. [25], it was shown that a fermionic system at finite
temperature has twice as many fermionic modes as one at
zero temperature. Besides propagating quarks and anti-
quarks, there are also propagating quark holes and anti-
holes. Thus, thermal fermions have, apart from normal
excitation, a collective excitation, referred to as either a
hole or a plasmino [26]. The latter appears as an additional
pole in the fermion propagator, and as a consequence of the
preferred frame defined by the heat bath. Hence, the two
poles lead to two different dispersion relations, both with
positive energy. It turns out that in the chiral limit m0

f → 0,
the normal excitation has the same chirality and helicity,
while the collective excitation possesses opposite chirality
and helicity [26]. Denoting the spectral widths, correspond-
ing to the normal and collective (plasmino) excitations,
with Γþ and Γ−, respectively, we will use the aforemen-
tioned Laurent expansion to derive a novel analytic relation
for ηf in terms of Γ� up to OðΓ0

�Þ. We will then determine
the p, T, μ and ξ0 dependence of Γ� in a one-loop
perturbative expansion in orders of the Yukawa coupling.
Using ηf½Γ��, it is then possible to explore the thermal
properties of ηf for various ξ0. Adding thermal corrections
to the bosonic and fermionic masses, the effect of thermal
masses on Γ� and ηf will also be studied. Let us notice at
this stage that in the literature [17,29,33], the difference
between Γþ and Γ−, as well as their p dependence are often
neglected, and Γ�ðpÞ is approximated by Γ�ð0Þ ∝ g2T,
where g is the coupling constant of the theory [17,33]. We,
however, will explicitly determine the p dependence of Γþ
and Γ−, and use it in the numerical computation of ηf.
Then, we will assume Γþ ¼ Γ−, and we will determine the
difference between ηf½Γþ ≠ Γ−� and ηf½Γþ ¼ Γ−� in terms
of T and μ. It turns out that, depending on T and/or μ,
ηf½Γþ ¼ Γ−� is larger than ηf½Γþ ≠ Γ−�.
The organization of this paper is a follows. In Sec. II, we

will review the Green-Kubo formalism, and present the
shear viscosity in terms of retarded correlators of the
traceless part of the viscous energy-momentum tensor. In
Sec. III, we start with the Lagrangian density of the Yukawa
theory, and derive the bosonic and fermionic contributions
to the shear viscosity, in a one-loop skeleton expansion, in
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terms of bosonic and fermionic spectral density functions,
ρb and ρf. Eventually, using an appropriate Laurent
expansion in orders of bosonic and fermionic spectral
widths, ηb½Γb� and ηf½Γ�� are determined (see Secs. III A
and III B as well as Appendices A and C). In Sec. IV, the
spectral bosonic and fermionic widths, Γb and Γ� are
separately computed in a one-loop perturbative expansion
in orders of the Yukawa coupling (see Sec. IVA for the
bosonic and Sec. IV B for the fermionic spectral widths). In
order to derive the imaginary part of the retarded two-point
Green’s functions, corresponding to bosons and fermions,
the standard Schwinger-Keldysh real-time formalism [36]
is used. We will mainly use the notations of Refs. [37] and
[38]. In Sec. V, we will present our numerical results. Here,
the T; μ and ξ0 dependence of Γb and Γ�, as well as the
thermal properties of ηb½Γb� and ηf½Γ��, will be explored.
As it turns out, Γb and Γþ decreases with increasing T or μ.
In contrast, Γ− increases with increasing T or μ. Whereas
this behavior changes when thermal corrections are added
to m0

b and m0
f, Γþ and Γ− still exhibit different T and μ

dependencies. This difference increases with increasing T
or μ. As concerns the shear viscosities, ηb (ηf) increases
(decreases) with increasing T or μ. Moreover, it turns out
that the contribution of plasminos to ηf becomes negligible
with increasing (decreasing) T (μ). A summary of our
results is presented in Sec. VI.

II. SHEAR VISCOSITY IN RELATIVISTIC
HYDRODYNAMICS

An ideal and locally equilibrated relativistic fluid is
mainly described by the dynamics of the corresponding
energy-momentum tensor

Tμν
0 ¼ ϵuμuν þ PΔμν; ð2:1Þ

where ϵ is the energy density, P is the pressure and uμðxÞ ¼
γðxÞð1; vðxÞÞ is the four-velocity of the fluid, which is
defined by the variation of the four-coordinate xμ with
respect to the proper time τ. Here, the Lorentz factor
γðxÞ≡ ð1 − v2ðxÞÞ−1. In Eq. (2.1), Δμν is defined by
Δμν ≡ gμν − uμuν, with the metric gμν¼diagðþ;−;−;−Þ.
It satisfies uμΔμν ¼ 0. Moreover, for the four-velocity uμ,
we have uμuμ ¼ 1. If there are no external sources, the
energy-momentum tensor (2.1) is conserved,

∂μT
μν
0 ¼ 0: ð2:2Þ

Apart from Eq. (2.2), an ideal fluid is characterized by the
entropy current conservation law ∂μsμ ¼ 0, where the
entropy current, sμ ≡ suμ, includes the entropy density s.
In a system without conserved charges, ϵ and P satisfy
ϵþ P ¼ Ts, where T is the local temperature of the fluid.
To include dissipative effects to the fluid, the viscous

stress tensor τμν is to be added to Tμν
0 from Eq. (2.1). The

total energy-momentum tensor then reads

Tμν ¼ Tμν
0 þ τμν; ð2:3Þ

where τμν satisfies uμτμν ¼ 0. In an expansion in orders of
derivatives of uμ, the viscous stress tensor is determined
using the second law of thermodynamics, T∂μsμ ≥ 0,
which replaces the conservation law ∂μsμ ¼ 0 of the ideal
fluid. The viscous stress tensor is often split as

τμν ¼ πμν þ ΔμνΠ; ð2:4Þ

where πμν is the traceless part (πμμ ¼ 0) and Π is the
remaining part with nonvanishing trace. Each part of τμν is
then parametrized by a number of viscous coefficients.
In the first-order derivative expansion, τμν is characterized
by the shear and bulk viscosities, η and ζ, that appear in
the traceless part of τμν,

πμν ¼ η

�
∇μuν þ∇νuμ −

2

3
Δμν∇ρuρ

�
; ð2:5Þ

and in the part of τμν with nonvanishing trace,

Π ¼ ζ∇μuμ; ð2:6Þ

respectively. Here, ∇μ ≡ Δμν∂ν. Using the properties of
Δμν in d ¼ 4-dimensional space-time, Δμνuν ¼ 0 as well as
Δρ

μΔμ
ν ¼ Δρ

ν, we get

ϵ ¼ uμuνTμν; P ¼ −
1

3
ΔμνTμν; ð2:7Þ

as well as

~πμν ¼
�
ΔρμΔσν þ ΔρνΔσμ −

2

3
ΔμνΔρσ

�
Tρσ: ð2:8Þ

Here, ~πμν ≡ η−1πμν is introduced. In the rest of this paper,
we will focus on the shear viscosity η. Following Zubarev’s
approach [10] and within linear response theory, it is
determined by the Kubo-type formula [18],

η ¼ βs
10

Z
d3x0

Z
t

−∞
dt0ð ~πμνð0Þ; ~πμνðx0; t0ÞÞ; ð2:9Þ

where the inverse proper temperature βs ≡ γβ with
β≡ T−1, and

ðX; YÞ ¼ 1

β

Z
β

0

dτhX½eHτYe−Hτ − hYi0�i0: ð2:10Þ

Here, H is the free part of the Hamiltonian of a
fully interacting theory, which is given in terms
of the energy-momentum tensor Tμν, via βH ¼R
d3xβsðx; τÞuμðx; τÞT0μðx; τÞ. Moreover, h� � �i0 is the

thermal expectation value with respect to the equilibrium
statistical operator ρ0, and is defined by h·i0 ¼ trð·ρ0Þ [18].
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The correlator appearing in Eq. (2.9) can be expressed as a
real-time integral over a retarded correlator,

ðXðtÞ; Yðt0ÞÞ ∼ −
1

β

Z
t0

−∞
dt″hXðtÞ; Yðt″ÞiR; ð2:11Þ

with

hXðtÞ; Yðt0ÞiR ¼ −iθðt − t0Þh½XðtÞ; Yðt0Þ�i0: ð2:12Þ

In the large-time limit t0 → ∞, when the system approaches
global equilibrium, the approximation appearing in
Eq. (2.11) becomes exact. Combining at this stage
Eqs. (2.9) and (2.11), and evaluating the resulting
expression in the local rest frame, where βs ¼ β, the
Kubo-formula for the shear viscosity reads

η ¼ −
1

10

Z
0

−∞
dt

Z
t

−∞
dt0ΠRðt0Þ; ð2:13Þ

with the retarded Green’s function

ΠRðtÞ≡ −iθð−tÞ
Z

d3xh½ ~πμνð0Þ; ~πμνðx; tÞ�i0; ð2:14Þ

and ~πμν given in Eq. (2.8). Equivalently η is given by

η ¼ i
10

d
dp0

ΠRðp0Þjp0¼0: ð2:15Þ

It arises by replacing the Fourier transformation of ΠRðtÞ ¼R dp0

2π e−ip0tΠRðp0Þ in Eq. (2.13), and integrating over t and
t0 using the functional identity [18]Z

0

−∞
dt0

Z
0

t
dte−ip0t0 → −2πiδðp0Þ

d
dp0

: ð2:16Þ

It is the purpose of this paper to determine the thermal
properties of the shear viscosity of a Yukawa theory by
computing ΠR from Eq. (2.14) in a weak coupling
expansion in orders of the Yukawa coupling. To this
purpose, we will first introduce a Yukawa theory including
a real scalar and a fermionic field, and then, using an
appropriate weak coupling expansion up to the one-loop
level, we will determine η for these fields separately.

III. SHEAR VISCOSITY OF A YUKAWA THEORY:
GENERAL CONSIDERATIONS

In this section, we will first review the method presented
in Ref. [18], and determine the bosonic part of the shear
viscosity of a Yukawa theory in terms of the bosonic
spectral width. We will then use this method as a guideline,
and derive the fermionic part of the shear viscosity of the
Yukawa theory in terms of fermionic spectral widths. Here,
we will explicitly consider the contributions of the normal

and collective (plasmino) excitations of fermions, with
different spectral widths. This is in contrast with the result
recently presented in Ref. [19], where within a quasiparticle
approximation, a Breit-Wigner type formula was presented
for the fermionic shear viscosity in terms of one and the
same fermionic spectral width.
Let us start with the Lagrangian density of a Yukawa

theory,

L ¼ ψ̄ðiγ · ∂ −mfÞψ þ 1

2
∂μφ∂μφ −

1

2
m2

bφ
2 þ gψ̄ψφ;

ð3:1Þ

where, φ is a real scalar field and ψ̄ ;ψ are fermionic
fields. Moreover, mb and mf correspond to the masses of
bosons and fermions, respectively. According to Eq. (2.13),
the shear viscosity η for this theory is given by a two-point
Green’s function of the tensor field ~πμν, which is defined
in Eq. (2.8) in terms of the energy-momentum tensor Tμν.
The energy-momentum tensor of the Yukawa theory is
given by

Tμν ¼ iψ̄γμ∂νψ þ ∂μφ∂νφ − Lgμν; ð3:2Þ

where L is given in Eq. (3.1). As it turns out, Tμν, and
consequently the shear viscosity include a bosonic part
and a fermionic part. In what follows, we will denote
them by ηb and ηf, where the subscripts correspond to
bosons (b) and fermions (f). To compute these two parts
separately, we will use Eq. (2.15). Introducing the imagi-
nary time τ≡ it in Eq. (2.14), the thermal Green’s function,
ΠTðτÞ, reads

ΠTðτÞ≡
Z

d3xhT τ½ ~πμνð0Þ ~πμνðx; τÞ�i0; ð3:3Þ

where T τ stands for the time-ordering prescription.
According to the above descriptions, it is given by

ΠTðτÞ ¼ Πb
TðτÞ þ Πf

TðτÞ; ð3:4Þ

with the bosonic part

Πb
TðτÞ ¼ 2

Z
d3xηαβρσ

× h∂βφð0Þ∂ρφð0Þ∂αφðx; τÞ∂σφðx; τÞi0; ð3:5Þ

and the fermionic part

Πf
TðτÞ ¼ −2

Z
d3xηαβρσ

× hψ̄ð0Þγβ∂ρψð0Þψ̄ðx; τÞγα∂σψðx; τÞi0: ð3:6Þ

In the above relations, ηαβρσ is defined by
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ηαβρσ ≡ ΔαβΔρσ þ ΔβσΔρα −
2

3
ΔασΔβρ: ð3:7Þ

By performing a Fourier transformation into the
momentum space, using ~φðp; τÞ ¼ R

d3xeip·xφðx; τÞ and
~ψðp; τÞ ¼ R

d3xeip·xψðx; τÞ, evaluating the resulting four-
point functions arising in Eqs. (3.5) and (3.6) using an
appropriate expansion up to the one-loop skeleton expan-
sion, as was described in Ref. [18], and eventually
neglecting the disconnected parts of the Green’s functions,
the bosonic part of ΠTðτÞ reads

Πb
TðωnÞ ¼ 4

Z
β

0

dτeiωnτ

×
Z

d3p
ð2πÞ3 η

αβρσpαpβpρpσG2
Tðp; τÞ; ð3:8Þ

and the fermionic part of ΠTðτÞ is given by

Πf
TðωnÞ ¼ 2

Z
β

0

dτeiωnτ

Z
d3p
ð2πÞ3 η

αβρσpρpσ

× tr½STðp; τÞγαSTðp;−τÞγβ�: ð3:9Þ

Let us notice that in the above relations GTðp; τÞ and
STðp; τÞ are exact (dressed) bosonic and fermionic two-
point functions, respectively. They are defined by

GTðp; τÞ≡ V−1hTτ½ ~φð0Þ ~φðp; τÞ�i0; ð3:10Þ

and

STðp; τÞ≡ V−1hTτ½ ~ψð0Þ ~̄ψðp; τÞ�i0: ð3:11Þ

Moreover, in Eqs. (3.8) and (3.9), the bosonic and
fermionic Matsubara frequencies are given by ωn ¼
2nπT and ωn ¼ ð2nþ 1ÞπT, respectively. As aforemen-
tioned, the expressions presented in Eqs. (3.8) and (3.9) are
the one-loop contributions in the skeleton expansion. The
latter is diagrammatically presented in Fig. 1. In what
follows, we will separately evaluate the bosonic and
fermionic thermal two-point functions (3.8) and (3.9).
The results will then be used to determine the bosonic

and fermionic parts of the shear viscosity η in term of
bosonic and fermionic spectral widths.

A. The bosonic contribution to η in the one-loop
skeleton expansion

To evaluate the bosonic part of the shear viscosity ηb, we
will use the method described in Ref. [18], whose main
steps will be reviewed in what follows.
Let us first consider Eq. (3.8). According to the standard

Källen-Lehmann representation, the two-point Green’s
functionGTðp;ωnÞ is given in terms of the bosonic spectral
density function ρbðp;ωÞ as

GTðp;ωnÞ ¼
1

2π

Z þ∞

−∞
dω

ρbðp;ωÞ
ωþ iωn

: ð3:12Þ

Plugging this relation into

GTðp; τÞ ¼
Xþ∞

n¼−∞
e−iωnτGTðp;ωnÞ; ð3:13Þ

and adding over bosonic Matsubara frequencies
ωn ¼ 2nπT, we arrive at

GTðp; τÞ ¼
1

2π

Z þ∞

−∞
dωe−ωjτjρbðp;ωÞ½1þ nbðωÞ�; ð3:14Þ

where, the bosonic distribution function nbðωÞ reads

nbðωÞ≡ 1

eβω − 1
: ð3:15Þ

To derive Eq. (3.14), we have used the symmetry property
ρbðp;−ωÞ ¼ −ρbðp;ωÞ, which yields, in particular, jτj on
the rhs of Eq. (3.14). Further, by plugging GTðp; τÞ from
Eq. (3.14) into Eq. (3.8), and integrating over τ, we arrive
after analytical continuation, iωn → p0 þ iϵ, at

Πb
Rðp0Þ ¼ 4

Z
d3p
ð2πÞ3 η

αβρσpαpβpρpσ

×
Z þ∞

−∞

dω1dω2

ð2πÞ2 ρbðp;ω1Þρbðp;ω2Þ

× nbðω1Þnbðω2ÞWϵðω12; p0Þ; ð3:16Þ

where ηαβρσ is defined in Eq. (3.7), ω12 ≡ ω1 þ ω2, and
Wϵðω12; p0Þ is given by

Wϵðω12; p0Þ≡ 1

p0 þ iϵ − ω12

−
1

p0 þ iϵþ ω12

: ð3:17Þ

At this stage, we use the definition of the bosonic spectral
density function ρb in terms of the retarded two-point
Green’s function, GRðpÞ,

FIG. 1. The skeleton expansion of ΠTðτÞ from Eq. (3.3).
Dashed and solid lines denote the dressed bosonic and fermionic
two-point functions GTðp; τÞ from Eq. (3.10) and STðp; τÞ from
Eq. (3.11), respectively. In our computation up to the one-loop
skeleton expansion, only the first two diagrams in the above
series are considered.
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ρbðpÞ≡ −2Im½GRðpÞ�; ð3:18Þ

to formulate ρb in terms of the bosonic renormalized energy

EbðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
b þRe½Σb

RðpÞ�
q

; ð3:19Þ

with ω2
b ≡ p2 þm2

b, and the bosonic spectral width

ΓbðpÞ≡ −
1

2p0

Im½Σb
RðpÞ�: ð3:20Þ

Using

G−1
R ðpÞ ¼ p2 −m2

b − Σb
RðpÞ

≃ ½p0 þ iΓbðpÞ�2 − E2
bðpÞ; ð3:21Þ

the bosonic spectral density function (3.18) is given by

ρbðp;ωÞ

¼ 4ωΓbðp;ωbÞ
½ω2 − E2

bðp;ωbÞ − Γ2
bðp;ωbÞ�2 þ 4ω2Γ2

bðp;ωbÞ
;

ð3:22Þ

where Eb ¼ Ebðp;ωbÞ and Γb ¼ Γbðp;ωbÞ are to be
evaluated on mass shell. Now, by plugging ρbðp;ωÞ from
Eq. (3.22) into Eq. (3.16), and using [18]

i
10

d
dp0

Wϵðω12; p0Þ ¼ −
π

5
δ0ðω12Þ; ð3:23Þ

we arrive first at

ηb ¼
4β

5π

Z
d3p
ð2πÞ3 η

αβρσpαpβpρpσ

Z þ∞

−∞
dωFbðp;ωÞ;

ð3:24Þ

with ω≡ 1
2
ω̄12 ≡ 1

2
ðω1 − ω2Þ and where Fbðp;ωÞ is

given by

Fbðp;ωÞ

¼ 2ω2eβω

ðeβω − 1Þ2
Γ2
b

½E2
b − ðω − iΓbÞ2�2½E2

b − ðωþ iΓbÞ2�2
:

ð3:25Þ

Further, by plugging Eq. (3.25) into Eq. (3.24) and
integrating over ω, using the same procedure as in
Ref. [18] (which will be described below), we arrive at
the bosonic part of the shear viscosity of the Yukawa theory
in terms of the renormalized energy Eb from Eq. (3.19) and
the bosonic spectral width Γb from Eq. (3.20),

ηb ¼
β

30π2

Z
∞

0

dp
p6

E2
b

eβEb

ðeβEb − 1Þ2
1

Γb
þOðΓ0

bÞ: ð3:26Þ

To derive Eq. (3.26), the pole structure of Fbðp;ωÞ from
Eq. (3.25) is to be considered. Following Ref. [18], the
integral over ω in Eq. (3.24) is to be performed by closing
the contour in the upper half-plane, i.e. by considering only
two poles ω� ≡�Eb þ iΓb from four poles ω� and −ω�,
and eventually expanding the resulting analytical expres-
sion in orders of small Γb. This results in

2πi
X
ω¼ω�

b

FbðωÞ ¼
eβEb

ðeβEb − 1Þ2
π

16E2
bΓb

þOðΓ0
bÞ: ð3:27Þ

Let us notice that apart from the aforementioned poles ω�
and −ω�, there are also an infinite number of poles arising
from the denominator eβω − 1 in Eq. (3.25). But as it was
shown in Ref. [18], the contributions of their residues are
proportional to Γ2

b, and, if we assume that Γb is small
enough, they are suppressed relative to the leading Γ−1

b term
in Eq. (3.27). Therefore, by plugging Eq. (3.27) into
Eq. (3.24), and considering the local rest frame of the
fluid, we arrive at the bosonic part of the shear viscosity
from Eq. (3.26). To perform the p integration in Eq. (3.26)
and study eventually the T dependence of ηb, the p and T
dependence of Eb and Γb are to be determined perturba-
tively in an appropriate loop expansion in orders of the
Yukawa coupling. In this paper, we will approximate
Eb ≃ ωb and will determine in Sec. IV only Γb at the
one-loop level. The result will eventually be used to
determine the T dependence of ηb. As concerns the μ
dependence of ηb, we will use the same relation, Eq. (3.26).
In this case, the μ dependence of ηb arises only from Γb on
the rhs of Eq. (3.26).

B. The fermionic contribution to η in the one-loop
skeleton expansion

To determine the fermionic part of the shear viscosity ηf,
we will follow the same steps as in the previous section,
and will present ηf in terms of fermionic spectral widths
Γ�, corresponding to normal and collective excitations
of fermions. The resulting expression builds the central
analytical result of the present paper.
To start, let us first consider Eq. (3.9). Using the standard

Källen-Lehmann representation, the fermionic two-point
Green’s function STðp;ωnÞ can be given in terms of the
fermionic spectral density function ρfðp;ωÞ as

STðp;ωnÞ ¼
1

2π

Z þ∞

−∞
dω

ρfðp;ωÞ
ωþ iωn

: ð3:28Þ

Plugging this relation into
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STðp; τÞ ¼ T
Xþ∞

n¼−∞
e−iωnτSTðp;ωnÞ; ð3:29Þ

and adding over fermionic Matsubara frequencies
ωn ¼ ð2nþ 1ÞπT, we arrive at

STðp; τÞ ¼
1

2π

Z þ∞

−∞
dωe−ωτρfðp;ωÞ

× ½θðτÞð1 − nfðωÞÞ − θð−τÞnfðωÞ�; ð3:30Þ

with the fermionic distribution function

nfðωÞ ¼
1

eβω þ 1
: ð3:31Þ

Plugging STðp; τÞ from Eq. (3.30) into Eq. (3.9), and
integrating over τ, usingZ

β

0

dτeðiωn−ω1þω2Þτ

× ½θðτÞð1 − nfðω1ÞÞ − θð−τÞnfðω1Þ�
× ½θð−τÞð1 − nfðω2ÞÞ − θðτÞnfðω2Þ�

¼ ð1 − nfðω1ÞÞnfðω2Þ − ð1 − nfð−ω1ÞÞnfð−ω2Þ
iωn − ω1 þ ω2

;

ð3:32Þ

we arrive first at

Πf
TðωnÞ ¼

1

2π2

Z
d3p
ð2πÞ3 η

αβρσpρpσ

×
Z

dω1dω2ð1 − nfðω1ÞÞnfðω2Þ

×

�
trðρfðω1;pÞγαρfðω2;pÞγβÞ

iωn − ω1 þ ω2

−
trðρfð−ω1;−pÞγαρfð−ω2;−pÞγβÞ

iωn þ ω1 − ω2

�
; ð3:33Þ

where ηαβρσ is defined below Eq. (3.6). To evaluateΠTðωnÞ,
let us use at this stage, in analogy to the bosonic case, the
definition of the fermionic spectral density function ρf in
terms of the retarded two-point Green’s function SR,

ρfðpÞ ¼ −2Im½SRðpÞ�; ð3:34Þ

and the decomposition of SRðpÞ in terms of the fermion
self-energy Σf

R,

S−1R ðpÞ ¼ γ · p −mf þ Σf
RðpÞ: ð3:35Þ

Using the method, described in detail in Appendix A, the
spectral density function of fermions is given by

ρfðp;ωÞ ¼
2Γþðp;ωfÞ

½ω − Eþðp;ωf�2 þ Γ2þðp;ωfÞ
ĝþðp;ωfÞ

−
2Γ−ðp;ωfÞ

½ωþ E−ðp;ωfÞ�2 þ Γ2
−ðp;ωfÞ

ĝ−ðp;ωfÞ;

ð3:36Þ

where ω2
f ¼ p2 þm2

f, and

ĝ�ðp;ωfÞ ¼
1

2ωf
½γ0ωf∓ðγ:p −mfÞ�: ð3:37Þ

In Eq. (3.36), E� and Γ� are defined by [see Appendix A
for more details]

E�ðp;ωfÞ≡ ωf �
1

2
trðĝ�ðp;ωfÞRe½Σf

Rðp;ωfÞ�Þ;

Γ�ðp;ωfÞ≡� 1

2
trðĝ�ðp;ωfÞIm½Σf

Rðp;ωfÞ�Þ: ð3:38Þ

In Ref. [29], almost the same expression for ρf as in
Eq. (3.36) was introduced. However, in contrast to
Eq. (3.36), only one spectral width for the fermion appears
in the relation presented in Ref. [29]. Apparently, Γþ ≃ Γ−
is assumed. In what follows, we do not make this
approximation, and after deriving ηf in terms of Γ�, we
will explore the effect of Γþ and Γ− on the thermal
properties of ηf. Let us notice at this stage, that the plus
and minus signs appearing on E� and Γ� correspond to
the normal and collective (plasmino) modes of the fermions
[25]. In the chiral limit mf → 0, they correspond to the
same and opposite helicity and chirality of massless
fermions, respectively [26].
Let us now consider Eq. (3.33), which will be simplified

in what follows. Using the symmetry properties of E�ðpÞ
and Γ�ðpÞ,

E�ðp;−ωfÞ ¼ −E�ðp;ωfÞ;
Γ�ðp;−ωfÞ ¼ þΓ�ðp;ωfÞ; ð3:39Þ

which we could verify only at the one-loop level, we obtain

ρfð−p;−ωÞ ¼ ρfðp;ωÞ

−
2mf

ωf

�
Γþðp;ωfÞ

½ω − Eþðp;ωfÞ�2 þ Γ2þðp;ωfÞ

þ Γ−ðp;ωfÞ
½ωþ E−ðp;ωfÞ�2 þ Γ2

−ðp;ωfÞ
�
: ð3:40Þ

Using Eq. (3.40) together with the properties of the traces
of Dirac γ matrices, we have

trðρfð−p;−ω1Þγαρfð−p;−ω2ÞγβÞ
¼ trðρfðp;ω1Þγαρfðp;ω2ÞγβÞ: ð3:41Þ
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Now, by implementing this relation in Eq. (3.33), we arrive
after analytical continuation, iωn → p0 þ iϵ, at

Πf
Rðp0Þ ¼

1

2π2

Z
d3p
ð2πÞ3 η

αβρσpρpσ

×
Z þ∞

−∞
dω1dω2trðρfðω1;pÞγαρfðω2;pÞγβÞ

× ð1 − nfðω1ÞÞnfðω2ÞWϵðω̄12; p0Þ; ð3:42Þ

where ω̄12 ≡ ω1 − ω2 and Wϵ is defined in Eq. (3.17). To
derive the fermionic part of the shear viscosity ηf from
Eq. (2.15), we follow the same steps as in the previous
section for the bosonic case. Plugging Eq. (3.36) into
Eq. (3.42), and after performing a straightforward math-
ematical computation, where mainly the relations

i
10

d
dp0

Wϵðp0; ω̄12Þjp0¼0 ¼ −
π

5
δ0ðω̄12Þ; ð3:43Þ

and

trðĝ�γαĝ∓γρÞ ¼
1

ω2
f

f2ω2
fðg0αg0ρ − gαρÞ

− pipjðgiαgjρ þ giρg
j
αÞg:

trðĝ�γαĝ�γρÞ ¼
1

ω2
f

f2ω2
fg0αg0ρ∓2ωfpiðg0αgiρ þ g0ρgiαÞ

þ pipjðgiαgjρ þ giρg
j
αÞg; ð3:44Þ

in the local rest frame of the fluid are used, we arrive at

ηf ¼ 8β

15π

Z
d3p
ð2πÞ3

Z þ∞

−∞
dωFfðp;ωÞ; ð3:45Þ

with

Ffðp;ωÞ≡ eβω

ðeβω þ 1Þ2 p
2

�
p2

ω2
f

�
Γþ

ðω − EþÞ2 þ Γ2þ

þ Γ−

ðωþ E−Þ2 þ Γ2
−

�
2

−
2ΓþΓ−

½ðω − EþÞ2 þ Γ2þ�½ðωþ E−Þ2 þ Γ2
−�
�
;

ð3:46Þ

where ω≡ 1
2
ω12 ¼ 1

2
ðω1 − ω2Þ, and E� ¼ E�ðp;ωfÞ as

well as Γ� ¼ Γ�ðp;ωfÞ are defined in Eq. (3.38). To
evaluate the integration over ω in Eq. (3.46), the pole
structure of Ffðp;ωÞ is to be considered. Similar to the
previous case of bosonic fields, the contributions of the
poles arising from the denominator eβω þ 1 in Eq. (3.46)
turn out to be proportional to Γ2

�, and, assuming that
Γþ and Γ− are small enough, they can be neglected.

As concerns the residue of the remaining poles, we
have to close the contour in the upper half-plane and
consider only two residues ω� ≡�E� þ iΓ�. Expanding
the resulting expression in a Laurent series in orders of Γ�,
and using

Z þ∞

−∞
dω

eβω

ðeβω þ 1Þ2
Γ2
�

½ðω∓E�Þ2 þ Γ2
��2

≈ π
eβE�

ðeβE� þ 1Þ2
1

2Γ�
;Z þ∞

−∞
dω

ΓþΓ−

½ðω − EþÞ2 þ Γ2þ�½ðωþ E−Þ2 þ Γ2
−�

≈ π
X
s¼�

eβEs

ðeβEs þ 1Þ2
Γþ
f − Γs

½Ef þ isΓþ
f �½Ef þ iΓ−

f �
; ð3:47Þ

where

Ef ≡ Eþ þ E−; Γ�
f ≡ Γþ � Γ−; ð3:48Þ

we arrive, after performing the integration over three-
dimensional angles in Eq. (3.45), at the fermionic part
of the shear viscosity of the Yukawa theory,

ηf ¼ 2β

15π2

Z
∞

0

dp
p4

ω2
f

X
s¼�

�
eβEs

ðeβEs þ 1Þ2

×

�
p2

Γs
−

4m2
fðΓþ

f − ΓsÞ
½Ef þ isΓþ

f �½Ef þ iΓ−
f �
��

þOðΓ0
�Þ: ð3:49Þ

Here, Ef ¼ Efðp;ωfÞ, Γ� ¼ Γ�ðp;ωfÞ and Γ�
f ¼

Γ�
f ðp;ωfÞ are defined in Eqs. (3.38) and (3.48). Let us

notice that the first term of the above relation for ηf is
comparable with the shear viscosity corresponding to
fermions appearing in Ref. [9] in a relaxation-time approxi-
mation. Moreover, it resembles the ηf presented recently
in Ref. [19]. There, the authors expressed ηf first in terms
of the fermionic density function, ρf, which in contrast to
Eq. (3.36), possessed a generalized Breit-Wigner shape,
including only a quasiparticle mass M and a fermionic
width Γf. Using this ansatz for ρf, they then arrived at ηf in
this quasiparticle approximation [see Eq. (22) in Ref. [19]].
We, however, will work with Eq. (3.49) and after determin-
ing Γ� in a one-loop perturbative expansion, in the next
section, will study the thermal properties of ηf½Γ�� for
various masses mb and mf. We will then determine the
difference between ηf½Γþ ¼ Γ−� and ηf½Γþ ≠ Γ−�. In
Appendix C, we generalize the method presented in this
section for the case of nonvanishing chemical potential.
We will show that in this case Eq. (C1), replaces Eq. (3.49),
and can be used to explore the thermal properties of ηf at
finite T and μ.
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IV. PERTURBATIVE COMPUTATION
OF BOSONIC AND FERMIONIC

SPECTRAL WIDTHS

In this section, we will perturbatively compute the
bosonic and fermionic spectral widths of the Yukawa
theory from Eqs. (3.20) and (3.38) at the one-loop level.
To do this, the imaginary part of the one-loop bosonic and
fermionic self-energy diagrams will be evaluated using
the standard Schwinger-Keldysh real-time formalism [36].
In what follows, we will closely follow the notations of
Refs. [37] and [38]. According to this formalism, the free
propagator of scalar bosons is given by

G ¼
�
Gþþ Gþ−

G−þ G−−

�
; ð4:1Þ

where Gab; a; b ¼ � read

GþþðpÞ ¼ −
i

p2 −m2
b þ iϵ

− 2πnbðjp0jÞδðp2 −m2
bÞ;

Gþ−ðpÞ ¼ −2π½θð−p0Þ þ nbðjp0jÞ�δðp2 −m2
bÞ;

G−þðpÞ ¼ −2π½θðp0Þ þ nbðjp0jÞ�δðp2 −m2
bÞ;

G−−ðpÞ ¼
i

p2 −m2
b − iϵ

− 2πnbðjp0jÞδðp2 −m2
bÞ: ð4:2Þ

Here, mb is the boson mass and nbðp0Þ is the bosonic
distribution function defined in Eq. (3.15). Similarly, the
free fermion propagator is given by

S ¼
�
Sþþ Sþ−

S−þ S−−

�
; ð4:3Þ

with the components

SþþðpÞ ¼ ðγ · pþmfÞ
�
−

i
p2 −m2

f þ iϵ
þ 2πnfðjp0jÞδðp2 −m2

fÞ
�
;

Sþ−ðpÞ ¼ −2πðγ · pþmfÞ½θð−p0Þ − nfðjp0jÞ�δðp2 −m2
fÞ;

S−þðpÞ ¼ −2πðγ · pþmfÞ½θðp0Þ − nfðjp0jÞ�δðp2 −m2
fÞ;

S−−ðpÞ ¼ ðγ · pþmfÞ
�

i
p2 −m2 − iϵ

þ 2πnfðjp0jÞδðp2 −m2
fÞ
�
: ð4:4Þ

Here, mf is the fermion mass and nfðp0Þ is the fermionic
distribution function defined in Eq. (3.31). Combining
Gab; a; b ¼ � and Sab; a; b ¼ �, the physical retarded
(R) and advanced (A) two-point Green’s functions for
scalar bosons, GR=A, and fermions, SR=A, are given by

GR ¼ Gþþ þ Gþ−; GA ¼ Gþþ þ G−þ; ð4:5Þ

and

SR ¼ Sþþ þ Sþ−; SA ¼ Sþþ þ S−þ: ð4:6Þ

To determine the spectral widths, Γb and Γ� from
Eqs. (3.20) and (3.38), the imaginary parts of the bosonic
and fermionic one-loop self-energies, Σb

R and Σf
R, are to be

computed. In the real-time formalism, this is done using the
finite-temperature cutting rules [37,38]. The main ingre-
dients of these rules are specific propagators and vertices,
which for the Yukawa theory, are demonstrated in Fig. 2.
Here, G�

ab and S�ab with a; b ¼ � are the retarded (þ) and
advanced (−) part of the bosonic and fermionic Green’s
functions. They are defined in the following decomposition
for a generic Green’s function, Dab, with a; b ¼ �:

DabðxÞ ¼ θðtÞDþ
abðxÞ þ θð−tÞD−

abðxÞ: ð4:7Þ

Using the definitions Dab; a; b ¼ � and D ¼ fG; Sg, from
Eqs. (4.2) and (4.4), we get the following identities:

Dþ
þþ ¼ D−

−− ¼ Dþ
−þ ¼ D−

−þ ¼ D−þ;

D−þþ ¼ Dþ
−− ¼ Dþ

þ− ¼ D−þ− ¼ Dþ−: ð4:8Þ

In what follows, we will separately compute the imaginary
part of the one-loop self-energy corrections to bosonic and

FIG. 2. Feynman rules that are necessary to compute the
imaginary part of the bosonic and fermionic one-loop self-energy
diagrams of the Yukawa theory (see Figs. 3 and 4). The
definitions of G�

ab and S�ab with a; b ¼ � in terms of Gab and
Sab from Eqs. (4.2) and (4.4) are presented in Eq. (4.8).
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fermionic two-point Green’s functions. The results will
eventually be used to determine the bosonic and fermionic
spectral widths.

A. Bosonic spectral width in the one-loop
perturbative expansion

Let us consider the bosonic spectral width Γb from
Eq. (3.20), which when evaluated at ωb ¼ ðp2 þm2

bÞ1=2
reads

Γbðp;ωbÞ ¼ −
1

2ωb
Im½Σb

Rðp;ωbÞ�: ð4:9Þ

To determine the imaginary part of Σb
RðpÞ at the one-loop

level, we will use the diagrammatic representation of the
cutting rules [37,38], demonstrated in Fig. 3. Using the
propagators and vertices presented in Fig. 2, the imaginary
part of Σb

RðpÞ reads

Im½Σb
RðpÞ� ¼ −

g2

2

Z
d4k
ð2πÞ4 trðS

−þþðk − pÞSþþþðkÞ

− S−−þðk − pÞSþþ−ðkÞÞ; ð4:10Þ

where, according to Eq. (4.7) with Dab ¼ Sab, S
þ
ab and S−ab

are the retarded and advanced parts of the fermionic
Green’s function Sab; a; b ¼ � from Eq. (4.4), respectively.
To derive the spectral width of bosons, we use the identities
(4.8) together with Eq. (4.4), and—after performing the
integration over k0 and some straightforward manipulations
first—arrive at

Γbðp;ωbÞ ¼
g2

8ωb

Z
d3k
ð2πÞ2

ð4m2
f −m2

bÞ
ω1ω2

× fδðωb − ω1 − ω2Þ½1 − nfðω1Þ − nfðω2Þ�
þ δðωb − ω1 þ ω2Þ½nfðω1Þ − nfðω2Þ�
− δðωb þ ω1 − ω2Þ½nfðω1Þ − nfðω2Þ�
− δðωb þ ω1 þ ω2Þ½1 − nfðω1Þ − nfðω2Þ�g:

ð4:11Þ

Here, ω2
1 ≡ k2 þm2

f and ω2
2 ≡ ðk − pÞ2 þm2

f. The factor
ð4m2

f −m2
bÞ on the rhs of Eq. (4.11) arises by considering

the on-mass-shell relations, k2 ¼ m2
f and ðk − pÞ2 ¼ m2

f

from the Dirac δ functions, appearing in Sab from
Eq. (4.10), with Sab; a; b ¼ � given in Eq. (4.4). Using
now the definition of the fermionic distribution functions
nfðωÞ from Eq. (3.31), we get

Γbðp;ωbÞ ¼
g2

16ωb

Z
d3k
ð2πÞ2

sinhðβωb
2
Þ

coshðβω1

2
Þ coshðβω2

2
Þ

×
ð4m2

f −m2
bÞ

ω1ω2

fδðωb − ω1 − ω2Þ

− δðωb − ω1 þ ω2Þ − δðωb þ ω1 − ω2Þ
þ δðωb þ ω1 þ ω2Þg: ð4:12Þ

Note that in the rest frame of the scalar bosons with p ¼ 0,
only the first term on the rhs of Eq. (4.11), proportional to
δðωb − ω1 − ω2Þ will contribute. It leads tomb ≥ 2mf, as a
constraint on the relation between bosonic and fermionic
masses. Thus, keeping in mind that Γbðp;ωbÞ is Lorentz
invariant, it is in general given by

Γbðp;ωbÞ ¼
g2

16ωb

Z
d3k
ð2πÞ2

sinhðβωb
2
Þ

coshðβω1

2
Þ coshðβω2

2
Þ

×
ð4m2

f −m2
bÞ

ω1ω2

δðωb − ω1 − ω2Þ: ð4:13Þ

After performing the integration over k, using the method
described in Appendix C, the bosonic part of the spectral
width of the Yukawa theory, evaluated in a one-loop
perturbative expansion, reads

Γbðp;ωbÞ

¼ g2T
16π

γ2bðξ2 − 4Þ
ξ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2b

q

× ln

2
641þ cosh κb

2

�
1þ 1

ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − 4Þð1 − γ2bÞ

q 	
1þ cosh κb

2

�
1 − 1

ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − 4Þð1 − γ2bÞ

q 	
3
75: ð4:14Þ

Here, ξ≡ mb
mf

and γb ≡ mb
ωb
, with ω2

b ¼ p2 þm2
b. Moreover,

κb ≡ ωb=T. In Appendix C, we generalize the result
presented in Eq. (4.14) to the case of nonvanishing
chemical potential, μ. In this case, the one-loop contribu-
tion to the bosonic spectral width is presented in Eq. (C14).

FIG. 3. Diagrammatic representation of the cutting rules leading to the imaginary part of the retarded part of the one-loop self-energy
diagram for scalar bosons, Σb

R in the Yukawa theory.
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In Sec. V, we will use Eqs. (4.14) and (C14) to study the
thermal properties of Γb. Eventually Γb will be inserted into
Eq. (3.26) and the thermal properties of ηb for various ξwill
be studied.

B. Fermionic spectral width in the one-loop
perturbative expansion

As we have demonstrated in the previous section,
fermions possess two different spectral widths Γ�, defined
in Eq. (3.38). They can be perturbatively computed by
evaluating the imaginary part of the retarded fermion
self-energy Σf

R in an appropriate loop expansion. In what
follows, in analogy to the bosonic case, the standard finite-
temperature cutting rules from Refs. [37,38] will be used to
evaluate the imaginary part of Σf

R at the one-loop level.
Using the Feynman rules presented in Fig. 2, and the

diagrammatic representation of Im½Σf
R� demonstrated in

Fig. 4, we arrive first at

Im½Σf
RðpÞ� ¼

g2

2

Z
d4k
ð2πÞ4 ½S

þ
þþðkÞG−þþðk − pÞ

− Sþþ−ðkÞG−
−þðk − pÞ�; ð4:15Þ

where D�
ab; a; b ¼ � and Dab ¼ fG; Sg are defined in

Eq. (4.7). Using the identities (4.8), with D ¼ fG; Sg,
together with the definitions of Gab and Sab; a; b ¼ � from
Eqs. (4.2) and (4.4), we arrive after performing the
integration over k0 in Eq. (4.15) and some straightforward
manipulations, at the fermionic spectral widths Γ�, defined
originally in Eq. (3.38),

Γ�ðp;ωfÞ ¼ � g2

8ωf

Z
d3k
ð2πÞ2

1

ω1ω2

½½ωfω1∓p · k�m2
f�fδðωf − ω1 − ω2Þ½1 − nfðω1Þ þ nbðω2Þ�

þ δðωf − ω1 þ ω2Þ½nfðω1Þ þ nbðω2Þ�g þ ½ωfω1 � p · k∓m2
f�fδðωf þ ω1 þ ω2Þ½1 − nfðω1Þ þ nbðω2Þ�

þ δðωf þ ω1 − ω2Þ½nfðω1Þ þ nbðω2Þ�g�: ð4:16Þ

According to our notations from Fig. 4, ω2
f ≡ p2 þm2

f
corresponds to the momentum of the external
fermion propagators, and ω2

1 ≡ k20 ¼ k2 þm2
f and ω2

2 ≡
ðk0 − p0Þ2 ¼ ðk − pÞ2 þm2

b to the internal fermion and
boson propagators, respectively. Here, in contrast to the
bosonic case, only two terms on the rhs of Eq. (4.16),
proportional to δðωf − ω1 þ ω2Þ and δðωf þ ω1 − ω2Þ,
contribute to the final results of Γþ and Γ−. This is because
of the specific kinematics of the f → bf process in the
rest frame of the particles. Here, b and f correspond to a
boson and a fermion, respectively. Thus, the fermionic
spectral widths are determined after some algebraic manip-
ulations, where the definitions (3.15) and (3.31) of bosonic
and fermionic distribution functions are used. For Γþ, we
obtain

Γþðp;ωfÞ

¼ g2

32ωf

Z
d3k
ð2πÞ2

ð4m2
f −m2

bÞ
ω1ω2

coshðβωf

2
Þ

coshðβω1

2
Þ sinhðβω2

2
Þ

× fδðωf − ω1 þ ω2Þ − δðωf þ ω1 − ω2Þg: ð4:17Þ

As concerns Γ−, it is given, according to Eq. (3.48), by
Γ− ¼ Γþ − Γ−

f , where Γ−
f is given by

Γ−
f ðp;ωfÞ ¼

g2

8

Z
d3k

ð2πÞ2ω2

coshðβωf

2
Þ

coshðβω1

2
Þ sinhðβω2

2
Þ

× fδðωf − ω1 þ ω2Þ þ δðωf þ ω1 − ω2Þg:
ð4:18Þ

Performing the integration over k in Eq. (4.17), and by
making use of themethod presented in Appendix B, Γþ reads

Γþðξ; γf; κf;TÞ

¼ g2T
32π

γ2fðξ2 − 4Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2f

q
×

�
ln

�
1 − coshð2Ξ−Þ

coshðΥ− þ ΞþÞ − coshðΥ− − ΞþÞ
�

− ln

�
1þ coshð2Ξ− − κfÞ

coshðΥ− þ ΞþÞ þ coshðΥþ − ΞþÞ
��

: ð4:19Þ

FIG. 4. Diagrammatic representation of the cutting rules leading to the imaginary part of the retarded part of the one-loop self-energy
diagram for fermions, Σf

R in the Yukawa theory.
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Here, ξ ¼ mb
mf

and γf ≡ mf

ωf
with ω2

f ¼ p2 þm2
f. Moreover,

we have

Ξ� ¼ κf
4
ξ
h
ξ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − 4Þð1 − γ2fÞ

q i
;

Υ� ¼ κf
2
ðγf � 1Þ; ð4:20Þ

with κf ≡ ωf=T. Similarly, the integration over k in
Eq. (4.18) can be performed analytically. This is done
in Appendix B, where the final result for Γ−

f is presented
in Eq. (B14). In Appendix C, the same method is used for the
case of nonvanishing chemical potential and Γþ and Γ−

f are
determined at the one-loop level. The results for Γþ and Γ−

f

are presented in Eqs. (C17) and (C19), respectively.
In Sec. V, we will study the qualitative behavior of the

dimensionless quantities Γþ=g2T and Γ−
f =g

2T in terms of
the dimensionless variables ξ; γf and κf. We will then study
the T and μ dependence of Γþ and Γ−, and will show that
in a certain regime of the parameter space Γ−

f ¼ Γþ − Γ−
is not negligible. Plugging the resulting expressions for
Γ� and Γ−

f into Eq. (3.49) and assuming that Ef ∼ ωf ¼
ðp2 þm2

fÞ1=2, we will eventually explore the thermal
properties of the fermionic part of the shear viscosity.

V. NUMERICAL RESULTS

In this section, we will mainly study the T and μ
dependence of the bosonic and fermionic spectral widths
Γb and Γ�, as well as the thermal properties of the bosonic
and fermionic parts of the shear viscosity, ηb and ηf. We
will first determine the T and μ dependence of these
quantities for constant ξ0 ≡m0

b=m
0
f, including the T- and

μ-independent bosonic and fermionic masses, m0
b and m0

f,
respectively. We then consider the standard thermal cor-
rections of bosonic and fermionic masses [23], arising from
standard HTL approximation,

ðmth
b Þ2 ¼

g2

6

�
T2 þ 3μ2

π2

�
;

ðmth
f Þ2 ¼

g2

16

�
T2 þ μ2

π2

�
; ð5:1Þ

and will add these thermal corrections to the original
constant m0

b and m0
f. Using the definition

ξðT; μÞ≡mbðT; μÞ
mfðT; μÞ

; ð5:2Þ

with

mbðT; μÞ≡m0
b þmth

b ðT; μÞ;
mfðT; μÞ≡m0

f þmth
f ðT; μÞ; ð5:3Þ

wewill then determine the T and μ dependence of Γb;Γ� as
well as ηb and ηf, including the thermal corrections to

bosonic and fermionic masses. According to the descrip-
tions in Refs. [23,24], and since in the Yukawa theory the
vertices do not receive any HTL corrections, the above
treatment of thermal masses equals the HTL treatment
with an approximate fermion propagator. In this way, the
apparent drawback of our one-loop perturbative treatment
of ηb½Γb� and ηf½Γ�� is partly compensated. For the
fermions, we mainly focus on the difference between Γþ
and Γ−, arising from normal and collective (plasmino)
excitations of fermions at finite T and μ, respectively. In the
literature, the spectral widths Γþ and Γ− are often assumed
to be equal (see e.g. Ref. [29]). We will show that
depending on T and/or μ, their difference is not negligible.
To study the effect of plasminos on ηf, we will determine ηf
once for Γþ ≠ Γ− and once for Γþ ¼ Γ−, and compare the
corresponding results.

A. Bosonic contributions

1. Bosonic spectral width

Let us first consider Eqs. (4.14) and (C14), where the
bosonic spectral width Γb is presented as a function of
dimensionless parameters, γb ¼ mb

ωb
; κb ¼ ωb=T with ω2

b ¼
p2 þm2

b and ξ ¼ mb
mf

as well as τf ¼ μ=T for μ ¼ 0

[Eq. (4.14)] and μ ≠ 0 [Eq. (C14)]. We consider first the
constant-mass approach, and replace allmb andmf withm0

b

and m0
f, respectively. We then focus on the ξ0 dependence

of Γb for fixed κb; γb and τf. In Fig. 5(a), the ξ0 dependence
of the dimensionless quantity Γb

g2T is plotted for τf ¼ 0 and

κb ¼ 20 as well as γb ¼ 0.5, 0.6, 0.7, 0.8 [from bottom (red
dashed line) to top (blue solid line)]. In Fig. 5(b), the ξ0
dependence of Γb

g2T is plotted for τf ¼ 0 and γb ¼ 0.8 as well

as κb ¼ 1, 2, 3, 4 [from bottom (red dashed line) to top
(blue solid line)]. We observe that Γb

g2T remains constant for

ξ0 ≳ 10 in both cases. Moreover, for fixed values of ξ0
and κb (γb), the ratio Γb

g2T increases with increasing γb (κb)

[see panels (a) and (b) of Fig. 5].
In Fig. 6(a), the ξ0 dependence of

Γb
g2T is plotted for τf ¼ 4

and κb ¼ 20 as well as γb ¼ 0.5, 0.6, 0.7, 0.8 (from bottom
to top). In Fig. 6(b), the same dimensionless quantity is
plotted for τf ¼ 4 and γb ¼ 0.8 as well as κb ¼ 1, 2, 3, 4
(from bottom to top). Similar to the case of τf ¼ 0, Γb

g2T

remains constant for ξ0 ≳ 10, and increases with increasing
γbðκbÞ for fixed values of ξ0 and κb (γb). In Fig. 6(c), the ξ0
dependence of Γb

g2T is plotted for fixed κb ¼ 20 and γb ¼ 0.8

as well as τf ¼ 4, 6, 8, 10 [from top (red dashed line) to
bottom (blue solid line)]. In contrast to the previous cases,
Γb
g2T decreases with increasing τf and fixed κb; γb and ξ0.

These results indicate that Γb decreases with increasing T
and/or μ. This conclusion is compatible with the observed
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result demonstrated in Figs. 7 and 8, where the T and μ
dependence of Γb is studied for various fixed parameters.
In Fig. 7, the T dependence of Γb is plotted for

ωb ¼ 300MeV, m0
f ¼ 5MeV and μ¼ 0MeV [Fig. 7(a)]

as well as μ ¼ 150 MeV [Fig. 7(b)]. The Yukawa coupling
is chosen to be g ¼ 0.5. Similarly, in Fig. 8, the μ
dependence of Γb is plotted for ωb ¼ 300; m0

f ¼ 5 MeV
and T ¼ 10 MeV [Fig. 8(a)] as well as T ¼ 100 MeV
[Fig. 8(b)]. The red, gray and blue lines in Figs. 7 and 8

correspond to m0
b ¼ 100; 150 and 200 MeV, respectively.

The dashed lines include the contributions of constant
masses m0

b and m0
f for bosons and fermions, respectively,

and the solid lines include the contributions of thermal
corrections of fermion and boson masses, mbðT; μÞ and
mfðT; μÞ from Eq. (5.3). As it turns out, Γb decreases with
increasing T and μ. Having in mind that Γ−1

b is essentially
proportional to the mean free path of the bosons, λb [18], the
fact that Γb decreases with increasing T and μmeans that λb
increases with increasing T and μ. However, for constant T
and μ, heavier bosons seem to have smaller λb, as expected.
Although, according to Figs. 7 and 8, adding T- and
μ-dependent (thermal) masses of bosons and fermions to
the bare massesm0

b andm
0
f shifts Γb to larger values, but the

qualitative interpretation concerning λb remains unchanged.
According to Eq. (3.26), indicating that ηb ∼ Γ−1

b , the
thermal behavior of λb is expected to be reflected in the
thermal behavior of ηb, as it will be shown below.

2. Bosonic part of the shear viscosity

The bosonic part of the shear viscosity is presented in
Eq. (3.26), with Γb given in Eq. (4.14) for μ ¼ 0 and in
Eq. (C14) for μ ≠ 0. To determine ηb, we neglect the
contribution of Re½Σb

RðpÞ� in Eb from Eq. (3.19) and set
Eb ∼ ωb. In Fig. 9, the T dependence of ηb is plotted for
μ ¼ 0. The black solid and red dashed lines in Fig. 9(a)
correspond to the constant ratios ξ0 ¼ 40 MeV and
ξ0 ¼ 80 MeV. The latter arises from m0

b¼200;400MeV
and m0

f ¼ 5 MeV, respectively. In Fig. 9(b), the T depend-
ence of ηb is plotted for μ ¼ 0. But, in this case, in contrast
to the plot in Fig. 9(a), ηb includes thermal massesmbðT; μÞ
and mfðT; μÞ from Eq. (5.3) with m0

b ¼ 200; 400 MeV
and m0

f ¼ 5 MeV. In Fig. 9(b), ξT0 denotes the ratio m0
b=m

0
f

in ξðT; μÞ from Eq. (5.2). In Figs. 10(a) and (b), the same
quantities are plotted for μ ¼ 120 MeV. Comparing the
plots of ηb for different constant masses in Figs. 9(a)
and 10(a), it turns out that ηb decreases with increasing ξ0.
The same is also true for ξðT; μÞ [see Figs. 9(b) and 10(b)].
These results are compatible with our findings in
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FIG. 5 (color online). The ξ0 dependence of Γb

g2T
for τf ¼ 0 and (a) κb ¼ 20 as well as γb ¼ 0.5, 0.6, 0.7, 0.8
(from bottom to top) and (b) γb ¼ 0.8 as well as κb ¼ 1, 2, 3, 4
(from bottom to top). As it turns out, Γb

g2T remains constant for

ξ0 ≳ 10. For fixed values of ξ0 and κb (γb),
Γb

g2T increases with

increasing γb (κb) [see panel (b)].
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FIG. 6 (color online). The ξ0 dependence of
Γb

g2T for τf ¼ 4 and (a) κb ¼ 20 as well as γb ¼ 0.5, 0.6, 0.7, 0.8 (from bottom to top), and
(b) γb ¼ 0.8 as well as κb ¼ 1, 2, 3, 4 (from bottom to top). As it turns out, Γb

g2T remains constant for ξ0 ≳ 10. For a fixed value of ξ0,
Γb

g2T
increases with increasing γb for all values of κb (panel a) and with increasing κb for all values of γb (panel b). (c) The ξ0 dependence of
Γb

g2T for fixed κb ¼ 20; γb ¼ 0.8 and τf ¼ 4; 6; 8; 10 (from top to bottom). As in the previous cases, Γb

g2T remains constant for ξ0 ≳ 10 for all

values of κb; γb and τf . For fixed values of κb; γb and ξ0,
Γb

g2T decreases with increasing τf.
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Figs. 7(a) and 7(b), since for constant T and μ, ηb is
approximately proportional to Γ−1

b [see Eq. (3.26)].
Moreover, as expected from Fig. 7, ηb increases with
increasing T. Comparing the results for constant and
ðT; μÞ-dependent masses in Figs. 9 and 10, it turns out
that, as expected from Fig. 7, adding the thermal correc-
tions to the constant bosonic and fermionic masses
decreases the value of ηb. Moreover, for both constant
and T- or/and μ-dependent masses, the difference between
ηb for different ξ0 as well as ξT0 increases with increasing T.
However, since the scales in the plots of Fig. 9 and Fig. 10
are different, the difference between ηb for ξ0 and ξT0 seems
to be negligible for the case μ ≠ 0 compared to the case
μ ¼ 0. When we compare the plots of Fig. 9 with the
plots of Fig. 10, it seems that ηb decreases with increasing
μ. This conclusion contradicts the result from Figs. 7 and 8,
together with the fact that ηb ∼ Γ−1

b from Eq. (3.26).
This apparent contradiction may lie in the fact that for
μ ≠ 0, the p integration in Eq. (3.26) is taken in the interval
p ∈ ½0; ðμ2 −m02

f Þ1=2� for the constant fermionic mass m0
f,

and p ∈ ½0; ½μ2 −m2
fðT; μÞ�1=2�, with the ðT; μÞ-dependent

fermionic mass mfðT; μÞ from Eq. (5.3). Hence, the μ
dependence of Γb is not the only source of the μ depen-
dence of ηb. In Fig. 11, the μ dependence of ηb is
demonstrated for constant T ¼ 120 MeV and ξ0 ¼ 40
as well as ðT; μÞ-dependent ξðT; μÞ with ξT0 ¼ 40. As
expected from Figs. 7 and 8, ηb increases with increasing
μ. Recently, in Ref. [39], the shear viscosity of a hot pion
gas, ηπ , was determined by solving the relativistic transport
equation in the Chapman-Enskog and relaxation-time
approximations. It is shown that for zero pion chemical
potential, ηπ increases with T. Although the setup discussed
in Ref. [39] is slightly different from ours—the self-
interaction of pseudoscalar pions is described by the
Lagrangian density of chiral perturbation theory—our
results for zero μ and finite T coincide with the results
presented in Ref. [39]. Our results from Figs. 9–11—i.e.
that ηb also increases with T or μ—show that T and μ have
the same effect on the bosons propagating in a dissipative
hot and dense medium. As we have argued in the previous
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FIG. 7 (color online). The T dependence of Γb for ωb ¼
300 MeV and (a) μ ¼ 0 MeV as well as (b) μ ¼ 150 MeV.
The red, gray and blue lines (from bottom to top) correspond
to m0

b ¼ 100, 150, 200 MeV and m0
f ¼ 5 MeV, respectively.

The dashed lines include only the constant-mass contributions of
bosons, m0

b ¼ 100, 150, 200 MeV, and fermions m0
f ¼ 5 MeV.

The solid lines include, in addition to the constant-mass con-
tributions, the thermal corrections of the boson and fermion
masses as functions of T and μ [see Eqs. (5.1)–(5.3)]. Here, the
Yukawa coupling g ¼ 0.5 is used.
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FIG. 8 (color online). The μ dependence of Γb for ωb ¼
300 MeV and (a) T ¼ 10 MeV as well as (b) T ¼ 100 MeV.
The red, gray and blue lines (from bottom to top) correspond to
m0

b ¼ 100, 150, 200 MeV and m0
f ¼ 5 MeV, respectively. The

dashed lines include only the constant-mass contributions of
bosons, m0

b ¼ 100, 150, 200 MeV, and fermions, m0
f ¼ 5 MeV.

The solid lines include, in addition to the constant-mass con-
tributions, the thermal corrections of the boson and fermion
masses as functions of T and μ [see Eqs. (5.1)–(5.3)]. Here, the
Yukawa coupling g ¼ 0.5 is used.
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section, the mean free path of bosons, λb increases with
increasing T and/or μ. The results of the present section
show that the thermal properties of λb are directly reflected
in the thermal properties of ηb. Moreover, as it turns out
heavier bosons have smaller ηb and λb, as expected.

B. Fermionic contributions

1. Fermionic spectral width

In this section, we will focus on the T and μ dependence
of the fermionic spectral widths Γ�, with an emphasis on the
difference between them. As aforementioned, in the chiral
limit mf → 0 and at finite ðT; μÞ, Γþ and Γ− correspond to
the normal and collective excitations of fermions, respec-
tively. The latter is referred to as either a hole or a plasmino.
Moreover, in the chiral limit, Γþ (Γ−) corresponds to
excitations with the same (opposite) chirality and helicity.
The difference between Γþ and Γ− is often neglected in the
literature [29]. We, however, highlight this difference and
study its impact on the fermionic shear viscosity in different
regimes of temperature and chemical potential.
In Eqs. (4.19) and (C17), Γþ is presented for vanishing

and nonvanishing μ in terms of the dimensionless param-
eters γf ¼ mf

ωf
; κf ¼ ωf=T with ω2

f ¼ p2 þm2
f and ξ ¼ mb

mf

as well as τf ¼ μ=T. Similarly, Γ−
f ðγf; κf; τf; ξÞ for μ ¼ 0

and μ ≠ 0 are presented in Eqs. (B14) and (C19), respec-
tively. Using Γ− ¼ Γþ − Γ−

f , Γ− can be determined from
the difference between Γþ and Γ−

f . Similar to the bosonic
case, let us replace mb and mf with ðT; μÞ-independent m0

b

and m0
f, respectively, and focus first on the ξ0 ¼ m0

b=m
0
f

dependence of the dimensionless quantity Γþ
g2T as a function

of the dimensionless parameters γf; κf and τf.
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FIG. 10 (color online). (a) The T dependence of ηb is plotted for
μ ¼ 120 MeV and ðT; μÞ-independent ξ0 ¼ 40; 80 arising from
m0

b ¼ 200; 400 MeV andm0
f ¼ 5 MeV. (b) The T dependence of

ηb, including the T- and μ-dependent thermal corrections to
bosonic and fermionic masses, is plotted form0

b ¼ 200; 400 MeV
and m0

f ¼ 5 MeV, leading to ξT0 ¼ 40; 80.
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FIG. 11 (color online). The μ dependence of ηb is plotted for
T ¼ 120 MeV and ξ0 ¼ ξT0 ¼ 40.
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FIG. 9 (color online). (a) The T dependence of ηb is plotted
for μ ¼ 0 and the T-independent ξ0 ¼ 40; 80 arising from
m0

b ¼ 200; 400 MeV and m0
f ¼ 5 MeV. (b) The T dependence

of ηb, including the T-dependent thermal corrections to bosonic
and fermionic masses, is plotted for m0

b ¼ 200; 400 MeV and
m0

f ¼ 5 MeV. Here, ξT0 denotes the ratio m0
b=m

0
f in ξðT; μÞ from

Eqs. (5.2)–(5.3).
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In Fig. 12(a), the ξ0 dependence of
Γþ
g2T is plotted for fixed

τf ¼ 4 and κf ¼ 20 as well as γf ¼ 0.5; 0.6; 0.7; 0.8 [from
bottom (red dashed line) to top (blue solid line)]. Similarly,
in Fig. 12(b), the ξ0 dependence of

Γþ
g2T is plotted for τf ¼ 4

and γf ¼ 0.8 as well as κf ¼ 2; 4; 6; 8 [from bottom (red
dashed line) to top (blue solid line)]. Finally, in Fig. 12(c),
the ξ0 dependence of Γþ

g2T is plotted for fixed κf ¼ 20 and

γf ¼ 0.8 as well as τf ¼ 0; 3; 6; 9 [from bottom (red dashed
line) to top (blue solid line)]. In contrast to the bosonic case,
for a fixed ξ0,

Γþ
g2T increases whenever one of the parameters

γf; κf or τf increases and the other two parameters are held

fixed. Neglecting the tiny difference between Γþ
g2T and Γ−

g2T,

the same can easily be shown to be true for Γ−
g2T. Let us notice

at this stage, that to derive the final results for Γ� for μ ¼ 0

and μ ≠ 0, the condition m0
b ≥ 2m0

f was necessary. It is

easy to show that Γ� diverges once m0
b ¼ m0

f ¼ 0. This
was also indicated in Ref. [34], where it was noted that
the nonzero boson and fermion mass difference,
δm2 ¼ m2

b −m2
f, ensures the smoothness of the fermion

self-energy, and consequently Γ�, in the far-infrared
(IR) limit.
Although the ξ0 dependence of

Γþ
g2T and

Γ−
g2T as functions of

the dimensionless parameters γf; κf and τf are practically
identical, the T (μ) dependence of Γþ and Γ− turns out to be
different for fixed values of μ (T) and ξ0. In Figs. 13 and 14,
the T and μ dependence of Γþ [panel (a)], Γ− [panel (b)]
and Γ−

f [panel (c)] are plotted for ωf ¼ 300 MeV and
μ ¼ 150 MeV (Fig. 13), as well as for ωf ¼ 300 MeV and
T ¼ 150 MeV (Fig. 14). The red, gray and blue solid
and dashed lines correspond to m0

b ¼ 300; 450; 600 MeV
and m0

f ¼ 5 MeV. The dashed lines correspond to Γ� and
Γ−
f as functions of the ðT; μÞ-independent ξ0 ¼ 60; 90; 120,

and the solid lines correspond to the same quantities,
including the thermal masses of bosons and fermions, with
ξT0 ¼ m0

b=m
0
f ¼ 60; 90; 120. According to the results in

Figs. 13 and 14, it turns out that the absolute value of
the difference between Γþ and Γ−, jΓ−

f j, increases with
increasing T and constant μ (Fig. 13), as well as with
increasing μ and constant T (Fig. 14). It decreases
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FIG. 12 (color online). The ξ0 dependence of
Γþ
g2T for τf ¼ 4 and (a) κf ¼ 20 as well as γf ¼ 0.5; 0.6; 0.7; 0.8 (from bottom to top), and

(b) γf ¼ 0.8 as well as κf ¼ 2; 4; 6; 8 (from bottom to top). (c) The ξ0 dependence of
Γþ
g2T

for κf ¼ 20; γf ¼ 0.8 and τf ¼ 0; 3; 6; 9 (from

bottom to top). As it turns out, for a fixed ξ0,
Γþ
g2T increases whenever one of the parameters γf; κf or τf increases and the other two

parameters are held fixed. It can be shown that the same is also true for Γ−
g2T.

50 100 150 200 250 300

0.5

0.0

0.5

1.0

1.5

2.0

T MeV

M
e

V

(a) f 300 MeV, 150 MeV

50 100 150 200 250 300
0

1

2

3

4

T MeV

M
eV

(b) f 300 MeV, 150 MeV

50 100 150 200 250 300

4

3

2

1

0

T MeV

f
M

e
V

(c) f 300 MeV, 150 MeV

FIG. 13 (color online). The T dependence of (a) Γþ, (b) Γ− and (c) Γ−
f ¼ Γþ − Γ− is plotted for constant ωf ¼ 300 MeV and

μ ¼ 150 MeV. The red, gray and blue solid and dashed lines (from bottom to top) correspond to m0
b ¼ 300; 450; 600 MeV and

m0
f ¼ 5 MeV. Whereas the dashed lines correspond to Γ� and Γ−

f as functions of ðT; μÞ-independent ξ0 ¼ 60; 90; 120, the solid lines
correspond to the same quantities including the thermal corrections to bosonic and fermionic masses with ξT0 ¼ 60; 90; 120. It turns out
that the absolute value of the difference between Γþ and Γ−, i.e. jΓ−

f j, increases with increasing T, and decreases with increasing ξ0 and
ξT0 . Moreover, for small ξ0 or ξT0 and fixed ðT; μÞ, Γ− is always larger than Γþ.
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with increasing ξ0 and ξT0 . Moreover, for small values of ξ0
or ξT0 and fixed ðT; μÞ, Γ− is always larger than Γþ.
To compare Γþ and Γ− more directly, their T and μ

dependence are plotted in Fig. 15 for constant
ωf ¼ 300 MeV and μ ¼ 150 MeV [panel (a)] and
T ¼ 150 MeV. Here, Γ� includes only thermal bosonic
and fermionic masses. The dashed (solid) lines correspond
to Γþ (Γ−). The red, gray and blue dashed and solid lines
correspond to ξT0 ¼ 60; 90; 120, respectively. As it turns
out, whereas for smaller ξT0 ¼ m0

b=m
0
f, Γþ, the spectral

width of normal fermion excitations, decreases with T or μ,
for larger ξT0 , it increases with increasing T or μ. In contrast,
Γ−, the spectral width of the plasmino excitations, increases
with T or μ, independent of ξT0 . Assuming, in analogy to
the bosonic case, that the spectral widths Γþ and Γ− are
inversely proportional to the mean free paths of the normal
and plasmino excitations of the fermions, λþ and λ−, the
above results suggest that at higher temperature or chemical
potential, plasminos have smaller λ−, while for normal
fermions, the thermal behavior of λþ depends strongly on

the relation between the masses of the fermions and bosons
included in our Yukawa-Fermi gas. Heavier (normal)
fermions have smaller λþ, as expected. Let us mention
that, according to the plots in Figs. 13 and 14, jΓ−

f j ¼
jΓþ − Γ−j increases with increasing T (μ) and fixed μ (T),
as suggested from the fact that holes (plasminos) are more
significant at higher temperatures [25]. In what follows,
we will study the impact of this difference on the fermionic
part of the shear viscosity.

2. Fermionic part of the shear viscosity

In Sec. III B, the fermionic part of the shear viscosity,
ηf, was computed in terms of Γþ and Γ− for vanishing
chemical potential [see Eq. (3.49)]. In Appendix C, we
present ηf for nonvanishing chemical potential [see
Eq. (C1)]. Neglecting the contribution of Re½Σf

R� in E�
from Eq. (3.38) and in E� from Eq. (C2), and replacing
E� and E�, appearing in Eqs. (3.49) and (C1), with ωf

and ω� ¼ ωf � μ, respectively, we have plotted the T
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FIG. 14 (color online). The μ dependence of (a) Γþ, (b) Γ− and (c) Γ−
f ¼ Γþ − Γ− is plotted for constant ωf ¼ 300 MeV and

T ¼ 150 MeV. The red, gray and blue solid and dashed lines (from bottom to top) correspond to m0
b ¼ 300; 450; 600 MeV and

m0
f ¼ 5 MeV.Whereas the dashed lines correspond to Γ� and Γ−

f as functions of the ðT; μÞ-independent ξ0 ¼ 60; 90; 120, the solid lines
correspond to the same quantities including the thermal corrections to bosonic and fermionic masses with ξT0 ¼ 60; 90; 120. Similar to
their T dependence, demonstrated in Fig. 13, it turns out that jΓ−

f j increases with increasing μ, and decreases with increasing ξ0 as well as
ξT0 . Moreover, for small ξ0 or ξT0 and fixed ðT; μÞ, Γ− is always larger than Γþ.
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FIG. 15 (color online). (a) The T dependence of Γ� for ωf ¼ 300 MeV and μ ¼ 150 MeV, including the thermal corrections to
bosonic and fermionic masses. (b) The μ dependence of Γ� for ωf ¼ 300 MeV and T ¼ 150 MeV, including the thermal corrections to
bosonic and fermionic masses. The dashed (solid) lines correspond to Γþ (Γ−). The red, gray and blue dashed and solid lines (from
bottom to top) correspond to ξT0 ¼ 60; 90 and ξT0 ¼ 120, respectively.
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dependence of ηf for fixed μ ¼ 120 MeV and ξ0 ¼ 40; 80
in Fig. 16(a) and for μ ¼ 120 MeV and ξT0 ¼ 40; 80 in
Fig. 16(b). In contrast to the T dependence of ηb from
Fig. 10, we observe that ηf decreases with increasing T, ηf
is in general larger than ηb, and at a fixed temperature and
for a fixed chemical potential, ηf increases with increasing
ξ0 [Fig. 16(a)] as well as ξT0 [Fig. 16(b)]. The fact that for a
fixed T and μ, ηf decreases with increasing ξ0 is compatible
with the results arising from Fig. 12, where it is shown that
Γ� increases with increasing ξ0, and confirms the fact that
for small values of ξ0 (or ξT0 ), ηf ∼ Γ−1

� . But, in general, it
seems that the thermal property of ηf is dominated by the
thermal behavior of Γ−. The fact that ηf is inversely
proportional to the fermionic spectral width coincides with
the results presented in Ref. [30], and indicates that ηf
increases with an increase in the mean free path.1

In Fig. 17, the μ dependence of ηf is plotted for T ¼
120 MeV and ξ0 ¼ 40 (blue solid line) and ξT0 ¼ 40 (red
dashed line). In contrast to the μ dependence of ηb from
Fig. 11, ηf decreases with increasing μ at a fixed temper-
ature. Moreover, at a fixed T and μ, ηf decreases when the

thermal corrections to the bosonic and fermionic masses
are taken into account. This is again in contrast with the
observed results for ηb in Fig. 11.
As we have shown in Figs. 13, 14 and 15, Γþ and

Γ− have different thermal properties. To study how this
difference can affect ηf, we define a quantity Δ, as the
difference between ηf as a functional of Γþ ¼ Γ−, and ηf as
a functional of Γþ ≠ Γ−,

Δ ¼ ηf½Γþ ¼ Γ−� − ηf½Γþ ≠ Γ−�: ð5:4Þ
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FIG. 16 (color online). The T dependence of ηf is plotted for
μ ¼ 120 MeV and T-independent ξ0 ¼ 40; 80 arising fromm0

b ¼
200; 400 MeV and m0

f ¼ 5 MeV. (b) The T dependence of ηf,
including the T- and μ-dependent thermal corrections to bosonic
and fermionic masses, is plotted for m0

b ¼ 200; 400 MeV and
m0

f ¼ 5 MeV, leading to ξT0 ¼ 40; 80.
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FIG. 17 (color online). The μ dependence of ηf is plotted for
T ¼ 120 MeV and ξ0 ¼ ξT0 ¼ 40.
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FIG. 18 (color online). (a) The T dependence of Δ, defined
in Eq. (5.4), is plotted for μ ¼ 120 MeV and ξ0 ¼ ξT0 ¼ 40.
(b) The μ dependence of Δ is plotted for T ¼ 120 MeV and
ξ0 ¼ ξT0 ¼ 40. As it turns out, Δ decreases (increases) with
increasing T (μ) and constant-mass ratio ξ0 as well as ξT0 .

1In Ref. [30], no difference was made between the mean free
paths of normal and plasmino excitations.
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Let us recall, that in the literature the difference between Γþ
and Γ− is often neglected, and so far, Δ≃ 0 has been
assumed. In Figs. 18(a) and (b), the T and μ dependence of
Δ is plotted for constant μ ¼ 120 MeV [panel (a)] and T ¼
120 MeV [panel (b)], and for ξ0 ¼ 40 (blue solid lines) and
ξT0 ¼ 40 (red dashed lines). It turns out that in the whole
range of T and μ, Δ is positive. This means that the value of
ηf increases, when the difference between Γþ and Γ− is
neglected. Moreover, for fixed μ (T) and constant ξ0 or ξT0 ,
Δ decreases (increases) with T (μ). In other word, as it is
shown in Fig. 18(a), whereas at lower temperatures and
for an intermediate value of μ, the difference between
ηf½Γþ ¼ Γ−� and ηf½Γþ ≠ Γ−� is relatively large, and
becomes larger by including the thermal corrections to
the bosonic and fermionic masses, it can be neglected at
higher temperatures. In contrast, the difference between
ηf½Γþ ¼ Γ−� and ηf½Γþ ≠ Γ−� is negligible at fixed temper-
atures and for small values of the chemical potential. It
increases with increasing μ and is enhanced by adding the
thermal corrections to the bosonic and fermionic masses.

VI. SUMMARY AND OUTLOOK

The shear viscosity η is a transport coefficient, that
characterizes the diffusion of momentum transverse to the
direction of propagation. It plays an important role in the
physics of the QGP. In the past few years, there have been
several attempts to explore its thermal properties, in
particular in the vicinity of the QCD chiral transition point.
The aim is to determine the position of the transition
temperature of QCD, using the thermal properties of η, in
addition to and independently of the equation of state [2].
In this paper, we studied the thermal properties of the shear
viscosity of an interacting boson-fermion system with the
Yukawa coupling. We followed the method presented in
Ref. [18] to derive the bosonic part of the shear viscosity
of this theory in terms of the bosonic spectral width, Γb.
The latter was then determined in a one-loop perturbative
expansion in orders of the Yukawa coupling. Using ηb½Γb�,
it was then possible to study the thermal properties of ηb,
in addition to its dependence on the masses of bosons
and fermions.
We took the method used in Ref. [18], as our guideline,

and determined the fermionic part of the shear viscosity of
the Yukawa theory in terms of the fermionic widths Γþ and
Γ−. The expression ηf½Γ�� from Eqs. (3.49) and (C1) for
vanishing and nonvanishing chemical potential, contains
the central analytical results of the present paper. Here, Γþ
and Γ− are the spectral widths, corresponding to the normal
and collective (plasmino) excitations of fermions. They
were studied very intensively in the literature and led e.g. to
structures in the low-mass dilepton production rate, which
might provide a unique signature for the QGP formation in
relativistic heavy-ion collisions [27]. However, to the best
of our knowledge, the difference between their spectral
widths is often neglected (see e.g. Refs. [17,23,33]), and, as

in Refs. [19,29], the fermionic spectral density function, ρf,
is given in terms of one and the same fermionic spectral
width. We, however, used the structure of ρf presented in
Ref. [30], including both Γþ and Γ−, and following the
method presented in Ref. [18], determined ηf½Γ�� in an
appropriate Laurent expansion. Moreover, we completed
the results presented in Ref. [30], and evaluated Γ� in a
one-loop perturbative expansion in orders of the Yukawa
coupling, and studied their thermal properties. Then, by
plugging Γ� into the proposed relation for the fermionic
shear viscosity, ηf½Γ�� from Eqs. (3.49) and (C1), we
determined the thermal properties of ηf, and studied its
mass dependence. Apart from various results on the thermal
properties of Γb;Γ� as well as ηb and ηf, discussed in the
previous section, we showed that, depending on the
temperature and/or chemical potential, ηf½Γþ ≠ Γ−� is
smaller than ηf½Γþ ¼ Γ−�.
It shall be noted that our one-loop computation, includ-

ing bare fermion and boson masses, is incomplete and can
be improved, for instance, by considering the full HTL
correction to the fermion propagator. The latter plays a
crucial role in determining Γb and Γ�, and consequently
ηb and ηf. This drawback is partly compensated in the
present paper by adding thermal corrections to the bosonic
and fermionic masses. This ad hoc treatment of thermal
masses seems to be natural, since, as was also discussed in
Refs. [23,24], it equals the HTL treatment with an
approximate fermion propagator. Moreover, since it is
known that the HTL/hard-density-loop treatments are only
valid for soft momenta p≲ gT; gμ, even the HTL treatment
can be improved by studying the ultra-soft fermionic
excitations, with p≲ g2T; g2μ. They were recently dis-
cussed in Refs. [34,35], in the framework of the Yukawa
theory. An important question related to the perturbative
treatment of transport coefficients, in general, and shear
viscosity, in particular, is the appearance of the so-called
pinch singularities, which would break the perturbation
theory based on a loop expansion. A useful description
of these singularities was presented in Ref. [16]: in the
quasiparticle approximation, where the propagators are
given by the energy and spectral widths of the quasipar-
ticles, the pinch singularity is essentially related to the IR
behavior of the product of retarded and advanced propa-
gators, which appears in the perturbative loop calculations.
Once the spectral width is zero, the above-mentioned
product becomes IR divergent. The consequence is that
higher-loop diagrams, if they are sufficiently IR sensitive,
become as important as the one-loop contribution, and a
resummation of an infinite number of ladder diagrams will
be necessary. In Ref. [11], a detailed power counting was
presented for λφ3 and λφ4 theories, and it was shown that
all ladder diagrams contribute in the same leading order. In
Ref. [34], a similar power counting was performed for the
ladder diagrams contributing to the fermion self-energy of a
Yukawa theory, and it was shown that in contrast to the
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above-mentioned scalar theories with cubic and quartic
interactions, and also in sharp contrast to QED and QCD,
the ladder diagrams are indeed suppressed, and conse-
quently the one-loop self-energy diagram with dressed
propagators (including the thermal masses) gives the
leading-order contribution to the fermion self-energy.
The main reason for this suppression is the fact that the
Yukawa coupling constant receives no correction in the
leading-order HTL approximation. Or, as was stated in
Ref. [34], “the ladder diagrams giving a vertex correction
do not contribute in the leading order in the scalar
coupling”. As concerns higher-loop contributions to the
spectral width and shear viscosity of the Yukawa theory,
it seems therefore that no ladder resummation may be
necessary, and the one-loop computation, including the
thermal masses, may provide the leading-order contribution
to these quantities. A recent perturbative computation
of the shear viscosity of the Yukawa theory up to two-
loop order confirmed this conclusion [40]. It was, in
particular, shown that the two-loop diagrams, having the
same power of coupling as the one-loop diagram, is
substantially suppressed compared to one-loop contribu-
tion. According to the arguments presented in Ref. [40], it
is indeed expected that by increasing the number of loops,
the suppression successively grows, so that the one-loop
results of the shear viscosity of the Yukawa-Fermi gas
can be considered as the leading order. A more detailed
analysis of ladder resummation corresponding to the shear
viscosity of the Yukawa theory will be postponed to a
future publication.
In Sec. IV, the leading-order contributions to the bosonic

and fermionic spectral widths of the Yukawa theory were
determined by computing the imaginary part of two one-
loop bosonic and fermionic self-energy diagrams (see
Figs. 3 and 4). Let us notice at this stage, that these
one-loop contributions correspond to 1 → 2 scattering
processes (Landau damping), which seem to build the
leading-order contribution to the spectral widths of the
Yukawa theory. This is again in contrast to the situation
apprearing in QED, where, as was argued by Gagnon and
Jeon in Ref. [29], apart from the special case of 1 → 2
collinear scatterings including massless electrons, the
perturbative series of the spectral widths starts from the
leading 2 → 2 scattering processes, arising from two-loop
self-energies. This is because of the fact that in QED,
in contrast to the Yukawa theory, the imaginary parts of
the one-loop boson (photon) and fermion (electron) self-
energies vanish, as can be easily checked, and as was also
stated in Ref. [29]. Hence, an on-mass-shell massless
excitation cannot decay into two on-mass-shell excitations,
as expected. We can therefore conclude that in the Yukawa
theory, the 2 → 2 scattering processes, arising from two-
loop contributions to the bosonic and fermionic self-
energies provide the subleading contribution to the spectral
widths of this theory relative to 1 → 2 scattering processes,

arising from the one-loop self-energy diagrams demon-
strated in Figs. 3 and 4 of the present paper.
Let us finally notice that one of the possibilities to extend

the present computation is to apply it to a QCD-like model,
e.g. quark-meson or NJL models, including spontaneous
or dynamical chiral symmetry breaking, and to study the
behavior of η in the vicinity of the chiral transition point.
The latter project is currently under investigation. The
results will be reported elsewhere.

APPENDIX A: SPECTRAL DENSITY
FUNCTION OF FERMIONS

In this appendix, we will apply the method presented in
Ref. [28] for massive fermions, and will show that the
spectral density function of fermions is given by Eq. (3.36).
To start, let us consider the Källen-Lehmann representation
of a free fermion propagator in terms of the free spectral
density function ρ0f,

S0ðp;ωÞ ¼
Z þ∞

−∞

dp0

2π

ρ0fðp; p0Þ
p0 − ω

: ðA1Þ

Plugging

ρ0fðp; p0Þ ¼ 2πðp · γ þmfÞsgnðp0Þδðp2
0 − ω2

fÞ; ðA2Þ

with ω2
f ¼ p2 þm2

f, into Eq. (A1), and integrating over p0,
we arrive at the following decomposition of S0 in terms of
two independent matrices ĝ�, defined in Eq. (3.37):

S0ðp;ωÞ ¼ −
1

ω − ωf
ĝþ −

1

ωþ ωf
ĝ−: ðA3Þ

To determine the inverse propagator of free fermions, we
introduce the new matrices

ĝ0� ≡ 1

2ωf
½γ0ωf∓ðγ:pþmfÞ� ðA4Þ

that satisfy

ðĝ0�Þ† ¼ ĝ∓; ĝ�ĝ0� ¼ 0;

ĝ0∓ĝ� ¼ ĝ0∓γ0; ĝ�ĝ0∓ ¼ γ0ĝ0∓: ðA5Þ

The inverse propagator of free fermions is then given by

S−10 ðp;ωÞ ¼ −ðωþ ωfÞĝ0þ − ðω − ωfÞĝ0−: ðA6Þ

To determine the dressed spectral density ρfðω; p0Þ for the
dressed fermion propagator Sðp;ωÞ, let us now consider the
inverse fermion propagator,

S−1ðp;ωÞ ¼ S−10 ðp;ωÞ þ Σfðp;ωÞ; ðA7Þ
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where Σðp;ωÞ is the fermion self-energy, including all one-
particle-irreducible radiative corrections, corresponding to
the two-point Green’s function of fermions. By decom-
posing Σf as

Σfðp;ωÞ ¼ ĝ0−Σþðω;pÞ − ĝ0þΣ−ðω;pÞ; ðA8Þ

and combining the resulting expression with Eq. (A6), we
arrive, according to Eq. (A7), at

S−1ðp;ωÞ ¼ −ĝ0þðωþ ωf þ Σ−Þ − ĝ0−ðω − ωf − ΣþÞ:
ðA9Þ

Using the identities (A5) for ĝ� and ĝ0�, it is easy to show
that Σ� from Eq. (A8) is given by

Σ� ¼ � 1

2
trðĝ�ΣfÞ: ðA10Þ

By inverting Eq. (A9), and by making use of the properties
(A5), the dressed fermion propagator reads

Sðp;ωÞ ¼ −
1

ω − ðωf þ ΣþÞ
ĝþ −

1

ωþ ðωf þ Σ−Þ
ĝ−:

ðA11Þ

Using at this stage the definition ρf ¼ −2Im½SR�, and
introducing

E� ≡ ωf þRe½ΣR
��; ðA12Þ

as well as

Γ� ≡Im½ΣR
��; ðA13Þ

we arrive at ρfðp;ωÞ from Eq. (3.36). Let us finally notice
that E� and Γ� defined in Eq. (3.38), arise by plugging
Eq. (A10) into Eqs. (A12) and (A13) and neglecting the
imaginary part of ĝ�, defined in Eq. (3.37).

APPENDIX B: COMPUTATION
OF EQS. (4.14) AND (4.19)

In this appendix, we will perform analytically the three-
dimensional k-integration in Eqs. (4.13) and (4.18) to arrive
at Eqs. (4.14) and (4.19), respectively. We also present the
final result for Γ−

f .
Let us start by considering the integral

I ¼
Z

d3k
ð2πÞ22ω12ω2

δðωb − ω1 − ω2Þfðωb;ω1;ω2Þ;

ðB1Þ

where fðωb;ω1;ω2Þ is a generic function of ωi; i ¼ b; 1; 2.
According to the definitions in Sec. IVA, ω2

b ¼ p2 þm2
b,

ω2
1 ¼ k2 þm2

f and ω2
2 ¼ ðk − pÞ2 þm2

f. Denoting the
angle between k and p by θp, and inserting

1 ¼ 1

2

Z
dðcos θpÞ ðB2Þ

into the integration over k, appearing in Eq. (B1), we
arrive at

I ¼ 1

2

Z
d3k

ð2πÞ22ω1

dðcos θpÞ
2ω2

× δðωb − ω1 − ω2Þfðωb;ω1;ω2Þ

¼ 1

2

Z
d3k

ð2πÞ22ω1

Z
dω2

�
dω2

2

dðcos θpÞ
�−1

× δðωb − ω1 − ω2Þfðωb;ω1;ω2Þ

¼ −
1

8πjpj
Z

dω1fðωb;ω1;ω2 ¼ ωb − ω1Þ: ðB3Þ

To derive the above relation, the identity

ω2
2 ¼ ω2

1 þ p2 − 2jpjjkj cos θp ðB4Þ

arising from the definition of ω2 in terms of p and k is used.
The latter identity can also be used to determine the range
of integration over ω1 in Eq. (B3). Having in mind that

−1 ≤ cos θp ¼ ω2
1 þ p2 − ω2

2

2jkjjpj ≤ þ1; ðB5Þ

we arrive at

ω2
1 − ω1ωb þ

m4
b þ 4m2

fp
2

4m2
b

≤ 0; ðB6Þ

whose solution yields α−b ≤ ω1 ≤ αþb , with

α�b ≡ 1

2

�
ωb �

jpj
ξ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 4

p �
; ðB7Þ

and ξ ¼ mb
mf
. Plugging

fðωb;ω1;ω2Þ ¼
g2ð4m2

f −m2
bÞ

4ωb

sinhðβωb
2
Þ

coshðβω1

2
Þ coshðβω2

2
Þ ðB8Þ

from Eq. (4.13) into the expression on the rhs of Eq. (B3),
we arrive after some straightforward manipulations
at Eq. (4.14).
To derive Eq. (4.19), let us now consider Eq. (4.18),

where in contrast to the previous case two δ functions
δðωf∓ω1 � ω2Þ contribute to Γþ. Having in mind that
in the fermionic case ω2

f ¼ p2 þm2
f, ω2

1 ¼ k2 þm2
f

and ω2
2 ¼ ðk − pÞ2 þm2

b, we obtain ω2
2 ¼ ω2

1 þ p2 −
2jpjjkj cos θp þm2

b −m2
f. Following now the same steps

leading from Eq. (B1) to Eq. (B3), we arrive at
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Z
d3k

ð2πÞ22ω12ω2

δðωf∓ω1 � ω2Þfðωf;ω1;ω2Þ

¼ −
1

8πjpj
Z

dω1fðωf;ω1;ω2 ¼ ω1∓ωfÞ: ðB9Þ

As concerns the range of integration over ω1, we can use

−1 ≤ cos θp ¼ ω2
1 − ω2

2 þ p2 þm2
b −m2

f

2jkjjpj ≤ þ1

to get

ω2
1 � ðξ2 − 2Þωfω1 þ p2 þm2

f

4
ðξ2 − 2Þ2 ≤ 0:

ðB10Þ

Here, the � signs before the second term correspond to
ω2 ¼ ω1∓ωf, respectively. Solving the above equation, we
arrive for ω2 ¼ ω1 − ωf at mf ≤ ω1 ≤ αþf , with

αþf ≡ −ωfðξ2 − 2Þ þ jpjξ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 4

p
2

; ðB11Þ

and for ω2 ¼ ω1 þ ωf at β−f ≤ ω1 ≤ βþf , with

β�f ≡ ωfðξ2 − 2Þ � jpjξ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 4

p
2

: ðB12Þ

Plugging Eqs. (B11) and (B12) into Eq. (B9), and using the
resulting expression, the three-dimensional k integration in
Eq. (4.18) can be performed analytically. We arrive after
some algebra at Eq. (4.19).
To evaluate Γ−

f from Eq. (4.18), we follow the same
procedure as above. Using

Z
d3k

ð2πÞ22ω2

½δðωf − ω1 þ ω2Þ þ δðωf þ ω1 − ω2Þ�fðωf;ω1;ω2Þ

¼ −
1

4πjpj
�Z

αþf

mf

dω1ω1fðωf;ω1;ω2 ¼ ω1 − ωfÞ þ
Z

βþf

β−f

dω1ω1fðωf;ω1;ω2 ¼ ω1 þ ωfÞ
�
; ðB13Þ

with

fðωf;ω1;ω2Þ ¼
g2

4

coshðβωf

2
Þ

coshðβω1

2
Þ sinhðβω2

2
Þ ;

and Z
duuðcoth uÞ�1 ¼ 1

2
½uðuþ 2 lnð1∓e−2uÞÞ − Li2ð�e−2uÞ�;

we arrive at

Γ−
f ¼ −

g2T

8πκf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2f

q �
κf ln

�
1 − coshð2Ξ−Þ

coshðΥ− þ ΞþÞ − coshðΥ− − ΞþÞ
�
þ ½uðuþ 2 lnð1 − e−2uÞÞ − Li2ðe−2uÞ�j−Ξ−

Υ−

þ ½uðuþ 2 lnð1 − e−2uÞÞ − Li2ðe−2uÞ�jΞþ
Ξ−

− ½uðuþ 2 lnð1þ e−2uÞÞ − Li2ð−e−2uÞ�j−Ξ−þ
κf
2

Υ−þ
κf
2

− ½uðuþ 2 lnð1þ e−2uÞÞ − Li2ð−e−2uÞ�jΞþ−
κf
2

Ξ−−
κf
2

�
; ðB14Þ

where κf, Ξ� and Υ� are defined below Eq. (4.19) and in
Eq. (4.20).

APPENDIX C: SHEAR VISCOSITY AND
SPECTRAL WIDTH OF FERMIONS FOR

NONVANISHING CHEMICAL POTENTIAL

In this appendix, we will first determine the fermionic
spectral widths Γ� and shear viscosity ηf for nonvanishing
chemical potential. To do this, we will follow the method

described in Sec. III B and Appendix A. We will then use
the method presented in Sec. IV and Appendix B, and
derive the one-loop contribution to the bosonic and
fermionic spectral widths for nonvanishing temperature
and chemical potential.

1. Fermionic contribution to ηf for μ ≠ 0

In what follows, we will show that in the one-loop
skeleton expansion, the fermionic part of the shear viscos-
ity ηf, is given by
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ηf ∼
2β

15π2

Z
∞

0

dp
p4

ω2
f

X
s¼�

�
eβðEs−sμÞ

ðeβðEs−sμÞ þ 1Þ2

×

�
p2

Γs
−

4m2
fðΓþ

f − ΓsÞ
½Ef þ isΓþ

f �½Ef þ iΓ−
f �
��

; ðC1Þ

where Ef ¼ Eþ þ E− and Γ�
f ¼ Γþ � Γ−, similar to the

definitions in Eq. (3.48). Here, in contrast to E� defined in
Eq. (3.38), the E� appearing in Ef are given by

E�ðp;ω�Þ≡ ω� � 1

2
trðĝ�ðp;ωfÞRe½Σf

Rðp;ωfÞ�Þ; ðC2Þ

where ω� ≡ ωf � μ. To derive Eq. (C1), we start, as in
Appendix A, with the Källen-Lehmann representation of
the free fermion propagator in terms of the free spectral
density function, ρ0f,

S0ðp;ωÞ ¼
Z

∞

−∞

dp0

2π

ρ0fðp; p0Þ
p0 þ μ − ω

; ðC3Þ

where ρ0fðp; p0Þ is defined in Eq. (A2). Integrating over p0,
we arrive at a decomposition, similar to what is demon-
strated in Eq. (A3),

S0ðp;ωÞ ¼ −
1

ω − ωþ
ĝþ −

1

ωþ ω−
ĝ−: ðC4Þ

Here, ω� ¼ ωf � μ and ĝ� are defined in Eq. (3.37).
Following now the same steps as described in Appendix A,
we arrive first at the dressed fermion propagator for
nonvanishing μ,

Sðp;ωÞ ¼ −
1

ω− ðωþ þΣþÞ
ĝþ −

1

ωþ ðω− þΣ−Þ
ĝ−; ðC5Þ

where Σ� are given in Eq. (A10). Using at this stage
ρf ¼ −2Im½SR�, we arrive at

ρfðp;ωÞ ¼
2Γþðp;ωfÞ

½ω − Eþðp;ωf�2 þ Γ2þðp;ωfÞ
ĝþðp;ωfÞ

−
2Γ−ðp;ωfÞ

½ωþ E−ðp;ωfÞ�2 þ Γ2
−ðp;ωfÞ

ĝ−ðp;ωfÞ;

ðC6Þ

with E� defined in Eq. (B2) and Γ� in Eq. (3.38). Then, by
plugging the standard representation

STðp;ωnÞ ¼
1

2π

Z þ∞

−∞
dω

ρfðp;ωÞ
iωn − ωþ μ

ðC7Þ

into Eq. (3.29) and performing the summation over
Matsubara frequencies ωn, we arrive at

STðp; τÞ ¼
1

2π

Z þ∞

−∞
dωeðμ−ωÞτρfðp;ωÞ

× ðθð−τÞnþf ðωÞ − θðτÞð1 − nþf ðωÞÞÞ; ðC8Þ

which replaces Eq. (3.30). Here, fermionic distribution
functions, including μ, are defined by

n�f ðωÞ≡ 1

eβðω∓μÞ þ 1
: ðC9Þ

Plugging now STðp; τÞ from Eq. (C8) into Eq. (3.9), and
following the same steps leading from Eq. (3.33) to
Eq. (3.49), we arrive at ηf½Γ�� from Eq. (C1).

2. Bosonic and fermionic spectral widths for μ ≠ 0

To determine the one-loop contributions to Γb and
Γ� for nonvanishing chemical potential, we will follow
the method described in Sec. IV, and will compute the
imaginary part of the one-loop bosonic and fermionic
self-energy diagrams, using the Schwinger-Keldysh real-
time formalism [36]. Since the chemical potential is only
introduced for fermions, the free propagator of scalar
bosons remains unchanged [see Eqs. (4.1) and (4.2)]. As
concerns the free fermion propagator, it is given for
nonvanishing μ by

S ¼
�
Sþþ Sþ−

S−þ S−−

�
; ðC10Þ

with Sab; a; b ¼ � slightly different from Eq. (4.4),

SþþðpÞ ¼ ðγ · pþmfÞ
�
−

i
p2 −m2

f þ iϵ
þ 2πδðp2 −m2

fÞ½θðp0ÞnfðxpÞ þ θð−p0Þnfð−xpÞ�
�
;

Sþ−ðpÞ ¼ −2πðγ · pþmfÞ½θð−p0Þð1 − nfð−xpÞÞ − θðp0ÞnfðxpÞ�;
S−þðpÞ ¼ −2πðγ · pþmfÞ½θðp0Þð1 − nfðxpÞÞ − θð−p0Þnfð−xpÞ�;

S−−ðpÞ ¼ ðγ · pþmfÞ
�

i
p2 −m2

f − iϵ
þ 2πδðp2 −m2

fÞ½θðp0ÞnfðxpÞ þ θð−p0Þnfð−xpÞ�
�
; ðC11Þ
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where xp is defined by xp ≡ p0 þ μ and nfðωÞ is given in Eq. (3.31). According to Eq. (4.9), the bosonic spectral width, Γb,
is given by the imaginary part of Σb

R. At the one-loop level, Im½Σb
RðpÞ� is given in Eq. (4.10). Using Sab; a; b ¼ � from

Eq. (C11), we arrive at

Γbðp;ωbÞ ¼
g2

8ωb

Z
d3k
ð2πÞ2

ð4m2
f −m2

bÞ
ω1ω2

fδðωb − ω1 − ω2Þ½1 − n−f ðω1Þ − nþf ðω2Þ� þ δðωb − ω1 þ ω2Þ½n−f ðω1Þ − n−f ðω2Þ�

− δðωb þ ω1 − ω2Þ½nþf ðω1Þ − nþf ðω2Þ� − δðωb þ ω1 þ ω2Þ½1 − nþf ðω1Þ − n−f ðω2Þ�g: ðC12Þ

Here, n�f are defined in Eq. (C9). Following the same steps leading from Eq. (4.11) to Eq. (4.13), we first arrive after some
work at

Γbðp;ωbÞ ¼
g2ð4m2

f −m2
bÞ

16ωb

Z
d3k
ð2πÞ2

sinhðβωb
2
Þ

coshðβðω1þμÞ
2

Þ coshðβðω2−μÞ
2

Þ
δðωb − ω1 − ω2Þ

ω1ω2

; ðC13Þ

and finally, after performing the integration over k, using the method demonstrated in Appendix B, at

Γbðp;ωbÞ ¼
g2T
16π

γ2bðξ2 − 4Þ
ξ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2b

q ln

2
64coshðτfÞ þ cosh κb

2

�
1þ 1

ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − 4Þð1 − γ2bÞ

q 	
coshðτfÞ þ cosh κb

2

�
1 − 1

ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − 4Þð1 − γ2bÞ

q 	
3
75; ðC14Þ

where apart from ξ; κb; γb which are defined below Eq. (4.14), τf ≡ μ=T.
As concerns the one-loop contribution to the fermionic spectral widths Γ� from Eq. (3.38), let us consider Im½Σf

R� from
Eq. (4.15). Using Gab and Sab, a; b ¼ � from Eqs. (4.2) and (B11), we arrive first at

Γ�ðp;ωfÞ ¼ � g2

8ωf

Z
d3k
ð2πÞ2

1

ω1ω2

½½ωfω1∓p · k�m2
f�fδðωf − ω1 − ω2Þ½1 − n−f ðω1Þ þ nbðω2Þ�

þ δðωf − ω1 þ ω2Þ½n−f ðω1Þ þ nbðω2Þ�g þ ½ωfω1 � p · k∓m2
f�fδðωf þ ω1 þ ω2Þ½1 − nþf ðω1Þ

þ nbðω2Þ� þ δðωf þ ω1 − ω2Þ½nþf ðω1Þ þ nbðω2Þ�g�; ðC15Þ

with n�f ðωÞ and nbðωÞ defined in Eqs. (B9) and (3.15), respectively. Following the arguments described in
Sec. IV B, the relevant expression of Γþ for nonvanishing μ is given by

Γþðp;ωfÞ ¼
g2

32ωf

Z
d3k
ð2πÞ2

ð4m2
f −m2

bÞ
ω1ω2

coshðβðωfþμÞ
2

Þ
sinhðβω2

2
Þ ×

(
δðωf − ω1 þ ω2Þ
coshðβðω1þμÞ

2
Þ

−
δðωf þ ω1 − ω2Þ
coshðβðω1−μÞ

2
Þ

)
: ðC16Þ

Performing the three-dimensional integration over k, using the method described in Appendix B, we finally arrive at Γþ in
terms of the dimensionless variables ξ; γf; κf and τf, defined in Sec. IV B,

Γþðξ; γf; κf; τf;TÞ ¼
g2T
32π

γ2fðξ2 − 4Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2f

q �
ln

�
1 − coshð2Ξ−Þ

coshðΥ− þ ΞþÞ − coshðΥ− − ΞþÞ
�

− ln

�
1þ coshð2Ξ− − ðκf þ τfÞÞ

coshðΥ− þ ΞþÞ þ coshðΥþ − Ξþ þ τfÞ
��

: ðC17Þ

Here, Ξ� and Υ� are defined in Eq. (4.20). The difference between Γþ and Γ− is, according to Eq. (3.48), defined by
Γ−
f ¼ Γþ − Γ−. For nonvanishing μ, Γ−

f is first given by

Γ−
f ðp;ωfÞ ¼

g2

8

Z
d3k

ð2πÞ2ω2

coshðβðωfþμÞ
2

Þ
sinhðβω2

2
Þ ×

�
δðωf − ω1 þ ω2Þ
coshðβðω1þμÞ

2
Þ

þ δðωf þ ω1 − ω2Þ
coshðβðω1−μÞ

2
Þ

�
; ðC18Þ
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and, after integrating over the three-momentum k, using the method described in Appendix B, it reads

Γ−
f ¼ −

g2T

8πκf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2f

q �
κf ln

�
1 − coshð2Ξ−Þ

coshðΥ− þ ΞþÞ − coshðΥ− − ΞþÞ
�
þ τf ln

�
1þ coshð2Ξ− − ðκf þ τfÞÞ

coshðΥ− þ ΞþÞ þ coshðΥþ − Ξþ þ τfÞ
�

þ ½uðuþ 2 lnð1 − e−2uÞÞ − Li2ðe−2uÞ�



−Ξ−

Υ−
þ ½uðuþ 2 lnð1 − e−2uÞÞ − Li2ðe−2uÞ�




Ξþ

Ξ−

− ½uðuþ 2 lnð1þ e−2uÞÞ − Li2ð−e−2uÞ�



−Ξ−þ

ðκfþτf Þ
2

Υ−þ
ðκfþτf Þ

2

− ½uðuþ 2 lnð1þ e−2uÞÞ − Li2ð−e−2uÞ�



Ξþ−

ðκfþτf Þ
2

Ξ−−
ðκfþτf Þ

2

�
: ðC19Þ
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