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We use heat-kernel techniques in order to compute the one-loop effective action in the cubic Galileon theory
for a background that realizes the Vainshtein mechanism. We find that the UV divergences are suppressed
relative to the predictions of standard perturbation theory at length scales below the Vainshtein radius.
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I. INTRODUCTION

Higher-derivative theories are perturbatively nonrenor-
malizable. As a result, their predictivity is limited by the
necessity to introduce an infinite number of counterterms in
order to cancel the ultraviolet (UV) divergences appearing
in the quantum corrections. Such theories can still be
treated as effective below an energy scale Λ suppressing
the couplings in the nonrenormalizable terms. If the UV
completion of the theory at the scale Λ is not known,
one must include all of the effective terms allowed by the
low-energy symmetries. Despite these general expecta-
tions, it is still possible that the UV behavior of the
theory may be improved through a rearrangement of the
perturbative expansion, or at the nonperturbative level.
For example, one could incorporate some of the higher-
derivative terms in an effective propagator. In Fourier space
the propagator would then fall much faster than the
standard one for increasing momenta, so that the UV
divergences could be reduced or eliminated. However, this
approach does not have internal consistency [1]. The
additional terms incorporated in the propagator become
relevant near the UV scale Λ. It is impossible to justify the
exclusion of terms with even more derivatives, which could
give larger contributions near Λ.
We are interested in a different aspect of the quantum

theory: the possibility that the classical background
around which the fields are expanded can reduce the
magnitude of quantum corrections. This scenario makes
sense only for inhomogeneous backgrounds, as in the
opposite case the effect amounts to a simple redefinition
of scales. A specific example we have in mind involves the
cubic Galileon theory, which describes the dynamics of
the scalar mode that survives in the decoupling limit of the
Dvali Gabadadze Porrati model [2]. The action contains a
higher-derivative term—cubic in the field πðxÞ—with a
dimensionful coupling that sets the scale Λ at which the
theory becomes strongly coupled. The tree-level action in
Euclidean space is

S0 ¼
Z

d4x

�
1

2
ð∂πÞ2 − ν

2
ð∂πÞ2□π

�
; ð1Þ

with ν ∼ 1=Λ3. The action is invariant under the Galilean
transformation πðxÞ→πðxÞþbμxμþc up to surface terms.
Despite the presence of four derivatives in the second
term, the equation of motion is a second-order partial
differential equation. This property, which guarantees the
absence of ghosts in the spectrum in the trivial vacuum, is
also preserved within the Galileon theory, which includes a
finite number of higher-order terms [3].
The Galileon theory can provide a realization of the

Vainshtein mechanism, which has been introduced in
order to suppress the propagation of the physical mode
of the massive graviton that survives in the limit of
vanishing mass [4]. The cubic theory of Eq. (1) has a
spherically symmetric solution πcl ¼ πclðwÞ, with w ¼ r2,
given by

π0clðwÞ ¼
1

8ν

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16νc

w3=2

r �
; ð2Þ

where the prime denotes a derivative with respect to w and
we have assumed that c, ν > 0. For w ≫ wV, with wV ¼
r2V ∼ ðνcÞ2=3 representing the square of the Vainshtein
radius, the solution is π0cl ∼ cw−3=2, so that πcl ∼ c=r. On
the other hand, for w ≪ wV, we have π0cl ∼

ffiffiffiffiffiffiffiffi
c=ν

p
w−3=4, so

that πcl ∼
ffiffiffiffiffiffiffiffi
c=ν

p ffiffiffi
r

p
. This solution requires the presence of a

large pointlike source at the origin, with strength depending
on c. The classical fluctuations δπ of the field around a
general background πcl obey the linearized equation
Δclδπ ¼ 0, with the operator

Δ ¼ −□þ 2νð□πÞ□ − 2νð∂μ∂νπÞ∂μ∂ν ð3Þ

evaluated for π ¼ πcl. (We employ covariant notation, even
though we work in Euclidean space.) For the background
(2), the first term dominates at distances much larger than
the Vainshtein radius, so that the fluctuations δπ propagate
as free waves. On the other hand, the dominance of the last
two terms at distances smaller than the Vainshtein radius,
where ν□πcl ≫ 1, results in the suppression of the classical
fluctuations.
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In Ref. [5] it was argued that the same mechanism
can lead to the suppression of quantum fluctuations as
well, thus reducing the effect of quantum corrections at
the scales at which the Vainshtein mechanism operates.
The essence of the argument is that the higher-derivative
terms generate a large effective wave-function renorm-
alization Z for the fluctuation δπ. If this can be absorbed
in the definition of a canonically normalized field, the
couplings of the theory are reduced by powers of Z.
Even though this intuitive argument seems reasonable, it
is not rigorous because of the position dependence of Z
in the background (2). In this work we introduce an
appropriate modification of the heat-kernel calculation
of the one-loop corrections in order to examine the issue
through a more rigorous approach.
In Sec. II we show how the known perturbative results

for the cubic Galileon theory are reproduced through the
heat kernel. In Sec. III we introduce a modification of
the heat-kernel calculation that accounts for the effect of the
background more efficiently than perturbation theory. In
this way we demonstrate that the background can suppress
the quantum corrections in the region where the Vainshtein
mechanism operates. In Sec. IV we consider the general
structure of the quantum corrections and their suppression
by the background. Finally, in Sec. V we present our
conclusions.

II. PERTURBATION THEORY

Our task is to evaluate the one-loop effective action

Γ1 ¼
1

2
tr logΔ; ð4Þ

where the operator Δ is given by Eq. (3). Following
Ref. [6], we calculate the heat kernel of Δ through the
relation

hðx; x0; ϵÞ ¼
Z

d4k
ð2πÞ4 e

−ikx0e−ϵΔeikx: ð5Þ

The effective action can be obtained from the diagonal part
of the heat kernel as

Γ1 ¼ − 1

2

Z
∞

1=Λ2

dϵ
ϵ

Z
d4xhðx; x; ϵÞ: ð6Þ

A lower limit has been introduced for the ϵ integration in
order to regulate the possible UV divergences.
The higher-derivative terms in the effective action are

generated through the expansion of the exponential in
Eq. (5). The operators act either on functions (such as
□π, appearing in Δ) or on expðikxÞ. An efficient way of
carrying out the expansion is implied by the analysis of
Ref. [6]. The integrand of Eq. (5) can be viewed as an
operator acting on an arbitrary function fðxÞ. After the

expansion of the exponential is performed, one sets
fðxÞ ¼ 1 in order to retain only the terms that are
relevant for the evaluation of the heat kernel. In this
process we employ the operator identities

e−ikxð−□Þeikx ¼ k2 − 2ikμ∂μ −□; ð7Þ

e−ikx∂μ∂νeikx ¼ −kμkν þ ikμ∂ν þ ikν∂μ þ ∂μ∂ν: ð8Þ

In order to determine the UV divergences, which appear
for ϵ → 0, it is useful to rescale k in Eq. (17) by

ffiffiffi
ϵ

p
, as

was done in Ref. [6]. The diagonal part of the heat kernel
becomes

hðx; x; ϵÞ ¼
Z

d4k
ð2πÞ4

1

ϵ2
expf−k2 þ 2i

ffiffiffi
ϵ

p
kμ∂μ þ ϵ

þ 2νπðk2 − 2i
ffiffiffi
ϵ

p
kμ∂μ − ϵÞ

− 2ν∂μ∂νπðkμkν − 2i
ffiffiffi
ϵ

p
kμ∂ν − ϵ∂μ∂νÞ�g; ð9Þ

with the implicit assumption that it will be evaluated
through its action on fðxÞ ¼ 1.
The standard procedure is to isolate the term

expð−k2Þ and expand the rest of the exponential. The k
integration can be performed with the help of formulas
such as

Z
dnk
ð2πÞn e

−k2kμkνkρkσ

¼ 1

ð4ϵπÞn=2
1

4
ðgμνgρσ þ gμρgνσ þ gμσgνρÞ: ð10Þ

The results of perturbation theory are obtained through a
double expansion in ν and ϵ. For a given power of ν, the
lower-order terms in ϵ (up to ϵ2) reproduce the UV
divergences of the effective action. For example, at order
ν2 the leading divergence is associated with a term
∼ð□πÞ2. The corresponding diagonal part of the heat
kernel is

hðx; x; ϵÞ ¼ 15

32π2ϵ2
ν2ð□πÞ2; ð11Þ

and the contribution to the effective action is

Γð2Þ
1 ¼ − 1

2

Z
∞

1=Λ2

dϵ
ϵ

Z
d4xhðx; x; ϵÞ

¼ − 15

128π2
ν2Λ4

Z
d4xð□πÞ2: ð12Þ

The heat-kernel analysis is consistent with the expect-
ations for the quantum corrections in the Galileon theory.
The structure of the divergent terms in the one-loop
effective action is, schematically (Refs. [5,7, and 8]),
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Γ1 ∼
Z

d4x
X
m

�
Λ4 þ Λ2∂2 þ ∂4 log

�∂2

Λ2

��
ðν∂2πÞm:

ð13Þ

The result (12) reproduces the leading divergence in Eq. (13)
for m ¼ 2. An explicit calculation, carried out in Ref. [9] for
the theory of Eq. (1) through dimensional regularization,
reproduced the logarithmic term. A similar calculation of all
the terms with m ¼ 2 was performed in Ref. [10]. The
problem with the effective action (13) is that it cannot be
trusted in the region below the Vainshtein radius, where
ν□πcl ≫ 1. If we expand the field as π ¼ πclðxÞ þ δπðxÞ
in Eq. (13), with the perturbation δπ assumed to be
small, ν□πcl would act as an effective expansion para-
meter. For example, a series of interaction terms
∼ν2Λ4ðν□πclÞnð□δπÞ2 would be generated. For the series
in n to converge, ν□πcl should be smaller than 1. In the
opposite case, the UV divergences of the theory seem to be
enhanced by the presence of the background. In order to
overcome this problem, we shall reformulate the calculation
of the heat kernel in a way that accounts more efficiently for
the influence of the background for large values of ν□πcl.

III. THE EFFECT OF THE BACKGROUND

In order to investigate the effect of the background on
the UV divergences, we split the field in Eq. (9) as π ¼
πcl þ δπ and consider the correlation functions of δπ. We
define a “metric"

Gμν ¼ gμν − 2ν□πclgμν þ 2ν∂μ∂νπcl ð14Þ

and the operators

DϵðkÞ ¼ −2i ffiffiffi
ϵ

p
kμ∂μ − ϵ□; ð15Þ

Lμν
ϵ ðkÞ ¼ 2i

ffiffiffi
ϵ

p
kμ∂ν þ ϵ∂μ∂ν: ð16Þ

The exponent in Eq. (9) becomes

F ¼ −Gμνkμkν − ð1 − 2ν□πclÞDϵðkÞ þ 2ν∂μ∂νπclL
μν
ϵ ðkÞ

þ 2ν□δπðk2 þDϵðkÞÞ þ 2ν∂μ∂νδπð−kμkν þ Lμν
ϵ ðkÞÞ:
ð17Þ

We have seen that the expansion of the heat kernel in
powers of ϵ reproduces the UV divergences of the theory.
The combination ν□πcl in Eq. (17) is the classical expansion
parameter, visible also in Eq. (13). This parameter becomes
large below the Vainshtein radius [5], which implies that it
does not generate a convergent series. On the other hand, δπ
can be viewed as a second expansion parameter, apart from
ϵ, with the term ν□δπ assumed to be small. Within this
scheme, the metric Gμν includes the terms of zeroth order
both in

ffiffiffi
ϵ

p
and δπ. All such terms must be treated on equal

footing, and this is accomplished through our way of
evaluating the heat kernel. The main technical difficulty is
that the momentum integration in Eq. (9) cannot be
performed easily for general Gμν. However, we can render
the metricGμν trivial in Eq. (17) by rescaling the momenta as
kμ ¼ Sμνk0ν, with Sμν satisfying

SμρGμνSνσ ¼ gρσ: ð18Þ

Through differentiation of this relation, x derivatives of
Gμν can be expressed in terms of derivatives of Sμν.
Moreover, for a trivial g ¼ I, we have T ≡ STS ¼ G−1.
The first term of Eq. (17) now takes the simple form −k02.
It is not possible, however, to isolate a term expð−k02Þ in
the heat kernel and expand the rest of the exponential. The
reason is that k0μ does not commute with the derivative
operators in F because it contains the function SμνðxÞ. The
Baker-Campbell-Hausdorff formula,

eXþY ¼ eXeYe−1
2
½X;Y�e

1
6
ð2½Y;½X;Y��þ½X;½X;Y��Þ…; ð19Þ

must be employed, with X ¼ −Gμνkμkν and Y consisting
of the remaining terms in Eq. (17). Then, each of the
exponentials—apart from the first one—must be expanded,
the momenta k rescaled, and the k0 integrations carried out.
We focus first on the leading divergence in the effective

action, which can be obtained by observing that the
ϵ-independent terms in Eq. (17) do not include derivative
operators and commute with −Gμνkμkν. As a result, the
contribution to the diagonal part of the heat kernel which is
quadratic in δπ and contains the quartic divergence is

hðx; x; ϵÞ ¼
Z

d4k
ð2πÞ4 ðdet SÞ

1

2ϵ2
e−k2ð2ν□δπðSkÞ2

þ 2ν∂μ∂νδπð−SkμSkνÞÞ2; ð20Þ

where we have dropped the prime on k. For a spherically
symmetric background πcl ¼ fðr2Þ, we consider a
Cartesian system of coordinates with one of its axes along
the radial direction. We obtain

Gμν ¼ diag½1 − νð12f0 þ 8r2f00Þ; 1 − 8νf0;

1 − νð8f0 þ 8r2f00Þ; 1 − νð8f0 þ 8r2f00Þ�; ð21Þ

where the first entry corresponds to the time component,
the second to the radial, and the last two to the components
perpendicular to the radial. We easily find that

Sμν ¼ diag½ð1 − νð12f0 þ 8r2f00ÞÞ−1=2; ð1 − 8νf0Þ−1=2;
ð1 − νð8f0 þ 8r2f00ÞÞ−1=2; ð1 − νð8f0 þ 8r2f00ÞÞ−1=2�:

ð22Þ

The Jacobian determinant of the transformation is
det S. After we perform the momentum integration, the
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contribution to the diagonal part of the heat kernel can be
put in the form

hðx; x; ϵÞ ¼ 1

32π2ϵ2
ν2ðð□δπÞ2Pðr2Þ

− 2ð□δπÞð∂μ∂νδπÞVμνðr2Þ
þ ð∂μ∂νδπÞð∂ρ∂σδπÞWμνρσðr2ÞÞ; ð23Þ

where

Pðr2Þ ¼ ðdet SÞ½ðtrðT ÞÞ2 þ 2trðT 2Þ�; ð24Þ

Vμνðr2Þ ¼ ðdet SÞ½trðT ÞT μν þ 2ðT 2Þμν�; ð25Þ

Wμνρσðr2Þ ¼ ðdet SÞ½T μνT ρσ þ 2T μρT νσ�; ð26Þ

with T ≡ STS ¼ G−1. Using Eq. (6), we find the contri-
bution to the effective action

Γð2Þ
1 ¼ − 1

128π2
ν2Λ4

Z
d4xðð□δπÞ2Pðr2Þ

− 2ð□δπÞð∂μ∂νδπÞVμνðr2Þ
þ ð∂μ∂νδπÞð∂ρ∂σδπÞWμνρσðr2ÞÞ: ð27Þ

It is apparent from Eq. (27) that the invariance under the
Euclidean group is broken by the background. For a
homogeneous background in which S is the four-
dimensional unit matrix, Eq. (27) reproduces Eq. (12). On
the other hand, if the effective action is evaluated around the
background of Eq. (2), the effective Lagrangian density has a
very strong radial dependence. In order to obtain a pictorial
representation of the r dependence, we observe that the
functions P, Vμν, and Wμνρσ involve fourth powers of the
matrix S and are also proportional to its determinant. In
Fig. 1 we display the product of the determinant of S and the
fourth power of each of its diagonal elements for a back-
ground given by Eq. (2), with ν ¼ 1 and c ¼ 106. All
dimensionful quantities are measured in units of the funda-
mental scale Λ. The Vainshtein radius is rV ∼ ðνcÞ1=3 ¼
100. It is apparent that the quantum corrections are
suppressed below rV. We estimate that ðdet SÞðSiiÞ4, with
i ¼ 0, 1, 2, or 3, scales as r6=ðνcÞ2 ∼ ðr=rVÞ6, a behavior
that is verified by Fig. 1. A substantial suppression, by
several orders of magnitude, is expected for 1=Λ≲ r≲ rV.
Apart from the term we considered, there are an infinite

number of higher-derivative terms, quadratic in δπ, with
possible UV divergences. These result from the expansion
of the exponential in Eq. (9) in the way we described in the
beginning of this section. Certain features are apparent:

(i) The momentum integration factor in the heat kernel
generates a factor ϵ−2 after the rescaling, while the
relation to the effective action involves the integration
factor dϵ=ϵ. This means that the divergences in the
effective action result from terms in the expansion of
the exponential of (17) with powers of ϵ up to 2.

(ii) The suppression of the quantum corrections by the
background arises through the matrix S that rescales
the momenta. In the region where the Vainshtein
mechanism operates, the elements of S have
typical values ∼jν□πclj−1=2 ∼ ðr=rVÞ3=4 ≪ 1. The
Lagrangian density is also multiplied by an overall
suppression factor det S ∼ jν□πclj−2 ∼ ðr=rVÞ3,
arising from the Jacobian determinant.

(iii) Any power of k2□δπ resulting from the expansion
of the exponential of (17) is multiplied by the same
power of S2 after the rescaling of k is performed. In
the context of standard perturbation theory, UV
divergent terms ð□δπÞl would be enhanced by the
presence of the background, as we discussed at
the end of Sec. II. Within our scheme, they are
suppressed by powers of S.

(iv) A possible enhancement is generated by the factor
∼jν□πclj ∼ ðrV=rÞ3=2 ≫ 1 in Eq. (17). However,
terms involving this factor also include powers of
ϵ from the operators Dϵ and Lμν

ϵ . As the power of ϵ
cannot exceed 2 (for a logarithmic divergence), the
maximal enhancement is limited to a multiplicative
factor ∼jν□πclj4 ∼ ðrV=rÞ6. This is always over-
compensated by the powers of S.

(iv) A further enhancement can possibly be generated in
the expansion of the exponential when derivative
operators incorporated in Dϵ and Lμν

ϵ act on Gμν.
Again, this enhancement is limited by the require-
ment that ϵ does not exceed 2.

The general conclusion that can be reached by the above
considerations is that the one-loop divergences of the
theory are not enhanced by arbitrary powers of ν□πcl,
as the perturbative result (13) would imply. Moreover,
suppression factors are generated through the modified
calculation of the heat kernel that we employed. They can
be viewed as a result of the strong wave-function renorm-
alization induced by the background. We demonstrated the
strong suppression of the quartically divergent term,

20 50 100 200 500 1000

10 5

10 4

0.001

0.01

0.1

1

r

de
tS

S
ii

4

FIG. 1 (color online). ðdet SÞðSiiÞ4 as a function of r for the
background of Eq. (2), with ν ¼ 1 and c ¼ 106. The solid blue
line corresponds to i ¼ 0, the dotted red line to i ¼ 1, and the
dashed green line to i ¼ 2 or 3.
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quadratic in the field. In the following section, we consider
the less divergent terms in a more general setting.

IV. A GENERAL FRAMEWORK

We consider a fluctuation operator of the form
Δ ¼ −Gμν∂μ∂ν, with Gμν a functional of the scalar field
π and its derivatives. For the operator to be self-adjoint, we
require ∂μGμν ¼ 0. Notice that this condition is satisfied by
the operator (3) when written in the above form, with Gμν

given by Eq. (14). Following the steps of Sec. II, the one-
loop effective action (4) can be obtained from the heat
kernel, whose diagonal part takes the form

hðx;x;ϵÞ¼
Z

d4k
ð2πÞ4

1

ϵ2

×expf−Gμνkμkνþ2i
ffiffiffi
ϵ

p
Gμνkμ∂νþϵGμν∂μ∂νg;

ð28Þ
with the implicit assumption that it acts on fðxÞ ¼ 1. The
term expð−GμνkμkνÞ can be isolated through use of the
Baker-Campbell-Hausdorff formula (19). The terms up to
order ϵ2 in the expansion of the remaining exponentials
incorporate all possible UV divergences. The metric Gμν

can be diagonalized as in Eq. (18), while the momentum
integrations can be carried out through the use of formulas
such as (10). Finally, the effect of a nontrivial background
can be studied by writing the field as π ¼ πcl þ δπ and
expanding in powers of δπ.
It is straightforward to check that the quartically diver-

gent terms of the cubic Galileon theory are generated
correctly through this procedure. At order ϵ−2 the diagonal
part of the heat kernel is simply

hðx; x; ϵÞ ¼ 1

16π2
1

ϵ2
det S; ð29Þ

while from Eq. (18) we obtain det S ¼ ðdetGÞ−1=2. In order
to obtain the terms quadratic in δπ, we need the expansion

det½G0 þ δG� ¼ detG0

�
1þ tr½G−1

0 δG� − 1

2
tr½ðG−1

0 δGÞ2�

þ 1

2
ðtr½G−1

0 δG�Þ2 þ � � �
�
: ð30Þ

For the cubic Galileon theory we have

ðG0Þμν ¼ gμν − 2ν□πclgμν þ 2ν∂μ∂νπcl; ð31Þ

δGμν ¼ −2ν□δπgμν þ 2ν∂μ∂νδπ: ð32Þ

For a spherically symmetric background, with ðG0Þμν given
by Eq. (21), the effective action (27) is reproduced. It is
straightforward to extend the expansion in Eq. (30) in order
to obtain terms of higher order of δπ. Such terms will be

suppressed by additional powers of ν□πcl. This should be
contrasted with the expectations from standard perturbation
theory for the quartically divergent terms, as given by
Eq. (13) and discussed at the end of Sec. II.
In order to compute the quadratically divergent terms, we

employ the Baker-Campbell-Hausdorff formula (19), with

X ¼ −Gμνkμkν; ð33Þ

Y ¼ 2i
ffiffiffi
ϵ

p
Gμνkμ∂ν þ ϵGμν∂μ∂ν: ð34Þ

The following commutators are needed in order to calculate
the heat kernel up to OðϵÞ:

½X; Y� ¼ 2i
ffiffiffi
ϵ

p
Gμνkαkβkν∂μGαβ þ 2ϵGμνkαkβ∂μGαβ∂ν

þ ϵGμνkαkβ∂μ∂νGαβ; ð35Þ

½½X; Y�; X� ¼ −2ϵGμνkαkβkγkδ∂μGαβ∂νGγδ; ð36Þ

½½X; Y�; Y� ¼ 4ϵGκλkαkβkλkν∂κðGμν∂μGαβÞ þOðϵ3=2Þ;
ð37Þ

Y½X; Y� ¼ −4ϵGκλkαkβkλkν∂κðGμν∂μGαβÞ
− 4ϵGκλGμνkαkβkλkν∂μGαβ∂κ þOðϵ3=2Þ;

ð38Þ

½X; Y�½X; Y� ¼ −4ϵGκλGμνkαkβkγkδkλkν∂μGαβ∂κGγδ

þOðϵ3=2Þ: ð39Þ

It can be shown that terms with more than two nested
commutators, like ½½½X; Y�; X�; Y�, areOðϵ3=2Þ. If we expand
the exponentials in Eq. (19) up to the desired order, we have

eXþY ¼ eX
�
1 − 1

2
Y½X; Y� − 1

2
½X; Y� þ 1

8
½X; Y�½X; Y�

− 1

3
½½X; Y�; Y� − 1

6
½½X; Y�; X� þOðϵ3=2Þ

�
: ð40Þ

In order to perform the integration in Eq. (28), we rescale
the momenta as kμ ¼ Sμνk0ν, with Sμν given by Eq. (18),
and employ formulas such as (10). We also use the identity

Z
dnk

ðπÞn=2 e
−k2kαkβkγkδkλkν

¼ 1

8
ðgαβgγδgλν þ 2gαβgγλgδν þ 2gαγgβδgλν

þ 4gαγgβλgδν þ 4gαγgβνgδλ þ 2gαλgβνgγδÞ; ð41Þ

where we have assumed that the k’s are to be contracted
with a tensor that is symmetric with respect to the exchange
of α, β and γ, δ, respectively.
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We finally obtain

hðx; x; ϵÞ ¼ 1

ð4πεÞ2 det S
�
1þ ϵ

48
ð−4T αβGμν∂μ∂νGαβ

þ 4T αγ∂μGακ∂κGγμ þGμνT αβT γδ∂μGαβ∂νGγδ

þ 2GμνT αγT βδ∂μGαβ∂νGγδÞ þOðϵ3=2Þ
�
;

ð42Þ

with T ≡ STS ¼ G−1 and det S ¼ ðdetGÞ−1=2. We have
also made use of the condition ∂μGμν ¼ 0 in order to
simplify the result.
We now concentrate on the form of the effective action

around the spherically symmetric solution πclðr2Þ given by
Eq. (2). The background metric is given by Eq. (21). In the
region 1=Λ≲ r≲ rV , the elements of the metric behave as
G0 ∼ ðr=RVÞ−3=2, while those of its inverse behave as
T ¼ STS ∼ ðr=RVÞ3=2. We also have det S ∼ ðr=RVÞ3.
We write the field as π ¼ πcl þ δπ and expand in powers
of δπ. We focus on the terms ∼δπ2. Even though their
explicit form is very complicated, it is possible to deduce
their general structure through the following observations.
Every derivative operator in Eq. (34) comes with one

power of
ffiffiffi
ϵ

p
. This is the reason why there are two

derivatives in every term of the heat kernel at OðϵÞ. The
two derivative operators also come, schematically, with G
or G2kk. The latter combination becomes G2T after the
integration of the momenta. Contributions from the X of
Eq. (33) always produce factors of GT after the integration
of the momenta. The general conclusion is that the power of
G minus the power of T is 1 in every term. As a result,
every term will have the same power law behavior for r≲
RV when evaluated on the background. Another important
observation is that every derivative operator produces a
factor of r−1 when acting on the background.
Let us now consider the splitting π ¼ πcl þ δπ. The

factors of δπ result from the expansion of G, T , and det S.
In all cases the appearance of one power of δπ effectively
reduces the power of G minus the power of T by 1. This is
obvious for factors of G. For factors of T it results from the
relation

δT μρ ¼ −T σρT μνδGμν; ð43Þ

while for det S it results from Eq. (30). It must also be noted
that every factor of δπ comes with two derivatives acting on
it, as can be seen in Eq. (32). It may also have an additional
derivative if it originates in a term of the type ∂G, or it may
have two additional derivatives if it originates in a term
∂2G. In these last two cases, one or two factors of r−1 are
lost relative to the counting of the previous paragraph,
which assumed that all derivatives act on the background.
The upshot of this reasoning is that the general form of the
effective action is

Γð2Þ
1 ¼ ν2

Z
d4x

�
c0

r6

R6
V
Λ4ðδπ∂4δπÞ

þ c1a
r5=2

R9=2
V

Λ2ðδπ∂4δπÞ þ c1b
r7=2

R9=2
V

Λ2ðδπ∂5δπÞ

þ c1c
r9=2

R9=2
V

Λ2ðδπ∂6δπÞ þOðlogΛÞ
�
; ð44Þ

with ci dimensionless constants. As we have already
emphasized, the above expression is schematic. It indicates
only the number of derivatives acting on δπ in each term
and the effect of the background. The exact index structure
of the derivative operators has been omitted. For compari-
son, the exact form of the quartically divergent term is
given by Eq. (23).
Using the same arguments, it is possible to deduce the

general form of the logarithmically divergent term of
the heat kernel, obtained at order ϵ2 in the expansion of
the exponential (19). In this case there are four-derivative
operators, accompanied byG2 orG3T orG4T 2. The power
of G minus the power of T is now 2. The four derivatives
contribute a factor of r−4 when they act on the background.
Splitting the field as π ¼ πcl þ δπ and following the logic
of the previous paragraph, we find

Γð2Þ
ε2

¼ ν2
Z

d4x logðΛ=μÞ
�
c2a

1

rR3
V
ðδπ∂4δπÞ

þ c2b
1

R3
V
ðδπ∂5δπÞ þ c2c

r
R3
V
ðδπ∂6δπÞ

þ c2d
r2

R3
V
ðδπ∂7δπÞ þ c2e

r3

R3
V
ðδπ∂8δπÞ

�
: ð45Þ

It is apparent that the terms that involve higher powers of
δπ will be more suppressed by the background than the
quadratic terms. The reason is that each power of δπ results
from the expansion of G, T , and det S, with the simulta-
neous reduction of the power ofGminus the power of T by
1. As factors of G enhance the action by powers of
ðRV=rÞ3=2, their elimination suppresses the result. This
behavior is the complete opposite of what would be
expected from the perturbative result (13), as we discussed
at the end of Sec. II.
It must be pointed out that the calculation of tr logΔ for a

fluctuation operator of the form Δ ¼ −Gμν∂μ∂ν can be
mapped to the corresponding calculation for a similar
operator with covariant derivatives involving both a
Riemann and a gauge part. The explicit correspondence
is provided in Sec. II of Ref. [11]. In our case, the
gravitational and gauge backgrounds would become com-
plicated functions of the scalar field π and its derivatives.
This approach has the advantage that immediate use can be
made of known results for the one-loop effective action
[12]. However, translating these results into expressions for
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the effective action of the fluctuation δπ around a Galileon
background πcl is rather technical because of the compli-
cated correspondence between the two pictures. A similar
approach has been followed in Ref. [13] in order to
compute the one-loop corrections in the nonlinear sigma
model. The nonlinear realization of the symmetry can be
exploited in order to consider the fields as coordinates on a
coset manifold that possesses a set of Killing vectors. The
one-loop effective action can be constructed from the
Killing vectors in a way that exhibits its geometric proper-
ties. Calculations along such lines would provide an
independent cross-check of our conclusions and will be
the focus of future work.

V. CONCLUSIONS

Our analysis leads to the remarkable conclusion that the
one-loop quantum corrections can be suppressed in certain
regions of an inhomogeneous background. This is a feature
not encountered in renormalizable theories. For example,
one may consider a domain-wall background in a renor-
malizable scalar theory with a double-well potential. The
background will influence the quantum corrections through
the effective mass term of the fluctuations mðπclÞ. In order
to repeat our calculation, we would redefine the momenta
in the heat kernel as k02 ¼ k2 þm2ðπclÞ. This change of
integration variable would have no significant effect on the
UV divergences, as long as Λ ≫ mðπclÞ.
The question of whether the quantum effects may be

suppressed on the background of classical configurations
has also been addressed in the context of classicalization
[14,15]. This proposal concerns the nature of high-energy
scattering in certain classes of nonrenormalizable scalar
field theories. It advocates that scattering can take place at
length scales much larger than the typical scale associated
with the nonrenormalizable terms in the Lagrangian.
Quantum corrections are expected to be subleading at such
scales, so a semiclassical description should be sufficient.
The inspiration is taken from ultra-Planckian scattering in
gravitational theories, during which a black hole is
expected to start forming at distances comparable to the
Schwarzschild radius. The analogue of the black hole is a
semiclassical configuration, the classicalon, generated by a
pointlike source. In Ref. [16] it was argued that quantum

fluctuations in δπ can be suppressed for theories, such as
the “wrong-sign” Dirac-Born-Infeld (DBI) theory, that
admit classicalons.
The application of our approach to classicalizing theories

is a direction for future research. A general class of models
that can support classicalons has an action of the form

S ¼
Z

d4xKðXÞ; ð46Þ

with X ¼ ∂μπ∂μπ=2. The DBI action corresponds to
K ¼ μ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μX

p
. The second variation of the action

(46) results in the fluctuation operator

Δ ¼ −KX□ −KXX∂μπ∂νπ∂μ∂ν − ð∂μKX þ ∂νKXX∂μπ∂νπ

þKXX∂μ∂νπ∂νπ þKXX∂μπ□πÞ∂μ; ð47Þ

where KX ¼ K0ðXÞ and KXX ¼ K00ðXÞ. The analysis of the
one-loop quantum corrections through the heat kernel
around a classicalon configuration can be performed along
the lines we followed in this work. In this way a deeper
understanding of the phenomenon of classicalization can be
obtained.
We conclude by noting that both classicalization and the

Vainshtein mechanism rely on strong nonlinear effects
associated with the background. The combined picture
arising through our work and Ref. [16] supports the
speculation that the suppression of quantum effects by
the background may be a usual phenomenon in higher-
derivative theories.
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