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We use unitarity techniques to compute the two-loop nonplanar corrections to the Sudakov form factor
and the four-point amplitude in the ABJM theory. We start by reconstructing nonplanar integrals from two-
particle cuts in three dimensions. This causes ambiguities due to the one-loop, four-point amplitude being
subleading in dimensional regularization. We provide a prescription to circumvent them and show that it
leads to the correct results, as checked against the recent Feynman diagram computation. For the amplitude,
we point out an alternative basis of integrals, including a nonplanar double box with a numerator inspired
by color-kinematics duality. We reproduce the result using a combination thereof with the coefficients fixed
by generalized unitarity. For the BLG theory, we propose that this gives the form of the amplitude satisfying
color-kinematics duality. Finally, we compute the complete two-loop amplitude of three-dimensional
N ¼ 8 SYM and the corresponding four-point amplitude in N ¼ 16 supergravity as a double copy.
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I. INTRODUCTION

In this paper, we use unitarity techniques to compute the
two-loop color subleading corrections to the Sudakov form
factor and the four-point amplitude in the ABJM theory [1].
Unitarity aims at determining loop corrections to physi-

cal quantities, such as scattering amplitudes, by using
on-shell data only, in order to circumvent cumbersome
Feynman diagram computations. In its original application
[2,3], it was based on the Cutkosky rules [4] and prescribed
how to reconstruct an amplitude from the analysis of its
discontinuities in the complex space of the Lorentz invar-
iants it depends on.
Under the assumption that the result is given by a

combination of Feynman integrals with rational coeffi-
cients, one is able to fix them by comparing the cuts of the
amplitude, separating it into lower order on-shell pieces,
with the cuts of the integrals.
The basis of integrals can be in principle reconstructed

by inspection of some cuts of the amplitude, by uplifting
them to proper Feynman integrals and checking that all
other cuts are then satisfied.
Alternatively, one can make an ansatz for the basis of

integrals and fix their coefficients via cuts. An efficient
strategy to carry out this task consists in performing several
cuts on the same diagram, a method referred to as
generalized unitarity [5,6].1 This route has been particularly
effective for scattering amplitudes of the four-dimensional
maximally supersymmetric Yang-Mills theory, where in the
planar limit such a basis is highly constrained by dual
conformal invariance [8]. The computational efficiency of
unitarity triggered spectacular advances in the determina-
tion of amplitudes inN ¼ 4 SYM in four dimensions, such

as the calculation of the complete four-loop [9] and five-
loop [10] four-point amplitudes.
Remarkably, unitarity cuts have been applied also to

other quantities such as form factors [11–15] and correla-
tion functions [16] in N ¼ 4 SYM and to supersymmetric
theories in different dimensions. It has been used in five
dimensions for testing the finiteness of the maximally
supersymmetric Yang-Mills theory at six loops [17] in
three-dimensional N ¼ 6 superconformal Chern-Simons
theories, determining the planar two-loop amplitudes at
four [18] and six points [19] and also in two-dimensional
models [20,21].
Away from the large N approximation or for observables

which do not possess dual conformal invariance such as
form factors, a powerful tool for determining the nonplanar
integral numerators has been offered by the Bern-Carrasco-
Johansson (BCJ) relations [22]. These are kinematic
identities among tree-level amplitudes relying on the
possibility to rewrite them in such a way that their
kinematic parts obey the same Jacobi identities as their
color factors. This relates tree-level color ordered partial
amplitudes reducing the number of independent ones. At
loop level, unitarity allows us to construct amplitudes by
fusing tree-level ones. In this way, the properties of tree-
level amplitudes propagate to higher loops. The application
of the BCJ relations to tree subgraphs provides identities
between the numerators of different loop integrals.
Interestingly, they are able to relate the numerators of
planar and nonplanar topologies, highly constraining the
form of the latter [22].
It has been conjectured that at both tree and loop level

one can express Yang-Mills amplitudes in a form where a
color-kinematics duality is satisfied. This happens to be a
very general statement, regardless of supersymmetry and
dimension [22]. Furthermore, it has been recently shown
that BCJ identities also apply to form factors [23].
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It was conjectured [22,24] and proven at tree level in [25]
that whenever a gauge-theory amplitude is expressed in this
way the corresponding gravity amplitude can be obtained
as a double copy, namely replacing the color coefficients by
another power of the kinematic factor, satisfying the
duality. It has also been checked that the structure of
infrared (IR) divergences in gauge and gravity theories is
compatible with the double-copy procedure [26]. For loop
amplitudes, this leads to an improved ultraviolet behavior
of supergravity theories [24,27]. This is particularly inter-
esting for theN ¼ 8maximal supergravity, which has been
verified to be perturbatively finite up to four loops [28,29].
Recently it has been shown that half-maximally super-
symmetric supergravity in four dimensions, though dis-
playing nicer ultraviolet properties than expected, is
divergent at four loops [30].
In three dimensions, color-kinematics duality and the

double-copy procedure also apply to the Yang-Mills theory
and in particular to the maximally supersymmetric N ¼ 8
model. Another interesting class of field theories, namely
the superconformal N ¼ 6 Chern-Simons models, has a
very different nature. Indeed, the scattered particles trans-
form in the bifundamental representation of the gauge
groups, and the underlying color structure can be thought of
as a three algebra, rather than a conventional Lie algebra
[31–33]. Nevertheless, it has been shown that BCJ relations
exist in these models [34]. In particular, a recent analysis
demonstrated that the maximally supersymmetric N ¼ 8
BLG theory [31–33] possesses BCJ identities for any
multiplicity, whereas they exist in ABJM only up to six
points [35]. Focusing on BLG theory, it has been pointed
out that by reformulating tree-level amplitudes in a fashion
satisfying color-kinematics duality one can reproduce
N ¼16 supergravity amplitudes via a double copy [34,36].
Since amplitudes in N ¼ 8 SYM are supposed to square to
those of N ¼ 16 supergravity as well, this gives two equiv-
alent double-copy gravity amplitudes, based on two and three
algebras, respectively [36].
This intriguing equivalence and the possibility that three-

dimensional supergravity theories, which are also power
counting nonrenormalizable as in four dimensions, can
enjoy an improved ultraviolet behavior motivate the prob-
lem of computing subleading contributions to loop ampli-
tudes in N ¼ 6 Chern-Simons matter theories.
In this paper we take the first steps addressing this task,

using unitarity. We first tackle the problem of finding
nonplanar integrals by a constructive strategy, which aims
at determining the integrals contributing to the computa-
tion, through the analysis of two-particle cuts. Such a
program has been successfully carried out for the color-
leading two-loop corrections to the form factor in [37].
However, the application of this approach to subleading
contributions reveals subtleties. Indeed, using the recently
proposed one-loop nonplanar amplitudes [37] in the cuts
produces two-loop integrals whose propagators do not

correspond to any Feynman diagram. We argue that the
appearance of such unphysical integrals can be traced back
to our loose treatment of the one-loop amplitude in unitarity
computations. Namely we perform cuts in three dimen-
sions, while such an amplitude is subleading in the
dimensional regularization parameter. We put forward a
strategy to circumvent this obstacle that we briefly outline
as follows.
The complete one-loop amplitude in ABJM was con-

structed by the analysis of its cuts and is expressed in terms
of combinations of a dual conformally invariant box
function, which is of order ϵ in dimensional regularization.
However, we find that a cut analysis in strictly three

dimensions does not give a unique answer in terms of box
functions. Rather, the form of the cuts in the s, t, and u
channels can be always reproduced either by one single box
function or by the difference of two. Even though these
objects have the same three-dimensional cuts they are not
identical. Indeed, they are only equivalent up to the first
nontrivial order, when expanded in the dimensional regu-
larization parameter, and up to a constant imaginary term.
Such an identity and its failure to hold beyond leading order
in ϵ are demonstrated by computing the relevant one-loop
dual conformally invariant integrals to all orders.
Since such amplitudes are all of order ϵ, this discrepancy

does not pose any problems for the one-loop amplitude
itself but can and does generate ambiguities whenever the
one-loop amplitude is used as an input in a higher loop
computation. This is not surprising and is an artefact of
such contributions being subleading in ϵ. In order to fix the
correct form of the one-loop amplitude, respecting cuts to
higher order in ϵ, we perform cuts in d dimensions, which
unambiguously fix the form of the amplitude at one loop.
At two loops, we show that use of three-dimensional cuts
is again subtle. Indeed we verify that they can lead to
inconsistent Feynman integrals with spurious propagators.
This problem could be solved considering d dimensional
cuts throughout the whole computation, which would,
however, make it more cumbersome. Alternatively, we
propose a recipe how to circumvent such subtleties,
avoiding the need for complicated d-dimensional cuts.
Namely, instead of using an explicit form for the one-loop
amplitude we just exploit its color structure, its cuts in three
dimensions, and the fact that it is expressed in terms of a
combination of dual conformally invariant box functions.
As recalled above, there are two such combinations.
Depending on which of the two we use to reconstruct
the correct two-particle cuts, we always find that one choice
gives an unphysical result. Namely, the cut is reproduced
by an inconsistent integral with a spurious propagator.
Our recipe simply consists of choosing the other combi-
nation, which yields well-defined Feynman integrals. We
find that this choice always coincides with a form where the
cuts of the one-loop part are reproduced by a single box
function.
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We first apply this strategy to the computation of the
two-loop Sudakov form factor. We show that the leading
and subleading computations are mapped into each other in
such a way that the nonplanar contribution turns out to be
opposite to the large N one. This was first seen from the
Feynman diagram computation of [38]. We stress that this
implies the appearance of a nonplanar correction to the
cusp anomalous dimension of ABJM already at leading
order in the weak coupling expansion. This is rather
different compared to N ¼ 4 SYM, where no nonplanar
contribution to the form factor appears up to three loops.
The computation of the two-loop amplitude presents

the same subtleties. If one tries to determine the kind of
integrals contributing to it from the two-particle cuts, using
the one-loop amplitude in the form given in [37], one finds
the planar double-box integrals but also unphysical non-
planar topologies with spurious propagators. Again, we
show that this problem can be circumvented, as outlined
above. In this way only proper Feynman integrals are
generated. Interestingly, by exploiting the symmetry prop-
erties of the one-loop integrals, no nonplanar double-box
topology is required for the computation. Rather, the
nonplanar sector may be expressed in terms of simpler
integrals depending on one scale only, which happen to be
maximally transcendental [39,40]. The two-particle cuts are
not sufficient to fix a combination thereof completely since
they could miss integrals which vanish in the cut configu-
rations. We then complete our integral combination by
imposing the vanishing of three-particle cuts. The combi-
nation we obtain is consistent with quadruple cuts, which
separate the two-loop amplitude into three four-point tree-
level ones. Such a cut does not suffer from the ambiguities
due to the one-loop amplitude of order ϵ and therefore is a
nontrivial check that the answer is correct. Indeed we verify
that it reproduces the known result from the Feynman
diagram computation [38]. This constitutes the main test
that our strategy succeeds in giving the correct result.
Instead of constructing the relevant integrals from the

cuts, one can formulate a reasonable ansatz on the basis of
integrals appearing in the result and check that their cuts
are compatible with those of the amplitude to determine the
suitable combination. Guided by the dual conformally
invariant planar integrals and their numerators, we propose
a natural nonplanar counterpart. This includes a nonplanar
double box, whose numerator we guess by a sort of BCJ
identity on a particular cut isolating a four-point amplitude.
Specifically, starting from the planar double-box topology
of the four-point two-loop color-leading amplitude, we cut
the diagram in such a way to isolate a four-point tree
subamplitude. On this, we perform a change of two external
legs turning the planar topology into a nonplanar one. From
the antisymmetry property of the BLG four-point amplitude,
we conjecture a consistent form of the nonplanar numerator.
Next we fix the coefficients of these integrals by demanding
that the two- and three-particle cuts are satisfied.

The nonplanar double box presents a complicated
numerator, which we deal with by reduction to master
integrals through integration by parts identities. We solve
the relevant master integrals by writing down their Mellin-
Barnes representation and by repeated use of the Barnes
lemmas and their corollaries. Finally, assembling the result,
we are again able to reproduce the form of the ABJM and
BLG four-point amplitudes at two loops.
For the BLG theory, we propose that this form is the one

respecting color-kinematics duality. Indeed, the numerators
of the planar and nonplanar integrals are connected by an
identity derived from the color properties of a four-point
subamplitude,which canbe isolatedby suitable cuts. Properly
squaring the numerators should give the corresponding two-
loop four-point N ¼ 16 supergravity amplitude.
We next compute the two-loop nonplanar amplitude of

three-dimensional N ¼ 8 SYM. This is governed by the
nonplanar scalar double box in three dimensions, which
appears among the master integrals of the ABJM calcu-
lation. We show that, as happens in N ¼ 4 SYM, the
subleading single trace partial amplitudes exhibit softer
infrared divergences than the leading contribution.
We then consider the form of the complete amplitude

satisfying color-kinematics duality and compute the
N ¼ 16 supergravity amplitude as its double copy. In
[36], an equivalence between tree-level double-copy ampli-
tudes of BLG and N ¼ 8 SYM was pointed out. It would
be interesting to check if squaring the BLG amplitude we
propose reproduces the four-point two-loop amplitude we
derive from N ¼ 8 SYM. This would constitute a non-
trivial check at loop level of the equivalence suggested
in [36].
The plan of the paper is as follows: in Sec. II we review

the necessary material which is required for our two-loop
unitarity-based computations, namely the one-loop ampli-
tude and its properties. Here we also propose the alternative
form turning out to be crucial for the application of unitarity
in the nonplanar regime. In Sec. III we spell out the
computation of the subleading corrections to the form
factor. In Sec. IV we perform a computation of the two-loop
subleading four-point amplitude by constructing its inte-
grals from two-particle cuts. In Sec. V we derive an
alternative ansatz for the integral basis by deforming the
planar topologies to nonplanar ones and guessing their
numerators. Generalized unitarity is used to fix their
coefficients. Then we use the explicit form of the integrals
to correctly reproduce the subleading contribution to the
amplitude. Finally, in Sec. 6, we use the scalar double box
to derive an expression for the subleading partial amplitude
of N ¼ 8 SYM in three dimensions. Using the double-
copy prescription, we compute the four-point two-loop
amplitude in N ¼ 16 supergravity. Appendixes follow
collecting our conventions and the details of the reduction
to master integrals of the nonplanar double box and their
computation.
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II. REVIEW OF LEADING AND SUBLEADING
FOUR-POINT AMPLITUDES IN ABJM

We work in ABJM theory with gauge groups
UðNÞk ×UðNÞ−k, where k and −k are the two Chern-
Simons levels in the action. We take k to be large in order
for a perturbative expansion to be possible and rescale it as
K ¼ 4πk for convenience. The physical degrees of freedom
of the theory are carried by the matter fields, which
transform in the (anti)bifundamental representation of
the gauge groups and can be organized into two N ¼ 3
on-shell superfields Φ and Φ̄ [41]

Φðλ; ηÞ ¼ ϕ4ðλÞ þ ηAψAðλÞ þ
1

2
ϵABCη

AηBϕCðλÞ

þ 1

3!
ϵABCη

AηBηCψ4ðλÞ; ð2:1Þ

Φ̄ðλ; ηÞ ¼ ψ̄4ðλÞ þ ηAϕ̄AðλÞ þ
1

2
ϵABCη

AηBψ̄CðλÞ

þ 1

3!
ϵABCη

AηBηCϕ̄4ðλÞ: ð2:2Þ

The former is bosonic, whereas the latter is fermionic. Such
a superspace is parametrized by Grassmann variables ηA
with A ¼ 1; 2; 3. The momenta of the particles are con-
veniently expressed in terms of commuting spinors λi. Our
conventions are collected in Appendix A and follow those
of [42]. Component amplitudes can then be compactly
organized in superamplitudes for the N ¼ 3 superfields of
the form AðΦ̄1;Φ2;…;ΦnÞ. Gauge invariance demands n
to be even, and therefore, amplitudes with an odd number
of particles identically vanish.
It proves useful to expand superamplitudes in a basis

of independent color structures, spanning a color space,
whose coefficients are the color-ordered partial amplitudes.
Such a color decomposition is possible for bifundamental
superfields and reads [41]

~AnðΦ̄ā1
1a1

;Φb2
2b̄2

; Φ̄ā3
3a3

; � � �Φbn
nb̄n

Þ

¼
�
4π

K

�n
2
−1X

σ

Anðσð1Þ; � � � ; σðnÞÞδāσð1Þb̄σð2Þ
δ
bσð2Þ
aσð3Þ � � � δ

bσðnÞ
aσð1Þ ;

ð2:3Þ

where the sum is over exchanges of even and odd sites
among themselves, up to cyclic permutations by two sites.
We refer to color-ordered amplitudes with A and denote
the complete, color-dressed amplitudes by ~A. In particular,
at four points, there exist four possible index contractions
among four superfields ðΦ̄1Þī1 i1ðΦ2Þi2 ī2ðΦ̄3Þī3 i3ðΦ4Þi4 ī4
transforming in the (anti)bifundamental representations
of the UðNÞ × UðNÞ gauge group.
We follow the notation of [37] and adopt a compact

representation for them with square brackets

½1;2;3;4� ¼ δi2i1δ
ī3
ī2
δi4i3δ

ī1
ī4
; ½1;4;3;2� ¼ δi4i1δ

ī3
ī4
δi2i3δ

ī1
ī2
;

½1;2�½3;4� ¼ δī1ī2δ
i2
i1
δī3ī4δ

i4
i3
; ½1;4�½3;2� ¼ δī1ī4δ

i4
i1
δī3ī2δ

i2
i3
:

ð2:4Þ
Color-ordered n-point amplitudes at l loops in ABJM obey
the following symmetry properties:

AðlÞð1̄; 2; 3̄…; nÞ ¼ ð−1Þn2−1AðlÞð3̄; 4;…; 1̄; 2Þ ð2:5Þ
and

AðlÞð1̄; 2; 3̄…; nÞ ¼ ð−1Þnðn−2Þ8
þlAðlÞð1̄; n; n − 1; n

− 2;…; 3̄; 2Þ: ð2:6Þ

For the four-point case, this entails that there exists a unique
tree level partial amplitude which reads [41]

Að0Þ
4 ð1̄; 2; 3̄; 4Þ ¼ i

δð6ÞðQÞδð3ÞðPÞ
h12ih23i ; ð2:7Þ

where Pαβ ¼
P

4
i¼1 λiαλiβ and QA

α ¼ P
4
i¼1 λiαη

A
i . The

bosonic and fermionic δ functions enforce momentum
conservation and supersymmetry, respectively. Component
amplitudes can be read off the superamplitude by expanding
the fermionic δð6ÞðQÞ in η. The four-point superamplitude is
used extensively in the unitarity cuts.
Six-point tree-level amplitudes were also computed in

[41], and they were found to be Yangian [41,43] and dual
superconformal invariant [44,45]. Via a three-dimensional
version of the BCFW relations [46,47] determined in [48],
it is then possible to derive all tree-level amplitudes, which
will also be automatically Yangian invariant.
Notably, tree-level ABJM amplitudes and the leading

singularities of loop ones can be formulated in terms of an
orthogonal Grassmannian integral formalism [49], similar
to the N ¼ 4 SYM case [50,51]. A proposal to extend the
on-shell diagram description of amplitudes inN ¼ 4 SYM
[52] to ABJM has been recently put forward [53].

A. The one-loop function

The one-loop four-point amplitudes in ABJM were first
studied in [54] by a Feynman diagram analysis, which
uncovered that they are subleading in ϵ when using
dimensional regularization (the same computation in
N ¼ 2 superspace language was performed in [55]). The
planar partial amplitudes were given a manifestly dual
conformally invariant integral form in [18]. They are
expressed in terms of the one-loop box function

Ið1; 2; 3; 4Þ≡
Z

ddl
ð2πÞdi

sTrðlp1p4Þ þ l2Trðp1p2p4Þ
l2ðl − p1Þ2ðl − p12Þ2ðlþ p4Þ2

;

ð2:8Þ
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where p12 ¼ p1 þ p2. It consists of a vector box and a
scalar triangle, whose combination preserves dual con-
formal invariance. Then the one-loop amplitude reads

~Að1Þð1̄; 2; 3̄; 4Þ
Að0Þð1̄; 2; 3̄; 4Þ

����
planar

¼ iNð½1; 2; 3; 4� þ ½1; 4; 3; 2�ÞIð1; 2; 3; 4Þ: ð2:9Þ

The analysis of the s- and t-channel cuts reveals that this
integral behaves correctly under the requirements of uni-
tarity. Consistently its explicit evaluation reveals that it
is subleading in ϵ when dimensionally regulated in
d ¼ 3 − 2ϵ dimensions.
In the planar limit six-point one-loop amplitudes have

been studied in [42,56,57], and a recursion relation for
one-loop supercoefficients was pointed out in [58], which
allows any one-loop amplitudes in principle to be
constructed.
Recently, unitarity has been used to express also color

subleading contributions to the four-point one-loop ampli-
tude in ABJM [37], revealing that these are also governed
by combinations of the one-loop dual conformally invariant
box function (2.8).

In the same paper [37], some useful properties of this
function and its cuts were pointed out, which are crucial for
determining the amplitude via unitarity and for verifying
its consistency with the symmetry property (2.6). Among
those, we recall its antisymmetry under exchange of the
momenta in the odd or even positions and under cyclic
permutations

Iða; b; c; dÞ ¼ −Iðc; b; a; dÞ ¼ −Iða; d; c; bÞ
Iða; b; c; dÞ ¼ −Iðb; c; d; aÞ:

ð2:10Þ

Furthermore, an identity was pointed out between the
symmetrized cuts of the integrals

S12Ið1; 2; 3; 4Þjs-cut ¼ S12Ið1; 2; 4; 3Þjs-cut: ð2:11Þ

These properties, valid strictly in three dimensions (see
Appendix D), can be used to prove that for instance the
combination Ið4; 2; 3; 1Þ − Ið1; 2; 3; 4Þ has the correct cuts
to reproduce the one-loop four-point partial amplitude
associated to the color structure [1,2][3,4]. Henceforth
the complete one-loop amplitude reads [37]

~Að1Þð1̄; 2; 3̄; 4Þ
Að0Þð1̄; 2; 3̄; 4Þ ¼ iðN½1; 2; 3; 4� þ N½1; 4; 3; 2� − 2½1; 2�½3; 4� − 2½1; 4�½2; 3�ÞIð1; 2; 3; 4Þ

þ 2i½1; 2�½3; 4�Ið4; 2; 3; 1Þ − 2i½1; 4�½2; 3�Ið1; 3; 4; 2Þ: ð2:12Þ

We observe that using the relations (2.10) and (2.11) the integral −Ið1; 2; 4; 3Þ also possesses the correct cuts to serve as the
one-loop integral for the partial amplitude corresponding to [1,2][3,4]. Indeed,

−S12Ið1; 2; 4; 3Þjs-cut ¼ S12½Ið4; 2; 3; 1Þ − Ið1; 2; 3; 4Þ�js-cut ¼ −S12Ið1; 2; 3; 4Þjs-cut
−S23Ið1; 2; 4; 3Þjt-cut ¼ 0 ¼ S23½Ið4; 2; 3; 1Þ − Ið1; 2; 3; 4Þ�jt-cut
−S24Ið1; 2; 4; 3Þju-cut ¼ S24Ið4; 2; 1; 3Þju-cut ¼ S24Ið4; 2; 3; 1Þju-cut

¼ S24½Ið4; 2; 3; 1Þ − Ið1; 2; 3; 4Þ�ju-cut: ð2:13Þ

The cuts for the partial amplitude associated with [1,4][2,3]
can be analogously reconstructed using −Ið4; 2; 3; 1Þ.
Choosing these integrals, the amplitude takes the form

~Að1Þð1̄; 2; 3̄; 4Þ
Að0Þð1̄; 2; 3̄; 4Þ ¼ iNð½1; 2; 3; 4� þ ½1; 4; 3; 2�ÞIð1; 2; 3; 4Þ

− 2i½1; 2�½3; 4�Ið1; 2; 4; 3Þ
− 2i½1; 4�½2; 3�Ið4; 2; 3; 1Þ: ð2:14Þ

In particular, it is easy to check from the explicit
evaluation of the box functions I that both one-loop
amplitudes are consistently of order ϵ in dimensional
regularization. This is perfectly consistent with the order

in the ϵ expansion at which these results have been
derived. Namely, we have been working with strictly
three-dimensional cuts, i.e., up to order 0 in ϵ. With this
precision, expressions (2.12) and (2.14) are indeed equiv-
alent. However, we show that they are not identical at
subleading orders in ϵ. This difference, although irrelevant
at the level of the one-loop amplitude in three dimensions,
becomes important in a unitarity-based computation which
fuses the one-loop amplitude with some other object. This
procedure can generate divergences, which translate in ϵ
poles, making subleading terms of the cut amplitudes
important. Therefore, it is necessary to decide which form
of the amplitude correctly reproduces the cuts at any order
in ϵ.
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In order to better understand the nature of the difference
between (2.12) and (2.14), we solve the one-loop function
integral to all orders in the dimensional regularization
parameter ϵ. By multiplying and dividing (2.8) by
Trðp1p2p4Þ ¼ � ffiffiffiffiffiffiffi

stu
p

we can write down its decomposi-
tion in terms of scalar integrals which reads (taking, e.g.,
the plus sign)

Ið1; 2; 3; 4Þ ¼ st

2i
ffiffiffiffiffiffiffi
stu

p ½−2sTðsÞ − 2tTðtÞ þ stBðs; tÞ�:

ð2:15Þ

The integral

TðsÞ ¼ −i
Γð3=2þ ϵÞΓ2ð−1=2 − ϵÞ

ð4πÞ3=2−ϵΓð−2ϵÞ ð−sÞ−3=2−ϵ ð2:16Þ

stands for the scalar triangle with two on-shell legs in the
given channel s, and

Bðs; tÞ ¼ −i
Γð1=2þ ϵÞΓ2ð−1=2 − ϵÞ
ð4πÞ3=2−ϵΓð−1 − 2ϵÞst

×

�
ð−tÞ−1=2−ϵ2F1

�
1;−1=2 − ϵ;

1=2 − ϵ

����1þ t
s

�

þð−sÞ−1=2−ϵ2F1

�
1;−1=2 − ϵ;

1=2 − ϵ

����1þ s
t

��
ð2:17Þ

is the scalar massless box, whose all order in ϵ form can be
derived from the four-dimensional result [59,60] by a shift
in the dimensional regularization parameter, ϵ → ϵþ 1=2.
We now study the one-loop function Ið1; 2; 3; 4Þ in the
Euclidean regime where s < 0 and t < 0. Then the formula
(2.17) holds, provided that an analytic continuation is
performed in such a way that the integral I is manifestly
real. The cut analysis performed in (2.13) suggests that a
relation may hold among, e.g., Ið1; 2; 3; 4Þ, Ið1; 4; 2; 3Þ,
and Ið1; 2; 4; 3Þ. Inspecting the form of the functions
appearing in their exact evaluation, one can easily map
the arguments of the Gauss functions into one another by
textbook transformations. However, establishing a relation
among the hypergeometric functions requires setting ϵ ¼ 0,
namely at order ϵ for the box integrals. In this case, their
result simplifies considerably, giving, e.g.,

Bðs; tÞ ¼ ϵ

ðstÞ3=2
� ffiffiffi

u
p

log

� ffiffiffiffiffiffi
−s

p þ ffiffiffiffiffi
−t

p þ ffiffiffi
u

p
ffiffiffiffiffiffi
−s

p þ ffiffiffiffiffi
−t

p
−

ffiffiffi
u

p
�

−
ffiffiffiffiffiffi
−s

p
−

ffiffiffiffiffi
−t

p �
þOðϵ2Þ: ð2:18Þ

We analyze such expressions in the regime where s and t
are negative. Since we have used the momentum conser-
vation condition, we then assume u > 0. Under these

assumptions and using (2.18), we can prove the following
identity holds at order ϵ

Ið1; 2; 3; 4Þ ¼ Ið1; 2; 4; 3Þ − Ið1; 4; 2; 3Þ þ i
π

4
ϵþOðϵ2Þ:

ð2:19Þ

We note in particular the appearance of a constant imagi-
nary part (due to u being positive), which is invisible to
the cut analysis performed in (2.13). We remark that the
choice we made on the sign of u amounts to inspecting
the cut of the various integrals in the u channel, which
should be signaled by the appearance of an imaginary part.
In particular, as expected, the integral Ið1; 2; 3; 4Þ has a
vanishing cut in the u channel. Indeed, it does not develop
an imaginary part when we change the sign of u since both
the log and the square root in front of it are purely
imaginary and, multiplied, evaluate to a real contribution.
On the other hand, the difference Ið1; 2; 4; 3Þ − Ið1; 4; 2; 3Þ
possesses an imaginary part which indicates a discontinuity
in the u plane. However, since the cut analysis was
performed in strictly three dimensions, this term was
overlooked. In order to achieve a full control on the
discontinuities of the amplitude at order ϵ, it is necessary
to consider d-dimensional cuts. This is performed explicitly
in Appendix D, where we show how this imaginary part
emerges in a d-dimensional cut scenario. In this framework,
we provide evidence that the one-loop amplitude to all
orders in ϵ is that of (2.14).
One can feed a higher loop computation with this

amplitude via unitarity, but in order to be fully consistent
and avoid these kind of ambiguities, one should keep
considering d-dimensional cuts. Indeed, as we explicitly
show in the next sections, using this amplitude in two-loop
computations with strictly three-dimensional cuts can
produce nonphysical propagators in the Feynman integrals.
This signals that the three-dimensional cut was not able
to fully capture the discontinuities of the amplitude and
demands for an analysis at higher order in the dimensional
regularization parameter. Unfortunately, the extension of
the d-dimensional cut technique to higher loops is non-
trivial and goes beyond the aim of this work. Rather, here
we want to apply a different strategy which, avoiding
d-dimensional cuts, turns out to be efficient and to correctly
reproduce the known two-loop results for amplitudes and
form factors.
There are in principle several approaches one can

undertake to compute the two-loop integrand. A first
way consists of disregarding two-particle cuts involving
the one-loop amplitude and performing multiple cuts until
everything is reduced to a product of tree-level amplitudes.
On one hand, this does not involve the one-loop amplitude,
and actually, such a strategy proves convenient whenever a
basis of integrals is known (such as for the planar two-loop
amplitude). On the other hand, it is more difficult to

LORENZO BIANCHI AND MARCO S. BIANCHI PHYSICAL REVIEW D 89, 125002 (2014)

125002-6



reconstruct two-loop integrals uplifting their quadruple cuts
since too many internal momenta have been put on shell.
Additionally, three-particle cuts identically vanish since
they separate the two-loop amplitude into two five-point
tree-level ones which do not exist in the ABJM theory.
Therefore, they can only provide a nontrivial check of the
relative coefficients of a set of integrals, but do not give any
hints about their numerators.
In what follows, we take an alternative point of view.

Namely, we work with cuts in strictly three dimensions and
consider a generic one-loop amplitude

~Að1Þð1̄; 2; 3̄; 4Þ
Að0Þð1̄; 2; 3̄; 4Þ ¼ iNð½1; 2; 3; 4� þ ½1; 4; 3; 2�ÞIð1; 2; 3; 4Þ

− 2i½1; 2�½3; 4�Að1; 2; 4; 3Þ
− 2i½1; 4�½2; 3�Að4; 2; 3; 1Þ; ð2:20Þ

where the object Að1; 2; 4; 3Þ is defined to be a combination
of dual conformally invariant one-loop functions I, having
the required three-dimensional cuts to reproduce the
corresponding subleading partial amplitude. In other
words, Að1; 2; 4; 3Þ can be either Ið1; 2; 4; 3Þ or
Ið1; 2; 3; 4Þ − Ið2; 4; 1; 3Þ and therefore inherits the same
symmetry properties (for example, antisymmetry under
p1 ↔ p4 in this case). As we see, depending on the cut, one
of the two choices is able to produce a physical integral,
whereas the other one is not. Our prescription consists of
choosing the physical one, plugging it into the cut, and
reconstructing the corresponding integral from this.
In particular, after performing the first two-particle cut,

we know in which channel the one-loop object we have
isolated does not possess a cut. As stated above, this
condition can be verified by just one box function or a
combination of two. These are conveniently selected by
inspecting which are antisymmetric in the momenta of
the given channel. As an example, both Ið1; 2; 4; 3Þ and
Ið1;2;3;4Þ−Ið2;4;1;3Þ have vanishing three-dimensional
t-channel cut since they are antisymmetric in p1 ↔ p4.
Then, as a rule of thumb, we observe that the physical
choice is always to use one single one-loop integral instead
of the difference of two.2 Since we have seen that they

differ at order ϵ by an imaginary part, we expect a spurious
imaginary contribution in the two-loop integrals also. We
observe that this is indeed the case by explicitly computing
the unphysical integral arising in the calculation of the
subleading form factor.
Having gained an insight into the integrals appearing in

the two-loop computation by the method outlined above,
we then verify that they correctly satisfy the requirements
from generalized quadruple and triple cuts, which are safely
free from ambiguities.
Since the objects A are only defined through their cuts,

our procedure might look like performing a quadruple
cut. However, our prescription contains more information
because we also assume that the additional cut uplifts to a
one-loop box function. This puts crucial constraints on the
numerator of the two-loop integral, which a quadruple cut
would overlook.

B. The two-loop amplitude

The two-loop four-point amplitude was determined in
the planar limit from unitarity and by Feynman supergraphs
in [18] and [61], respectively. The color structure of the
planar two-loop amplitude is the same as the tree-level one;
hence, we can define the ratio between the complete
amplitudes

M4 ≡
~Að2Þð1̄; 2; 3̄; 4Þ
~Að0Þð1̄; 2; 3̄; 4Þ:

ð2:21Þ

The unitarity computation was performed by setting a basis
of dual conformally invariant integrals and then fixing
their coefficients imposing double two-particle and three-
particle cuts. The outcome of this analysis is that the two-
loop amplitude is correctly reproduced by the combination3

M4jplanar ¼ DBPðs; tÞ þDBPðt; sÞ þDTPðsÞ þDTPðtÞ
≡ IPðs; tÞ þ IPðt; sÞ; ð2:22Þ

where we have suppressed the coupling constant. The
integral

DBPðs; tÞ ¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

½sTrðlp1p4Þ þ l2Trðp1p2p4Þ�½sTrðkp1p4Þ þ k2Trðp1p2p4Þ�
tl2ðlþ p3 þ p4Þ2ðlþ p4Þ2ðk − lÞ2k2ðk − p1 − p2Þ2ðk − p1Þ2

ð2:23Þ

is a planar double box whose numerator was shown to be dual conformally invariant, with a five-dimensional analysis [18].
By expanding the traces, this can be decomposed into scalar integrals, which are also dual conformally invariant [18,55].
Among these, there appears the double-triangle

3The relative sign between the integrals is different from previous results that have appeared in the literature due to different
conventions.

2This choice is supported also by the d-dimensional analysis of Appendix D.
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DTPðsÞ ¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

s2

l2ðlþ p3 þ p4Þ2ðk − lÞ2k2ðk − p1 − p2Þ2
ð2:24Þ

contributing to (2.22). We observe that the sum DBPðs; tÞ þ DTPðsÞ not only satisfies the cuts but also entails a pleasing
cancellation of unphysical infrared divergences which plague the two integrals separately even with off-shell external
momenta. This leaves only physical infrared divergences in the amplitude, descending from the massless nature of the
scattered particles [55]. Moreover, we note that the object IPðs; tÞ is maximally transcendental since DTPðsÞ exactly
cancels the lower transcendentality parts of DBPðs; tÞ, as can be easily ascertained from their explicit expressions (B.28)
and (B.29)

IPðs; tÞ ¼ −
1

16π2

�
seγE

4πμ2

�
−2ϵ

�
1

ð2ϵÞ2 þ
log 2þ 1

2
log s

t

2ϵ
− 2ζ2 − log22þOðϵÞ

�
: ð2:25Þ

Using such results, the amplitude takes the explicit form

M4jplanar ¼
�
N
K

�
2
�
−
ð−s=μ02Þ−2ϵ þ ð−t=μ02Þ−2ϵ

ð2ϵÞ2 þ 1

2
log2

s
t
þ 2π2

3
þ 3log22

�
; ð2:26Þ

where the dimensional regularization mass scale has been
redefined as μ02 ¼ 8πe−γEμ2. This expression is surprisingly
similar to the one-loop N ¼ 4 SYM result [18,61,62] and
matches the four-cusped Wilson loop computation [63–65],
hinting at a possible amplitude/Wilson loop duality [66–69]
in three dimensions. In the planar limit, the two-loop
six-point amplitude has also been computed [19].
The color subleading corrections to the four-point

amplitude were first derived in [38] by a Feynman diagram
computation. Using N ¼ 2 superspace formalism and a
clever choice of the external particles makes the evaluation
of such contributions feasible. In fact, it boils down to

summing over permutations of the external legs in the set
of graphs already contributing to the leading amplitude,
with the addition of just one genuinely nonplanar diagram.
The corresponding nonplanar integral turns out to be easily
computable since in particular it depends on a single
momentum invariant.
The color analysis reveals that only single-trace partial

amplitudes appear at two loops, in the same antisymmetric
fashion ½1; 2; 3; 4� − ½1; 4; 3; 2�, as for the tree level ampli-
tude. Therefore, one can consider a ratio between the
complete two-loop and tree-level amplitudes giving the
finite N result

M4 ¼
�
N
K

�
2
�
−
ð−s=μ02Þ−2ϵ þ ð−t=μ02Þ−2ϵ

ð2ϵÞ2 þ 1

2
log2

s
t
þ 2π2

3
þ 3log22

�

þ 1

K2

�
2
ð−s=μ02Þ−2ϵ þ ð−t=μ02Þ−2ϵ − ð−u=μ02Þ−2ϵ

ð2ϵÞ2 þ 2 log
s
u
log

t
u
þ π2

3
− 3log22

�
; ð2:27Þ

which is still maximally transcendental, given that the
additional nonplanar integrals are. In the rest of the paper,
we reproduce this result from a cut analysis. To do this, we
start with a simpler case, namely the subleading corrections
to the Sudakov form factor.

III. THE COLOR SUBLEADING SUDAKOV
FORM FACTOR FROM UNITARITY

Following the computation of [37], we determine the
subleading correction to the Sudakov form factor in ABJM
for a scalar bilinear 1=2-BPS operator. As in [37], we start
from a two-particle cut in three dimensions, dividing the
two-loop form factor into a tree-level one and a four-point
one-loop amplitude.
Since we choose a particular projection of the 1=2-BPS

operator, we work with particular component amplitudes,

which can be extracted from the corresponding super-
amplitude selecting the correct coefficient of its η expan-
sion. This procedure was successfully applied for the color
leading part, as checked against explicit Feynman diagram
computations [38,70].
As we mentioned in Sec. II, there are two different

ways to obtain the correct cuts for the one-loop amplitude

FIG. 1. Two-particle cut of the Sudakov form factor.
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(restricting to cuts in three dimensions): (2.12) and (2.14).
Therefore, the two-particle cut shown in Fig. 1 contains an
ambiguity given by the choice of the expression for the
subleading one-loop partial amplitude on the right-hand
side (r.h.s.) of the cut. Analyzing in detail the example of
the form factor, we provide a prescription to solve this
ambiguity and show that a different method gives an
unphysical contribution coming from the imaginary part
contained on the r.h.s. of Eq. (2.19).
To get a deeper insight into the kind of diagrams which

can appear in the expression of the two-loop form factor, let
us first consider the color factors associated to the quad-
ruple cuts shown in Fig. 2. For the first case, combining the
color structures of the form factor and the tree-level
amplitudes one gets

CP ¼ ½l2; l1�ð½l1; l2; l3; l4� − ½l1; l4; l3; l2�Þð½l3; l4; 2; 1�
− ½l3; 1; 2; l4�Þ ¼ 0: ð3:1Þ

This clearly shows that this quadruple cut vanishes, and we
cannot expect any two-loop integral admitting this kind

of cut. This strikingly contrasts with SYM theory in four
dimensions, due to the different color flux of the diagrams.
In the second double cut, the color factor reads

CNP ¼ ½l2; l1�ð½l1; l3; 2; l4� − ½l1; l4; 2; l3�Þð½l3; 1; l4; l2�
− ½l3; l2; l4; 1�Þ

¼ −2ðN2 − 1Þ½1; 2�: ð3:2Þ

As pointed out already forN ¼ 4 SYM in [11] and then
for ABJM in [37], nonplanar topologies contribute to the
color-leading part of the form factor. In particular for
ABJM, the color-leading part was shown to be given by
a single nonplanar maximally transcendental integral

Fð2Þðp̄1; p2Þ ¼
N2

k2
XTðq2Þ: ð3:3Þ

The integral XT is shown in Fig. 3, and its explicit
expression is

XTðq2Þ ¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

q2ðTrðp1p2lkÞ − q2k2Þ
l2ðl − qÞ2k2ðl − kÞ2ðl − k − p2Þ2ðk − p1Þ2

; ð3:4Þ

where q2 ¼ ðp1 þ p2Þ2.
Using the cut in Fig. 1 and the information coming from

the color factors (3.1) and (3.2), we compute the color
subleading part of the two-loop form factor. First, let us
note that since the first cut in Fig. 2 is identically vanishing
on the r.h.s. of the cut in Fig. 1 we cannot expect any

one-loop integral having a cut in the channel q2. As
outlined in Sec. II, we use the additional information that
the one-loop amplitude is expressed just in terms of the box
function (2.8) and conclude that only two possible combi-
nations can appear on the r.h.s. of the two-particle cut.
Indeed, only Ið1;−l1; 2;−l2Þ and Ið1; 2;−l1;−l2Þ −
Ið1; 2;−l2;−l1Þ have no cut in the q2 channel. With this
restriction in mind, we evaluate explicitly the two-particle
cut with the two expressions of the one-loop amplitude
given in Sec. II. The integrand is given by

Fð2Þðp̄1;p2Þjq2-cut
¼Fð0Þðl̄2;l1Þ½l2;l1� ~Að1Þ

4 ðϕ̄Aðp1Þ;ϕ4ðp2Þ;ϕ̄4ð−l1Þ;ϕAð−l2ÞÞ:
ð3:5Þ

Using the form (2.12) for the one-loop amplitude, we
obtain

FIG. 2. Double cuts of the Sudakov form factor.

FIG. 3. Diagram XTðq2Þ.
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Fð2Þðp̄1; p2Þjq2-cut ¼ i
h12ih1l1i
h2l1i

½N2Ið1;−l1; 2;−l2Þ

− Ið1; 2;−l1;−l2Þ
þ Ið1; 2;−l2;−l1Þ�: ð3:6Þ

In this expression, we note the appearance of the integrals
expected from the quadruple cut restrictions. In particular,
the color-leading part is given by a single one-loop integral,
while the subleading part is given by a difference which
respects, as pointed out in Sec. II, the symmetries and the
cut requirements.
Using expression (2.14) for the one-loop amplitude, the

result is instead

Fð2Þðp̄1;p2Þjq2-cut ¼ i
h12ih1l1i
h2l1i

½N2ðIð1;2;−l1;−l2Þ

− Ið1;2;−l2;−l1ÞÞþ Ið1;−l1;2;−l2Þ�:
ð3:7Þ

It is easy to note that the leading and subleading parts of the
form factor are interchanged between Eqs. (3.6) and (3.7).
Stated differently, the ambiguity in the calculation of the
one-loop amplitude is translated into the possibility of
exchanging Ið1; 2;−l1;−l2Þ − Ið1; 2;−l2;−l1Þ and
Ið1;−l1; 2;−l2Þ in the two-loop computation. Moreover,
the analysis of the color factor (3.2) shows that the
subleading result should have a contribution exactly equal
to the leading one.
Therefore, one would be very tempted to trade

Ið1; 2;−l1;−l2Þ − Ið1; 2;−l2;−l1Þ with Ið1;−l1; 2;−l2Þ.
However, Eq. (2.19) clearly states that these two integrals
differ by an imaginary part at order ϵ. Moreover, when one
tries to use the first combination to compute the subleading
part of Eq. (3.6), the emerging integral contains spurious
propagators. Explicitly, upon putting back the cut propa-
gators, we can uplift the cut to the two-loop integral

Z
ddl
ð2πÞd

ddk
ð2πÞd

sTrðlp1p2ÞTrðkp1p2Þ
l2ðl − p1 − p2Þ2ðl − p2Þ2ðk − lÞ2k2ðk − p1 − p2Þ2ðk − p1Þ2

ð3:8Þ

looking like the DBP double box at the special kinematic
point p3 ¼ −p1 and p4 ¼ −p2. Therefore, we can derive
an expression for such an integral by setting t ¼ −s in the
result (B.28) for the double box. This indeed translates into
an unphysical imaginary part, which we argue is related to
the choice between the two possible integrals with no cut in
the q2 channel. Indeed, in the kinematic configuration
corresponding to the cut,4 the integral Ið1;−l1; 2;−l2Þ is
purely real, as expected since it has no cut in that channel,
whereas Ið1; 2;−l1;−l2Þ − Ið1; 2;−l2;−l1Þ develops an
unphysical imaginary part.
Hence, we conclude that a valid prescription to eliminate

the ambiguity in the form of the one-loop amplitude is to
replace the unphysical combination Ið1; 2;−l1;−l2Þ −
Ið1; 2;−l2;−l1Þ by the integral Ið1;−l1; 2;−l2Þ. This
recipe is further used and developed in the calculation of
the amplitude.
As far as the form factor is concerned, this replacement

immediately makes Eqs. (3.6) and (3.7) equal to each other
and gives the simple result

Fð2Þðp̄1; p2Þjq2-cut ¼ i
h12ih1l1i
h2l1i

ðN2 − 1ÞIð1;−l1; 2;−l2Þ:

ð3:9Þ

Then the leading and subleading contributions to the form
factor are exactly equal, and using the result of [37], we can
write down the whole two-loop form factor as

Fð2Þðp̄1; p2Þ ¼
N2 − 1

k2
XTðq2Þ: ð3:10Þ

As a consistency check, this integral was also shown in [37]
to be compatible with the vanishing of three-particle cuts.
Substituting the explicit expression of the integral and

introducing the same scale μ02 ¼ 8πe−γEμ2 as for the
amplitude, the result reads

Fð2Þðp̄1; p2Þ ¼
N2 − 1

K2

�
−q2

μ02

�−2ϵ

×

�
−

1

ð2ϵÞ2 þ
3

2
log22þ π2

6
þOðϵÞ

�
:

ð3:11Þ

This expression agrees with the Feynman diagram compu-
tation of [38,70].
We remark that from this result [and consistently from

the leading infrared poles of the amplitude (2.27) and of the
four-cusps Wilson loop [38]] we can read the leading value
of the scaling function f of ABJM at weak coupling. In
contrast to N ¼ 4 SYM in four dimensions,5 a nonplanar
contribution emerges already at leading order. Defining the
’t Hooft coupling λ≡ N=K, the scaling function at finite N
reads

4With our conventions, we choose a configuration with q2 > 0.

5In N ¼ 4 SYM, there are no nonplanar corrections to the
cusp anomalous dimension up to three loops. At four loops, it is
not known whether such a contribution could arise. We thank
Gang Yang for pointing this out to us.
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fABJM ¼ 4λ2
�
1 −

1

N2

�
− 24ζð2Þλ4 þOðλ6Þ þOðλ4=N2Þ:

ð3:12Þ

IV. CONSTRUCTING THE INTEGRAND
FOR THE TWO-LOOP AMPLITUDE

In this section, we undertake a constructive approach for
the two-loop four-point subleading partial amplitude based
on unitarity, in a similar fashion as for the form factor.
Namely, we find out what the basis of integrals is for

such a quantity by inspecting its two-particle cuts and
uplifting them to proper two-loop integrals. This is done by
fusing a tree level and a one-loop four-point amplitude as in
Fig. 4. We work with superamplitudes on both sides of the
cut, integrating over the Grassmann variables of the cut
legs. The remaining spinor structure factorizes along with
the kinematic pieces of the tree-level four-point super-
amplitude in front of the integrals.
By combining the different color-ordered structures

appearing in the complete amplitudes, we find the color-
leading and subleading contributions to a given two-loop
partial amplitude. Such a computation demonstrates the
absence of double-trace contributions at two loops, propor-
tional to N. Then both the N2 leading and the N0

subleading single trace contributions are proportional to
the same ½1; 2; 3; 4� − ½1; 4; 3; 2� color structure appearing at
tree level. This means that the ratio between the two-loop
and the tree-level amplitudes can be taken both at the level
of the color-dressed amplitudes ~A or the color-stripped
ones A. Thus, we work with partial amplitudes to avoid
clutter in the equations. We also suppress the coupling
constant factor 1=k2, which is understood in all two-loop
computations.
The procedure outlined above can give an ambiguous

answer, which misses integrals that vanish in the selected
channel of the cuts. Such ambiguities can be nevertheless
fixed by inspection of other cuts, such as three-particle
ones, and consistency among the various channels.
More severe ambiguities arise from the one-loop func-

tion as described in Sec. II and can be traced back to the
fact that it is subleading in ϵ, whereas we are performing
three-dimensional cuts. Nevertheless, we are able to find a
sensible answer by the same prescription used for the form
factor based on the cuts of the one-loop amplitude and the
fact that it is expressed in terms of the box function (2.8).

A. The planar integrand

As a warm-up, we first derive the already known planar
two-loop contribution [18,61] by fusing the tree-level four-
point amplitude with the one-loop color-leading one. We
spell out the computation for one of the two-particle cuts in
the s channel shown in Fig. 4; all other cuts evaluate
similarly upon exchange of momentum labels.

For simplicity, we select the color leading contribution
(proportional to N2) to the partial amplitude [1,2,3,4]

Að2Þ
4 ð1̄; 2; 3̄; 4Þjs-cut
¼ iN2

Z
d3ηl1d

3ηl2A
ð0Þ
4 ð1̄; 2;−l̄2;−l1Þ

×Að0Þ
4 ðl̄1; l2; 3̄; 4ÞIð1; 2;−l2;−l1Þ; ð4:1Þ

where I stands for the one-loop box function (2.8).
Performing the integrals over the spinor variablesweget [37]

Z
d3ηl1d

3ηl2A
ð0Þ
4 ð1̄; 2;−l̄2;−l1ÞAð0Þ

4 ðl̄1; l2; 3̄; 4Þ

¼ Að0Þ
4 ð1̄; 2; 3̄; 4Þ sTrðl1p1p4Þ

ðl1 − p1Þ2ðl1 þ p4Þ2
ð4:2Þ

in the cut configuration and with l2 ¼ −l1 þ p1 þ p2. Then
the planar cut in the s channel reads

Að2Þ
4 ð1̄;2; 3̄;4Þjs-cut
¼ iN2Að0Þ

4 ð1̄;2; 3̄;4Þ sTrðl1p1p4Þ
ðl1−p1Þ2ðl1þp4Þ2

Ið1;2;−l2;−l1Þ:
ð4:3Þ

Using the explicit expression of the one-loop box function,6

we can manipulate the expression from the cut, and reinstat-
ing thecut propagators,wecanuplift it to aFeynman integral.
For instance, setting l≡ l1, we can rewrite the cut integral as

Z
ddk
ð2πÞd

�
sTrðlp1p4ÞðsTrðkp1p4Þ þ k2Trðp1p2p4ÞÞ
tðlþ p4Þ2k2ðk − p1Þ2ðk − p1 − p2Þ2ðk − lÞ2

þ s2

k2ðk − p1 − p2Þ2ðk − lÞ2
�
¼ IPðs; tÞjl2¼ðlþp34Þ2¼0;

ð4:4Þ

which manifestly coincides with the same cut of the integral
function IPðs; tÞ ¼ DBPðs; tÞ þDTPðs; tÞ appearing in the
two-loop amplitude (2.22). From the form of (4.4), uplifting

FIG. 4. One of the two s-channel two-particle cuts of the two-
loop amplitude. The blob stands for a one-loop amplitude.

6We cancel the factor i in front of (4.3) with that in the
integration measure of I in the definition (2.8) so that the final
two-loop integral has the standard measure ddkddl

ð2πÞ2d .
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the cut to an integral,we only partially reconstruct the correct
function, which can be determined imposing consistency
with the other two- and three-particles cuts.
Indeed, a similar analysis can be carried out for the other

two-particle cuts in the s and t channels. Combining the
two s-channel cuts strongly suggests the final form for the
numerator of the double-box appearing in the dual con-
formally invariant integrand (2.23) of IPðs; tÞ. The cuts in
the t channel give rise to the integral IPðt; sÞ. A nontrivial
consistency check that the final combination IPðs; tÞ þ
IPðt; sÞ is the right one is that its three-particle cuts in the s
and t channels vanish. This is a consequence of the absence
of amplitudes with an odd number of external particles in
the ABJM theory. Such an analysis was thoroughly carried
out in [18], which shows that the aforementioned combi-
nation of integrals has indeed vanishing three-particle cuts.
We anticipate that the fact that this symmetric combination
of double-box integrals is free of three-particle cuts will
also provide a useful criterion for fixing their coefficients in
the color subleading partial amplitude.

B. The nonplanar integrand

We now turn to the computation of the subleading con-
tributions to the amplitude. Again, we reconstruct the relevant
integral topologies from the analysis of two-particle cuts.
Taking the same channel as in the planar example of

the previous section, we can ascertain that only the partial
amplitude corresponding to the ½1; l1�½2; l2� color structure
contributes to the subleading part of the amplitude.
Using the prescription explained in Sec. II, we plug
Að1Þ

4 ð1;−l1; 2;−l2Þ in the form (2.20) into the cut

Að2Þ
4 ð1̄; 2; 3̄; 4Þjs-cut
¼ i

Z
d3ηl1d

3ηl2A
ð0Þ
4 ð1̄; 2;−l̄2;−l1ÞAð0Þ

4 ðl̄1; l2; 3̄; 4Þ

× ðN2Ið1; 2;−l2;−l1Þ þ 2Að1;−l1; 2;−l2ÞÞ; ð4:5Þ

where Að1;−l1; 2;−l2Þ was defined in (2.20). In particular,
we note that the other subleading partial amplitude
Að1; 2;−l1;−l2Þ does not contribute to this cut since
combining it with the tree-level amplitude gives an iden-
tically vanishing double-trace color structure N [12][34].
An analogous contribution from color contracting the
tree-level amplitude with the leading part of the one-loop
amplitude also vanishes by the symmetry properties of the
tree level color structures. This implies that no double-trace
contributions arise from this cut, as anticipated above.
As occurred for the subleading corrections to the Sudakov

form factor, we find that the choice Að1;−l1; 2;−l2Þ ¼
Ið1;−l1;−l2; 2Þ − Ið−l1; 2; 1;−l2Þ generates an unphysical
result, namely a cut descending from some two-loop
integral with a spurious denominator. We conclude that
we have to use the other possible form Að1;−l1; 2;−l2Þ ¼
Ið1;−l1; 2;−l2Þ, and hence, we consider

Að2Þ
4 ð1̄; 2; 3̄; 4Þjs-cut
¼ i

Z
d3ηl1d

3ηl2A
ð0Þð1̄; 2;−l̄2;−l1ÞAð0Þðl̄1; l2; 3̄; 4Þ

× ðN2Ið1; 2;−l2;−l1Þ þ 2Ið1;−l1; 2;−l2ÞÞ: ð4:6Þ

Since we already analyzed the leading part in the previous
section, we now focus on the subleading contribution only.
Performing similar steps as for the color leading case,we find

Að2Þ
4 ð1̄; 2; 3̄; 4Þjs-cut ¼ Að0Þð1̄; 2; 3̄; 4ÞCs; ð4:7Þ

where

Cs ¼
2isTrðl1p1p4Þ

ðl1 − p1Þ2ðl1 þ p4Þ2
Ið1;−l1; 2;−l2Þ: ð4:8Þ

We observe that Ið1;−l1; 2;−l2Þ is antisymmetric under the
exchange ofp1 andp2. Consequently,we are allowed to take
the antisymmetric part of the prefactor, giving

Cs ¼ is

�
Trðl1p1p4Þ

ðl1 − p1Þ2ðl1 þ p4Þ2
−

Trðl1p2p4Þ
ðl1 − p2Þ2ðl1 þ p4Þ2

�

× Ið1;−l1; 2;−l2Þ: ð4:9Þ

Rewriting it in terms of spinor products and then using the
Schouten identity (A4), we find

Trðl1p1p4Þ
ðl1 − p1Þ2ðl1 þ p4Þ2

−
Trðl1p2p4Þ

ðl1 − p2Þ2ðl1 þ p4Þ2
¼ h12i

hl11ihl12i
:

ð4:10Þ
After these manipulations, p4 disappears completely from
the calculation of the cut. Plugging the explicit form of
Ið1;−l1; 2;−l2Þ [which we shift to −Ið−l1; 2;−l2; 1Þ in
order not to have an explicit dependence on l2] we can
cast (4.9) into the form

Cs ¼
Z

ddk
ð2πÞd

sðTrðp1p2lkÞ þ k2sÞ
k2ðkþ lÞ2ðkþ l − p2Þ2ðkþ p1Þ2

: ð4:11Þ

Therefore, the integral appearing in the s-channel cut only
depends on s. If we now reinstate the cut propagators l2 and
ðl − p1 − p2Þ2 (and send k → −k), we find precisely the
same nonplanar integral appearing in the computation of the
form factor, namely

−
Z

ddl
ð2πÞd

ddk
ð2πÞd

sðTrðp1p2lkÞ−sk2Þ
l2ðl−p12Þ2k2ðl−kÞ2ðk− lþp2Þ2ðk−p1Þ2

¼−XTðsÞ: ð4:12Þ

A completely parallel analysis can be performed for the
other s- and t-channel two-particle cuts, leading again to
integrals of the topology XT in all the four cyclic
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permutations of the external legs. Since such integrals
depend on one invariant, only these are automatically
pairwise identical, and the result can be summarized
as −2XTðsÞ − 2XTðtÞ.
The two-particle cuts in the u channel are slightly

different from the others. From the analysis of the color
algebra, it turns out that there is no leading contribution,
unlike the s- and t-channel cases. Explicitly, we can select
one of the u-channel cuts, and its expression reads

Að2Þ
4 ð1̄; 2; 3̄; 4Þju-cut
¼ i

Z
d3ηl1d

3ηl2A
ð0Þ
4 ð1̄;−l1; 3̄;−l2ÞAð0Þ

4 ðl̄1; 2; l̄2; 4Þ

× ð2Að1; 3;−l2;−l1Þ þ 2Að1; 3;−l1;−l2ÞÞ: ð4:13Þ

In this case, one can show that

Z
d3ηl1d

3ηl2A
ð0Þ
4 ð1̄;−l1; 3̄;−l2ÞAð0Þ

4 ðl̄1; 2; l̄2; 4Þ

¼ Að0Þ
4 ð1̄; 2; 3̄; 4Þ 1

2

�
uTrðl1p3p4Þ

ðl1 − p3Þ2ðl1 þ p4Þ2

þ uTrðl2p3p4Þ
ðl2 − p3Þ2ðl2 þ p4Þ2

�
; ð4:14Þ

where the factor 1
2
has to be introduced to account for

identical particles running in the loop [37]. With this
prescription, we find

Að2Þ
4 ð1̄; 2; 3̄; 4Þju-cut ¼ Að0Þ

4 ð1̄; 2; 3̄; 4ÞCu; ð4:15Þ

where

Cu ¼ i

�
uTrðl1p3p4Þ

ðl1 − p3Þ2ðl1 þ p4Þ2
þ ðl1 ↔ l2Þ

�

× ðAð1; 3;−l2;−l1Þ þ ðl1 ↔ l2ÞÞ: ð4:16Þ

In both the prefactor and in the combination of the A
functions, it can be proved that the manifest symmetry
under the exchange of l1 and l2 is equivalent to that under
p1 ↔ p3, giving explicitly

Cu ¼ i

�
uTrðl1p3p4Þ

ðl1 − p3Þ2ðl1 þ p4Þ2
þ uTrðl1p1p4Þ
ðl1 − p1Þ2ðl1 þ p4Þ2

�

× ½Að1; 3;−l2;−l1Þ þ Að3; 1;−l2;−l1Þ�: ð4:17Þ

Putting a common denominator in the prefactor, one
obtains a sum of spinor products in the numerator, which
can be further massaged by means of the Schouten identity
(A4). We can separate two different pieces multiplying
Að1; 3;−l2;−l1Þ and Að3; 1;−l2;−l1Þ, respectively, and act
with the Schouten identity in a different fashion in each of
the parts. In the end, recombining everything we obtain the
following expression:

Cu ¼ 2i

�
uTrðl1p3p4Þ

ðl1 −p3Þ2ðl1þp4Þ2
Að3;1;−l2;−l1Þþ ðp1 ↔ p3Þ

�

þ uTrðl1p1p3Þ
ðl1 −p1Þ2ðl1−p3Þ2

× ½Að1;3;−l2;−l1Þ−Að3;1;−l2;−l1Þ�: ð4:18Þ

By means of the symmetry and cut properties of A, the
combination in the second line is actually equivalent to
Að−l1; 3;−l2; 1Þ. At this point, we replace the objects A
with corresponding box integrals I. We find that the only
sensible choice, which does not produce any unphysical
integrals, is Að3; 1;−l2;−l1Þ → Ið3; 1;−l2;−l1Þ and
Að−l1; 3;−l2; 1Þ → Ið−l1; 3;−l2; 1Þ. After analogous cos-
metics as for the other channels, we arrive at the following
form for the cut

Cu ¼
Z

ddk
ð2πÞd

�
2u

�
Trðlp3p4Þ½uTrðkp3p4Þ þ k2Trðp3p1p4Þ�

sðlþ p4Þ2k2ðk − p3Þ2ðk − p1 − p3Þ2ðk − lÞ2 þ ðp1 ↔ p3Þ
�

þ 4
u2

ðk − lÞ2k2ðk − p1 − p3Þ2
þ uðTrðp1p3lkÞ þ uk2Þ
k2ðkþ lÞ2ðkþ l − p3Þ2ðkþ p1Þ2

�
: ð4:19Þ

The part of the cut in the first line, along with the first
contribution of the second one, clearly arises from the
planar double-box topology 2IPðu; sÞ þ 2IPðu; tÞ, as can
be seen by comparing to (4.4) and making suitable replace-
ments of momentum labels. The remaining part of the cut
uplifts to the integral −XTðuÞ.
By inspection of the other u-channel cut, we find again

the same planar double-box topologies and another
−XTðuÞ, which, however, originates from a different

choice of external legs and consequently has to be counted
twice.
Combining everything gives

2ðIPðu;sÞþIPðu;tÞ−XTðsÞ−XTðtÞ−XTðuÞÞ: ð4:20Þ

It remains to check the consistency of this combination of
integrals by imposing the vanishing of three-particle cuts.
This is automatic for the XT integrals, as verified in [37]
because they appear in the computation of the form factor.
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The sum IPðu; sÞ þ IPðu; tÞ has nonvanishing three-
particle cuts. The cut analysis performed for the leading
amplitude then suggests how to cancel them; namely, we
add to them their counterpart with symmetrized invariants

2ðIPðu; sÞ þ IPðs; uÞ þ IPðu; tÞ þ IPðt; uÞÞ: ð4:21Þ

This cannot be the complete answer since the addition of,
e.g., the IPðs; uÞ integral should have been detected by the
s-channel quadruple cut and similarly for IPðt; uÞ. We can
solve this puzzle by adding a contribution which preserves
the vanishing of three-particle cuts and cancels the con-
tribution of IPðs; uÞ and IPðt; uÞ to the quadruple cuts.
This contribution, as was shown in [18], is given by
−2IPðs; tÞ − 2IPðt; sÞ. Indeed, the difference IPðs; uÞ −
IPðs; tÞ possesses a vanishing quadruple cut due to its
symmetries. Henceforth, our final result for the leading and
subleading contribution to the two-loop amplitude reads

M4 ¼ N2ðIPðs; tÞ þ IPðt; sÞÞ
− 2ðXTðsÞ þXTðtÞ þXTðuÞÞ
þ 2ðIPðu; sÞ þ IPðs; uÞ þ IPðu; tÞ
þ IPðt; uÞ − IPðs; tÞ − IPðt; sÞÞ: ð4:22Þ

We can successfully check that this combination indeed
reproduces the known result from a Feynman diagram
computation (2.27), which provides the best test on the
validity of our procedure.
In particular, we note that, as in the Feynman diagram

computation, the nonplanar topologies only contribute
through the simple integrals XT, depending on one scale
only.
Finally, setting N ¼ 2 in (4.22), one can get the BLG

two-loop four-point amplitude ratio

MBLG
4 ¼ 2ðIPðu; sÞ þ IPðu; tÞ þ IPðs; uÞ þ IPðs; tÞ

þ IPðt; uÞ þ IPðt; sÞ −XTðsÞ
−XTðtÞ −XTðuÞÞ; ð4:23Þ

which takes a manifestly totally symmetric form at the level
of the integrals.

V. AN ALTERNATIVE ANSATZ FOR THE
INTEGRAL BASIS

In this section, we rederive the result for the two-loop
subleading partial amplitude following a reverse logic with
respect to the previous one. Namely, we formulate a guess
on the integral basis for the amplitude and fix the relative
coefficients by demanding that the quadruple and triple cuts
are satisfied.
Given that the color-leading amplitude can be expressed

in terms of a double box with a particular numerator
making it dual conformally invariant, the natural guess is to
expect a nonplanar version of it to appear in the subleading
contribution. It remains to determine its correct numerator.
Unfortunately, unlike the planar case, we cannot use dual
conformal invariance as a guiding principle, since we do
not expect the nonplanar correction to enjoy this symmetry,
by analogy with the four-dimensional case.
For Yang-Mills theory, the BCJ identities can be used to

find relations among the numerators in the planar and
nonplanar integrals [22]. The BCJ relations connect differ-
ent tree-level partial amplitudes through a Jacobi identity.
By means of unitarity, one can divide a loop amplitude into
tree-level subamplitudes and apply the BCJ on these. This
in turn imposes constraints on the numerators of triples of
loop integrals.
Analogous relations between color-ordered partial

amplitudes have been derived for ABJM [56] and more
general models with bifundamental scattered particles [35].
In contrast to Yang-Mills theory, which possesses a Lie
algebra color structure, bifundamental theories like ABJM
have an underpinning three-algebra pattern, with a four-
indexed structure constant. This entails BCJ identities that
are present for the ABJM theory up to six points and extend
to all multiplicities for BLG theory.
The nontrivial six-point identity involves four terms and

is diagrammatically formulated in terms of four-line ver-
tices. These are absent in our integral topology; therefore,
we cannot apply them.
More simply, we take inspiration from the BLG theory

where the tree-level four-point amplitude can be expressed
as depending on a totally antisymmetric structure constant
fabcd ∝ ϵabcd. We consider the planar integral DBP whose
explicit form we recall here for convenience:

DBPðs; tÞ ¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

½sTrðlp1p4Þ þ l2Trðp1p2p4Þ�½sTrðkp1p4Þ þ k2Trðp1p2p4Þ�
tl2ðlþ p3 þ p4Þ2ðlþ p4Þ2ðk − lÞ2k2ðk − p1 − p2Þ2ðk − p1Þ2

: ð5:1Þ

Next we can perform a cut in the amplitude isolating
a four-point subamplitude, as in Figure 5. For BLG
theory, such an amplitude is totally antisymmetric under
the exchange of external labels. We can now obtain a
nonplanar integral topology by permuting two legs of
this amplitude as shown in Figure 5. This involves

the replacement of the propagator ðk − p12Þ−2 by
ðk − l − p2Þ−2, which can also be seen as replacing
p2 → −p12 þ l in the cut subamplitude.
Then, using the antisymmetry of the four-point sub-

amplitude, we see that in BLG theory an identity should
hold between the numerators of the planar and nonplanar
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integrals. Namely, the two numerators should be opposite,
provided that the cut conditions hold and the aforemen-
tioned replacement in the involved momenta is made so that
the cut momenta coincide. This constraint can be surely

fulfilled (up to a sign) if we just perform the replacement
p2 → −p12 þ l in the relevant part of the planar integral
numerator. As a result, we obtain the nonplanar double-box
integral

DBNP ≡
Z

ddlddk
ð2πÞ2d

½sTrðlp1p4Þ þ l2Trðp1p2p4Þ�½ðl − p2Þ2Trðkp1p4Þ þ k2Trðp1ðl − p2Þp4Þ�
tl2ðlþ p3 þ p4Þ2ðlþ p4Þ2k2ðk − lÞ2ðk − lþ p2Þ2ðk − p1Þ2

: ð5:2Þ

As in the planar case, this integral could be accompanied by
a simpler topology. Again we make an ansatz for it by
performing the same operation as above on the integral
DTP, giving

DTNPðsÞ

≡
Z

ddl
ð2πÞd

ddk
ð2πÞd

sðl−p2Þ2
l2ðlþp3þp4Þ2ðk− lÞ2k2ðk− lþp2Þ2

:

ð5:3Þ

According to the BLG BCJ identity above, the nonplanar
integrals should appear with a relative minus sign with
respect to the planar ones. Since we also want to extend the
amplitude computation to the ABJM theory, we disregard
such signs and simply propose that a combination of the
planar DBP, DTP and the nonplanar DBNP and DTNP
integrals7 gives the subleading partial amplitude at two
loops.
In fact, by performing quadruple and triple cuts as in

Fig. 6, we are able to fix the relevant coefficients of the
integrals. The requirement is that the former give the
product of three four-point tree-level amplitudes, whereas
the latter vanish. This must be the case since three-particle
cuts separate the two-loop amplitude into two five-point
tree-level amplitudes, which identically vanish in ABJM
[18,41]. The result of such an analysis reads:

M4 ¼ N2ðIPðs; tÞ þ IPðt; sÞÞ − 4ðINPðs; t; uÞ
þ INPðu; s; tÞ þ INPðt; u; sÞÞ
þ 2ðIPðu; sÞ þ IPðu; tÞ þ IPðs; uÞ − IPðs; tÞ
þ IPðt; uÞ − IPðt; sÞÞ; ð5:4Þ

where we have defined

INPðs; t; uÞ≡DBNPðs; t; uÞ þ DTNðsÞ ð5:5Þ

in a similar fashion to the planar case. The sum over the S3
permutations of the external legs in the INP integrals has

been rewritten in (5.4) as a sum over the cyclic ones, adding
a factor of 2, thanks to their symmetry properties.
We now check that this is indeed a correct integral

representation of the amplitude by explicitly computing the
two-loop integrals and matching to (2.27). The hardest task
is to evaluate the two-loop nonplanar double box, which
displays a nasty numerator. We deal with it by first
expanding the product of the traces into scalar products,
and then we turn them into inverse propagators. Many of
them cancel against some denominator producing simpler
topologies, but we are also left with integrals with up to
three irreducible numerators. We simplify this massive
combination of scalar integrals by reducing them to master
integrals via integration by parts identities. We employ the
FIRE package [71] to carry out such a program, whose
details can be found in Appendix B. Then the problem boils
down to the computation of a restricted set of three-
dimensional master integrals, which we perform in
Appendix C, by writing their Mellin-Barnes representa-
tions and solving these integrals by repeated use of the
Barnes lemmas and their corollaries. The results for the
nonplanar double-box integral DBNP and for DTNP turn
out to be rather simple and are explicitly given in (B30)
and (B31).
In particular, we observe that the combination DBNP þ

DTNP appearing in the amplitude dramatically simplifies
giving (up to subleading in ϵ terms)

INPðs; t; uÞ

¼ −
1

16π2

�
−seγE
4πμ2

�
−2ϵ

×

�
1

8ϵ2
þ 2 log 2þ log u

t

8ϵ
−
1

2
ζ2 −

1

2
log22þ 1

2
log

s
u

�
:

ð5:6Þ

FIG. 5. The numerators of planar and nonplanar topologies are
constrained from color-kinematics duality.

7The topology of DTNP is actually planar, and we have loosely
referred to it as nonplanar in the sense that it emerges from the
same operation transforming the planar double box into a
nonplanar one.
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We further observe that the sum over all permutations of
external legs of such objects reduces to

X
σ∈S3

INPðσðs; t; uÞÞ ¼ XTðsÞ þXTðtÞ þXTðuÞ;

ð5:7Þ

which is manifestly maximally transcendental. Given the
identity (5.7), it is then immediate to map the result of
the amplitude in terms of double boxes (5.4) into the
previous expression (4.22), thus establishing their equiv-
alence. We have therefore verified that our ansatz for the
integral basis of the subleading partial amplitude is
indeed correct and provided an alternative formulation
for it.
Finally, we comment on the BLG amplitude. Again,

we can obtain it by setting N ¼ 2 in the ABJM result,
giving

M4 ¼ 2ðIPðs; tÞ − INPðs; t; uÞÞ þ permsð2; 3; 4Þ: ð5:8Þ

In such a form, it is clear that the numerator identity
depicted in Fig. 5 between the planar and nonplanar
integrals is verified. Indeed, by cutting the planar
double-box integral IP, we can isolate the four-point
subamplitude of Fig. 5. In BLG theory, it is proportional
to the totally antisymmetric three-algebra structure
constant fabcd. Obtaining the nonplanar topology cor-
responds to crossing two loop momenta of such a four-
point subamplitude, which entails a minus sign change
in its color factor ci → −ci. Color-kinematics duality
then prescribes that the same change should be paral-
leled by the numerators, namely Ni → −Ni, once loop
momenta have been identified. We observe that the
relative minus sign between the integral topologies IP
and INP respects this principle. Therefore, we propose
that this is the correct BCJ form of the two-loop
amplitude ratio. It would be interesting to rederive this
result from unitarity within the SOð4Þ description of
BLG theory (instead of the ABJM or bifundamental
formalism we adopted here) where the three-algebra
color structure is more manifest.

Believing that a double copy of BLG amplitudes can
reproduce gravity ones also at loop level, one should then
recover the two-loop four-point amplitude of N ¼ 16
three-dimensional supergravity by dropping color factors
and properly squaring the numerators. The resulting inte-
grals would display quite complicated numerators, and we
do not attempt to undertake such a program in this paper.

VI. THE N ¼ 8 SYM COMPLETE AMPLITUDE
AND ITS DOUBLE COPY

N ¼ 8 SYM can be obtained by dimensional
reduction of N ¼4 SYM compactifying one dimension.
Compactifying time gives an Euclidean three-dimensional
model, which can be interpreted as the infinite temperature
limit of N ¼ 4 SYM. Here we compactify a spatial
direction and consider LorentzianN ¼ 8 SYM. As pointed
out in [72], such a reduction does not affect the Feynamn
rules. Therefore, one can argue that the amplitudes in the
two theories can be expressed by the same diagrams upon
restricting the kinematics and loop momenta to three
dimensions. In particular, we can borrow results from
N ¼ 4 SYM and compute loop amplitudes for N ¼ 8
SYM by solving the relevant integrals in three dimensions.
This entails that, in the planar limit, N ¼ 8 SYM integrals
are dual conformally covariant, though not invariant. At
one loop, the computation of boxes in three dimensions
shows that amplitudes are finite and the maximally-hel-
icity-violating ones (including the four-point case) are
subleading in the dimensional regularization parameter ϵ
[72]. The computation of the four-point two-loop amplitude
was performed in [73], in the planar limit, where the only
integral appearing in the computation was a scalar planar
double box. This integral was solved in three dimensions
by Mellin-Barnes techniques [73] and is a master integral
for the reduction of the integral DBP governing the ABJM
amplitude in the large N limit.
If we now turn to color subleading contributions, the

nonplanar double-box topology appears. Indeed, following
dimensional reduction from N ¼ 4 SYM, we can expand
the complete four-point amplitude in color space. Taking
for instance the notation of [74] and the results reported
therein, the single trace subleading amplitude Að2;2Þ

½1� reads

FIG. 6. Quadruple cuts of the two-loop amplitude. The first one receives contributions from the planar integrals only and the second
from both planar and nonplanar.
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Að2;2Þ
½1� ¼ −

1

2
stAð0Þ

½1� ½sðLADðs; tÞ þNPLðs; tÞ þLADðs; uÞ þNPLðs; uÞÞ
þ tðLADðt; sÞ þ NPLðt; sÞ þLADðt; uÞ þNPLðt; uÞÞ
−2uðLADðu; sÞ þNPLðu; sÞ þLADðu; tÞ þNPLðu; tÞÞ�; ð6:1Þ

and the double-trace contribution Að2;1Þ
½7�

Að2;1Þ
½7� ¼ −2iK½sð3LADðs; tÞ þ 2NPLðs; tÞ þ 3LADðs; uÞ þ 2NPLðs; uÞÞ

−tðNPLðt; sÞ þ NPLðt; uÞÞ − uðNPLðu; sÞ þNPLðu; tÞÞ�; ð6:2Þ

where LAD and NPL stand for the planar and nonplanar
ladder master integrals. Their solutions are reported in
(B19) and (B22), respectively. The combinations appearing
in the partial amplitudes give rise to complicated expres-
sions, which are not particularly illuminating. Contrary to
the N ¼ 4 SYM, they are not maximally transcendental,
but this does not come as a surprise, since the color leading
amplitude of N ¼ 8 SYM in three dimensions does not
show uniform transcendentality either.
We observe a cancellation of the double ϵ poles in the

infrared divergent part of the subleading amplitude, which
possesses a milder 1=ϵ behavior. This strictly resembles an
analogous phenomenon of N ¼ 4 SYM amplitudes at one
loop. In particular, it shows that the cusp anomalous
dimension of N ¼ 8 SYM in three dimensions does not
receive nonplanar contributions at leading order.
The softer infrared behavior should also occur for the

four-point two-loop amplitude of N ¼ 16 supergravity
[75] in three dimensions, to which the gauge theory
amplitude is meant to be tightly connected by a squaring
procedure, once it is expressed in a color-kinematics dual
fashion.
For the complete SYM amplitude, such a form is

obtained by taking the combination of the two integral
topologies, dressing them with a color factor by associating
a structure constant fabc to each three-point vertex of the
diagram, and summing over the permutations of external
legs. At two loops and four points, this takes the form [76]

~Að2Þ
4 ¼ stAð0Þ

4 ½cP1234sLADðs; tÞ þ cNP
1234sNPLðs; tÞ

þ permð2; 3; 4Þ�; ð6:3Þ

where cP and cNP stand for the color factors of the planar
and nonplanar ladders, respectively, and a sum over the
permutations of the last three external legs is performed.
By replacing the color factors with another power of the
numerator appearing in the integral, we obtain the N ¼ 16
supergravity four-point amplitude [76]

Mð2Þ
4 ¼ −stuMð0Þ

4 ½s2LADðs; tÞ þ s2NPLðs; tÞ
þ permð2; 3; 4Þ�: ð6:4Þ

By explicitly plugging the expression for the planar and
nonplanar double-box integrals, we find

Mð2Þ
4

Mð0Þ
4

¼ 1

16π2

�
−s
μ02

�
−2ϵ

�
−

s
ϵ2

−
9s
2ϵ

þ π2

6

ðs2 þ t2 þ u2Þ2
stu

−
3s2 þ 3t2 − 7u2

2u
log2

�
s
t

��
þ cyclð2; 3; 4Þ: ð6:5Þ

where the sum is performed over the two other cyclic
permutations of the last three external momenta and μ0 is
the same redefinition of the dimensional regularization
mass scale as for the ABJM amplitude (2.26). We observe
that the leading infrared divergence vanishes, and only
single poles in ϵ are present. Moreover, the result is almost
uniformly transcendental, except for the 1=ϵ pole.

VII. CONCLUSIONS

In the ABJM theory, we have computed the color
subleading two-loop corrections to the Sudakov form factor
and the four-point amplitude via unitarity. We pointed out
that applying two-particle cuts in strictly three dimensions
leads to ambiguities due to the one-loop four-point ampli-
tude being subleading in the dimensional regularization
parameter. This is a peculiar situation of these three-
dimensional models, which does not occur in four dimen-
sions. We proposed a prescription to overcome these
difficulties without resorting to d-dimensional unitarity
and applied it to reconstruct the integral basis involved
in the nonplanar contributions to the form factor and the
amplitude. By setting the rank of the gauge group to 2, we
also provided an expression for the four-point amplitude
in BLG theory. As a check, we verified that our final results
coincide with previous computations using Feynman
diagrams.
For the four-point amplitude, another path to circumvent

the ambiguities due to the one-loop amplitude consists of
performing quadruple cuts, isolating tree level subampli-
tudes only. From these, it is rather difficult to reconstruct
the numerators of the integrals to which they are uplifted
when reintroducing the cut propagators. Given that we
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already know the integral basis of the planar part of the
amplitude, we formulated an ansatz for the nonplanar
integrals, inspired by color-kinematics duality. Then we
fixed the coefficients of these integrals by generalized
unitarity and successfully tested the correctness of such a
combination against the known results. This involved
solving a nonplanar double box with a complicated
numerator, which we treated via reduction to master
integrals. In turn, we computed the latter using Mellin-
Barnes techniques.
For the BLG amplitude, we proposed that the integral

representation we pointed out obeys color-kinematics
duality at loop level, which is based on the three-algebra
structure underlying the BLG model.
Finally, we exploited our results for three-dimensional

integrals to compute the color subleading contributions to
the two-loop four-point amplitude in N ¼ 8 SYM. We
wrote the complete amplitude in a fashion respecting color-
kinematics duality, now in the traditional Lie algebra
environment, and squared the numerators of its integrals
to present an explicit expression for the two-loop four-point
amplitude in N ¼ 16 supergravity.
In [36] it was pointed out that BLG tree-level ampli-

tudes also reproduce those of N ¼ 16 supergravity by a
double copy, given the uniqueness of this theory. In this
case, the starting point is a form possessing color-
kinematics duality with respect to a three-algebra struc-
ture [34,35]. Unitarity implies this to propagate to loop
level also; therefore, it would be interesting to check
whether the supergravity two-loop amplitudes obtained
from squaring BLG and N ¼ 8 SYM are indeed iden-
tical. In the SYM case, such a squaring does not change
the relevant integrals since at two loops only numerators
made of invariants of the external momenta appear. On
the contrary, for the BLG theory, this procedure would
probably lead to new integrals with complicated numer-
ators. Their solution goes beyond the aim of this paper,
and we leave it for future research.
Gravity theories in three dimensions are also power

counting nonrenormalizable as in four. Therefore, the study
of their ultraviolet behavior is intriguing. In particular,
the existence of two different double-copy formalisms is a
distinctive feature of three dimensions, and its conse-
quences on the ultraviolet properties of three-dimensional
supergravity are worth investigating.
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APPENDIX A: NOTATION AND CONVENTIONS

We work with the Minkowski metric gμν ¼
diagf1;−1;−1g and the totally antisymmetric tensor
εμνρ, defined by ε012 ¼ ε012 ¼ 1. Spinor indices are raised
and lowered as λα ¼ εαβλ

β with ε12 ¼ ε12 ¼ 1.
On-shell solutions of the fermionic equations of

motion are expressed in terms of SLð2;RÞ commuting
spinors λα. The same quantities allow one to write on-
shell momenta as

pαβ ¼ ðγμÞαβpμ; ðA1Þ

where the set of 2 × 2 gamma matrices are chosen to
satisfy

ðγμÞαγðγνÞγβ ¼ −gμνδαβ − ϵμνρðγρÞαβ. ðA2Þ

An explicit set of matrices is ðγμÞαβ ¼ fσ0; σ1; σ3g.
We define spinor contractions as

hiji ¼ −hjii≡ λαi λαj ¼ ϵαβλ
α
i λ

β
j : ðA3Þ

They obey the Schouten identity

habihcdi þ hacihdbi þ hadihbci ¼ 0: ðA4Þ

Thus, for any pair of on-shell momenta, we write

p2
ij ≡ ðpi þ pjÞ2 ¼ 2pi · pj ¼ pαβ

i ðpjÞαβ ¼ −hiji2:
ðA5Þ

For positive energy, spinors are real, whereas for negative
energy, they are imaginary.
Traces:

hijihjii ¼ −2pi · pj ðA6Þ

hijihjkihkii ¼ TrðpipjpkÞ ¼ 2ϵði; j; kÞ ðA7Þ

hijihjkihklihlii
¼ TrðpipjpkplÞ
¼ 2½ðpi ·pjÞðpk ·plÞ þ ðpi ·plÞðpj ·pkÞ

− ðpi ·pkÞðpj ·plÞ�: ðA8Þ

For definiteness, we choose a regime where

h12i ¼ h43i h23i ¼ h41i h13i ¼ h24i: ðA9Þ
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We use the four-point superamplitude

A4 ¼ i
δð3ÞðPÞδð6ÞðQÞ

h12ih23i : ðA10Þ

At loop level, our integrals are normalized with the
measure

Z
d3−2ϵk
ð2πÞ3−2ϵ ðA11Þ

for each loop integration.

APPENDIX B: REDUCTION TO
MASTER INTEGRALS

The unitarity-based computation of the two-loop con-
tributions to the Sudakov form factor and four-point
amplitude in ABJM produces integrals with tensor struc-
ture. We deal with them by reduction to master integrals via
integration by parts identities. We use the package FIRE [71]
to automatically perform this task. We list here the integrals
we had to reduce for our computation:

DBPðs; tÞ ¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

N P

tl2ðlþ p3 þ p4Þ2ðlþ p4Þ2ðk − lÞ2k2ðk − p1 − p2Þ2ðk − p1Þ2
ðB1Þ

DBNPðs; t; uÞ ¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

N NP

tl2ðlþ p3 þ p4Þ2ðlþ p4Þ2ðk − lÞ2k2ðk − lþ p2Þ2ðk − p1Þ2
ðB2Þ

DTPðsÞ ¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

s2

l2ðlþ p3 þ p4Þ2ðk − lÞ2k2ðk − p1 − p2Þ2
ðB3Þ

DTNPðsÞ ¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

sðl − p2Þ2
l2ðlþ p3 þ p4Þ2ðk − lÞ2k2ðk − lþ p2Þ2

; ðB4Þ

where the numerators are given by

N P ¼ ½sTrðlp1p4Þ þ l2Trðp1p2p4Þ�½sTrðkp1p4Þ þ k2Trðp1p2p4Þ� ðB5Þ

N NP ¼ ½sTrðlp1p4Þ þ l2Trðp1p2p4Þ�½ðl − p2Þ2Trðkp1p4Þ þ k2Trðp1ðl − p2Þp4Þ�: ðB6Þ

The first step toward the reduction of these integrals is to rewrite the complicated numerators in terms of a sum of inverse
propagators. In order to do this let us introduce, following [77], the most general double-box integral with seven propagators
and two irreducible numerators. For the planar case,

GPða1; a2; a3; a4; a5; a6; a7;−a8;−a9Þ

¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

½ðl − p1Þ2�a8 ½ðkþ p4Þ2�a9
½k2�a1 ½ðk − p12Þ2�a2 ½l2�a3 ½ðlþ p34Þ2�a4 ½ðlþ p4Þ2�a5 ½ðk − lÞ2�a6 ½ðk − p1Þ2�a7

: ðB7Þ

In the nonplanar case,

GNPða1; a2; a3; a4; a5; a6; a7;−a8;−a9Þ

¼
Z

ddl
ð2πÞd

ddk
ð2πÞd

½ðl − p1Þ2�a8 ½ðkþ p4Þ2�a9
½k2�a1 ½ðk − p12Þ2�a2 ½l2�a3 ½ðl − k − p3Þ2�a4 ½ðlþ p4Þ2�a5 ½ðk − lÞ2�a6 ½ðk − p1Þ2�a7

: ðB8Þ

In this notation, the scalar double-box integral is represented as Gð1; 1; 1; 1; 1; 1; 1; 0; 0Þ and inverse propagators in the
numerator lower one of the nine indices. We can then introduce the action of lowering operators such that

Gð1; 1; 1; 1; 1; 1; 1; 0; 0Þ ¼ ½1−�a1−1Gða1; 1; 1; 1; 1; 1; 1; 0; 0Þ: ðB9Þ
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For the planar double box (B1), the decomposition was first determined in [18], and in our notation, it reads

DBPðs; tÞ ¼
1

2
ðs29−8− þ s27−5− − s2t6− þ st4−1− þ st3−2−ÞGPð1; 1; 1; 1; 1; 1; 1; 0; 0Þ: ðB10Þ

The decomposition of (B2) looks more complicated

DBNPðs; t; uÞ ¼
1

2
O−GNPð1; 1; 1; 1; 1; 1; 1; 0; 0Þ; ðB11Þ

with

O− ¼ −s2tu3− þ 2stu1−3− − ut½1−�23− þ stu2−3− þ st1−2−3− − t21−2−3− þ s2t3−7− − st1−3−7− − 2st2−3−7−

þ st21−9− − t2½1−�29− þ s2t3−9− − stu3−9− − 2st1−3−9− − t21−3−9− − st2−3−9− − t21−4−9− þ t21−5−9−

− st26−9− þ t21−6−9− þ st3−7−9− þ st5−7−9− − s2t8−9− þ st1−8−9− þ st2−8−9− þ t21−½9−�2
þ st3−½9−�2 − st8−½9−�2: ðB12Þ

Once we obtain expressions like (B10) and (B11), we can use the algorithm FIRE to reduce them to linear combinations of
the following master integrals:

8

8The finite part of this integral, which we computed to be a complicated combination of derivatives of hypergeometric functions,
turned out to be irrelevant for our computation.
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In this list, we introduced the variables y ¼ s
t and x ¼ s

u. The integral LADnðs; tÞ is a double box with an irreducible
numerator given by an inverse propagator with momentum equal to the sum of the two momenta running in the direction of
the arrows. In the notation of (B7), it is given explicitly by

LADnðs; tÞ ¼ GPð1; 1; 1; 1; 1; 1; 1;−1; 0Þ: ðB23Þ

For the nonplanar case, instead of taking a master integral with an irreducible numerator, we chose to use NPL2ðs; t; uÞ,
whose computation turned out to be easier. NPL2ðs; t; uÞ is given explicitly by

NPL2ðs; t; uÞ ¼ GNPð1; 1; 1; 1; 1; 2; 1; 0; 0Þ: ðB24Þ
The nonplanar integral with one irreducible numerator can be computed using NPL2ðs; t; uÞ as a master integral, and the
explicit relation is9

NPLnðs; t; uÞ ¼ GNPð1; 1; 1; 1; 1; 1; 1;−1; 0Þ

¼ 1

t − u

�
−
stu
72

ð9 − 15ϵþ 23ϵ2ÞNPL2ðs; t; uÞ −
�
tu −

s2

108
ð45 − 6ϵþ 8ϵ2Þ

�
NPLðs; t; uÞ

−
u

24st
ð9tð7þ 5ϵÞ þ sð39þ 29ϵÞÞDIAGðs; tÞ − t

24su
ð72sþ tð129 − 13ϵÞÞDIAGðs; uÞ

þ s
3tu

ðsð1þ 2ϵÞ − tð3þ 2ϵÞÞDIAGðt; uÞ −
�
tþ s

8
ð5þ ϵ − ϵ2Þ

�
TrianXðsÞ

− ϵ
3sð9 − 11ϵÞ þ tð39 − 49ϵÞ

6t
MUGðs; tÞ − ϵ

sð60 − 128ϵÞ þ tð105 − 239ϵÞ
6u

MUGðs; uÞ

− ϵ
16stϵ − 8t2ð3þ 4ϵÞ þ s2ð9þ 25ϵÞ

4stu
TRIðsÞ − ϵ

26s2 þ 23st − 41t2

8s2tu
SUNSETðsÞ

− ϵ
129s2 þ 191stþ 126t2

24st2u
SUNSETðtÞ − ϵ

−16s2 þ 227stþ 258t2

24stu2
SUNSETðuÞ

�
: ðB25Þ

The decomposition of the planar integral (B1) is simply given by

DBPðs; tÞ ¼
s3t
4
LADðs; tÞ þ 3s3

4
LADnðs; tÞ − 7sðsþ tÞ

2
DIAGðs; tÞ − 2ð1 − 5ϵÞSUNSETðsÞ

þ 8ϵð1 − 2ϵÞs2MUGðs; tÞ − ϵ
18s
t

SUNSETðtÞ − 17sϵð1þ 2ϵÞTRIðsÞ: ðB26Þ

9All of the expressions here are expanded to the order in ϵ necessary to get the right finite part.
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The explicit expression for the decomposition of the nonplanar integral (B2) reads

DBNPðs; t; uÞ ¼ ð8ϵ2 − 2ϵþ 1Þ s
4
½−ð2s2 þ ðt − uÞ2ÞNPLnðs; t; uÞ þ tuðt − uÞNPLðs; t; uÞ − tð2u − sÞTrianXðsÞ�

þ 3sϵð1 − 4ϵÞ
�
3s2

u
− 4u

�
MUGðs; tÞ − u

12
ð15s − 42tþ ð−28sþ 80tÞϵÞDIAGðs; tÞ

þ 1

12u
ð48t3ð1 − 4ϵÞ þ 24st2ð5 − 18ϵÞ þ s3ð9 − 20ϵÞ þ 2s2tð45 − 136ϵÞÞDIAGðt; uÞ

þ 1

12u
ð48s3ð1 − 4ϵÞ − st2ð3þ 92ϵÞ þ 2t3ð3 − 4ϵÞ þ 3s2tð25 − 114ϵÞÞDIAGðs; uÞ

−
s
2u

ϵð15sþ 6tþ 64uϵÞTRIðsÞ − 4½SUNSETðsÞ þ SUNSETðtÞ þ SUNSETðuÞ�

þ ϵ

�
23þ 6t

u
−
18t
s

�
SUNSETðsÞ þ ϵ

�
41

2
þ 3t

u
−
6u
t

�
SUNSETðtÞ þ ϵ

�
40þ 9t

2u
−

9t2

2u2

�
SUNSETðuÞ:

ðB27Þ
Using the results of the master integrals listed in (B13)–(B21) we obtain, for the planar integrals,

DBPðs; tÞ ¼ −
1

16π2

�
−seγE
4πμ2

�
−2ϵ

�
1

4ϵ2
−
1 − log 2 − 1

2
log s

t

2ϵ
− 1 − 2ζ2 − log2 2þOðϵÞ

�
ðB28Þ

DTPðsÞ ¼
1

16π2

�
−seγE
4πμ2

�
−2ϵ

�
−

1

2ϵ
− 1þOðϵÞ

�
; ðB29Þ

and for the nonplanar case,

DBNPðs; t; uÞ ¼ −
1

16π2

�
−seγE
4πμ2

�
−2ϵ

�
1

8ϵ2
þ 2 log 2þ log u

t

8ϵ
þ 1

2
log

s
u
−
1

2
ζ2 −

1

2
log22 − 1þ log 2þOðϵÞ

�
ðB30Þ

DTNðsÞ ¼ −
1

16π2
ð1 − log 2Þ þOðϵÞ ðB31Þ

XTðsÞ ¼ −
1

16π2

�
−seγE
4πμ2

�
−2ϵ

×

�
1

4ϵ2
þ 2 log 2

4ϵ
− ζ2 − log2 2þOðϵÞ

�
:

ðB32Þ
The integral XTðsÞ was defined in (3.4), and details about
its reduction to master integrals can be found in [37]. Here
we quote only the final result.

APPENDIX C: THREE-DIMENSIONAL
MASTER INTEGRALS FOR FOUR-POINT

MASSLESS SCATTERING

In this Appendix, we give some details for the explicit
evaluation of the master integrals involved in the compu-
tation of the two-loop four-point amplitude and Sudakov
form factor. Among the results listed in Appendix B the

expressions (B13)–(B16) were already given in [37].
Therefore, we focus on the calculation of the master
integrals (B16)–(B21).
The building blocks are the two double-box integrals

introduced in (B7) and (B8) and are represented in
Fig. 7. All of our master integrals can be understood
as special cases of those two general expressions. In fact,
we do not even need the be as general as in (B7) and (B8).
Indeed, we may restrict ourselves to values of the
indices corresponding to the diagrams (B19)–(B22).
We compute the integrals starting from their Mellin-
Barnes representation.
For the planar double box, a general representation

of GPða1; a2; a3; a4; a5; a6; a7; a8; 0Þ is given in [60].
In d ¼ 3 − 2ϵ and with the leg labeled as in Fig. 7,
it reads

GPða1; a2; a3; a4; a5; a6; a7; a8; 0Þ

¼ −
ð−1Þa

ð4πÞdð−sÞa−3þ2ϵ Fðy; ϵÞ; ðC1Þ

with y ¼ s
t and
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Fðy; ϵÞ ¼ 1Q
7
l¼3 ΓðalÞΓð3 − a3456 − 2ϵÞ

Z þi∞

−i∞

Y4
j¼1

�
dzj
2πi

�
y−z1

Γð−z1 − z2 − z3 − z4Þ
Γða8 − z1 − z2 − z3 − z4Þ

×
Γð−z1ÞΓða7 þ z1ÞΓðz2 þ z4ÞΓðz3 þ z4ÞΓða1278 − 3

2
þ ϵþ z4ÞΓða6 þ z1 − z4Þ

Γða1 þ z3 þ z4ÞΓða2 þ z2 þ z4ÞΓð3 − a1278 − 2ϵþ z1 − z4Þ

× Γða5 þ z1 þ z2 þ z3 þ z4ÞΓða8 − z2 − z3 − z4ÞΓ
�
a3456 −

3

2
þ ϵþ z1 − z4

�

× Γ
�
3

2
− a356 − ϵ − z1 − z2

�
Γ
�
3

2
− a456 − ϵ − z1 − z3

�
Γ
�
3

2
− a178 − ϵþ z2

�
Γ
�
3

2
− a278 − ϵþ z3

�
: ðC2Þ

This Mellin-Barnes representation can be used to evalu-
ate most of the master integrals listed in Appendix B. In
particular, the integrals (B17) and (B18) can be computed
by carefully taking the limit of some indices to zero.
Integral (B19) was first computed, starting from this
Mellin-Barnes representation, in [73]. Adding an irreduc-
ible numerator, i.e., setting a8 ¼ −1, a9 ¼ 0, and all the
other indices to one in (C2), gives the master integral (B20).
We computed this integral with the help of the routine
MB.M [78], which reduced the fourfold Mellin-Barnes
representation to a onefold integral. The latter was solved
using Barnes lemmas and their corollaries.
Moving to the nonplanar case, as we mentioned in

Appendix B, the computation of the nonplanar double-box

NPL2ðs; t; uÞ [which can be obtained from (B8), setting
the first six indices to 1 and a7 ¼ 2] turns out to be simpler
than the one with an irreducible numerator. Indeed, we
can introduce a generalization for arbitrary values of the
indices of the Mellin-Barnes representation given in [79].
Explicitly

GNPða1; a2; a3; a4; a5; a6; a7; 0; 0Þ

¼ −
ð−1Þa

ð4πÞdð−sÞa−3þ2ϵ fðx; y; ϵÞ; ðC3Þ

with y ¼ s
t, x ¼ s

u and

fðx; y; ϵÞ ¼ Γð3
2
− ϵ − a45ÞΓð32 − ϵ − a67Þ

Γð9
2
− 3ϵ − aÞΓð3 − 2ϵ − a4567Þ

Z þi∞

−i∞

Y4
j¼1

�
dzj
2πi

�
x−z1y−z2Γðz1 þ z2 þ a2Þ

× Γð−z1ÞΓð−z2ÞΓð−z3ÞΓð−z4ÞΓð−3þ 2ϵþ z1 þ z2 þ z3 þ z4 þ aÞ
× Γðz1 þ z3 þ a5ÞΓðz2 þ z3 þ a7ÞΓðz1 þ z4 þ a6ÞΓðz2 þ z4 þ a4Þ
× Γð3 − 2ϵ − z1 − z2 − z3 − aþ a3ÞΓð3 − 2ϵ − z1 − z2 − z4 − aþ a1Þ

×
Γð− 3

2
þ ϵþ z1 þ z2 þ z3 þ z4 þ a4567Þ

Γðz1 þ z2 þ z3 þ z4 þ a67ÞΓðz1 þ z2 þ z3 þ z4 þ a45Þ
: ðC4Þ

This Mellin-Barnes representation can be used to com-
pute the integrals NPLðs; t; uÞ and NPL2ðs; t; uÞ. In both
cases, thanks to the Γð3 − 2ϵ − a4567Þ in the denominator,
the fourfold integral can be reduced by deforming the

integration contour and analytically continuing to the
region close to ϵ ¼ 0. This task can be performed auto-
matically with the routine MB.M, which returns a compli-
cated combination of onefold Mellin-Barnes integrals,

FIG. 7. Planar and nonplanar double box. The numbers indicate the index ai associated to any propagator in (B7) and (B8).
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whose evaluation, though long and tedious, requires just
the application of Barnes lemmas and their corollaries. The
results are reported in (B22) and (B21).

APPENDIX D: ONE-LOOP
d-DIMENSIONAL CUTS

In this Appendix, we prove that the combination
Ið1; 2; 4; 3Þ − Ið1; 4; 2; 3Þ has a nonvanishing d-dimensional
cut in the u channel, and by explicit integration, we verify
that at first order in the parameter ϵ the discontinuity
reproduces the imaginary part in (2.19). In order to
achieve this result, we generalize to the three-dimensional
case the procedure outlined in [80,81]. Let us start with a
generic one-loop integrand with n propagators and a cut
in the K2 channel

ΔI ðaÞ
n ¼

Z
d3−2ϵl̂

ð2l̂ · TÞaδðl̂2Þδððl̂ − KÞ2ÞQ
n−2
i¼1 ðl̂ − KiÞ2

; ðD1Þ

where Ki and T are generic combination of the external
legs and therefore inherently three-dimensional objects.
On the contrary, l̂ is a 3 − 2ϵ-dimensional vector which
can be decomposed as l̂ ¼ ~lþ μ, where ~l is the pure
three-dimensional part while μ is the ð−2ϵÞ-dimensional
part. This gives

ΔI ðaÞ
n ¼

Z
d−2ϵμ

Z
d3 ~l

ð2~l ·TÞaδð ~l2−μ2Þδðð ~l−KÞ2−μ2ÞQ
n−2
i¼1 ðð ~l−KiÞ2−μ2Þ :

ðD2Þ
We further rewrite ~l and ~l ¼ lþ zK with l2 ¼ 0 such
that

Z
d3 ~lδð ~l2 − μ2Þδðð ~l − KÞ2 − μ2Þ

¼
Z

dzd3lδðl2Þ2l

· Kδðz2K2 þ 2zl · K − μ2Þδðð1 − 2zÞK2 − 2l · KÞ:
ðD3Þ

So far, the procedure is exactly identical to the four-
dimensional case; however, here comes the major
difference. The integral over the loop momentum, once
the on-shell delta function is enforced, contains only two
residual degrees of freedom, one less than the corre-
sponding four-dimensional case. This implies that a
different spinor integration has to be introduced. This
can be done writing lαβ ¼ tλαλβ and fixing the normali-
zation to correct the mismatch mentioned in Sec. II A
of [80]. This leads to

Z
d3lδðl2Þ ¼ 1

8π

Z
∞

0

dt
Z

hλdλi: ðD4Þ

We notice that, under rescaling of λ, we need to ask the
factor t to transform with weight–2 in order to leave the
loop momentum invariant. This immediately implies that
the measure is invariant under rescaling of λ, as required.
This is also the reason for the difference in the power
of t compared to the four-dimensional case. In this case,
the integration contour is simply the real axis.
Solving the δ functions to eliminate the integrals over t

and z, we obtain the following final formula:

ΔI ðaÞ
n ¼ 1

8π

Z
d−2ϵμ

×
Z

hλdλi ð−Þ
n−2½ð1 − 2zÞK2�a−nþ2hλjRjλia
hλjKjλia−nþ3

Q
n−2
i¼1 hλjQijλi

;

ðD5Þ

with the following identifications

z ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
2

; y≡ 4μ2

K2
; ðD6Þ

R≡ T þ zð2K · TÞ
ð1− 2zÞK2

K; Qi ≡Ki þ
zð2K ·KiÞ−K2

i

ð1− 2zÞK2
K:

ðD7Þ
In the following, we are going to be interested only in some
very simple cases, i.e., the one-mass scalar triangle and
the massless scalar box. We will see in the next subsection
that their results turn out to be particularly simple and
reproduce the all order in ϵ imaginary part of (2.16)
and (2.17).

1. A. Triangle

In the case of the scalar triangle formula (D5), setting
a ¼ 0 and n ¼ 3, reduces to

TðK2ÞjK2-cut ¼
1

8π

Z
d−2ϵμ

Z
hλdλi −1

hλjQ1jλið1 − 2zÞK2
;

ðD8Þ

which can be further simplified enforcing the condition
ðK − K1Þ2 ¼ 0

TðK2ÞjK2-cut ¼
1

8π

Z
d−2ϵμ

×
Z

hλdλi −1
hλjð1 − zÞK1 þ zK2jλiK2

ðD9Þ

with K1 þ K2 ¼ K. The spinor integration simply gives
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TðK2ÞjK2-cut ¼
−1

8ðK2Þ32
Z

d−2ϵμ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zð1 − zÞp : ðD10Þ

Using

d−2ϵμ ¼ ð4πÞϵ
Γð−ϵÞ

�
K2

4

�−ϵ
y−1−ϵdy; ðD11Þ

we get

TðK2ÞjK2-cut ¼
−ð4πÞϵ

Γð−ϵÞ4ðK2Þ32
�
K2

4

�−ϵ Z 1

0

dyy−
3
2
−ϵ

¼ ð4πÞϵ
2ð1þ 2ϵÞΓð−ϵÞðK2Þ32

�
K2

4

�−ϵ
: ðD12Þ

We notice that the result is consistently of order ϵ due to
the factor 1

Γð−ϵÞ and that it can be obtained starting from
Eq. (2.16) using the identity

Im½ð−sÞ−3
2
−ϵ� ¼ s−

3
2
−ϵ cos πϵ; ðD13Þ

valid in the cut kinematics s > 0.

2. B. Massless box

We consider the box with ordered external momenta Ki
for i ¼ 1; :::; 4 and K2

i ¼ 0. This admits cuts in the
s-channel K ¼ K1 þ K2 and in the t-channel
K ¼ K1 þ K4. However, the scalar box is surely symmetric
in s and t, and without loss of generality, we can consider
just the s-channel cut. Therefore, formula (D5), setting a ¼
0 and n ¼ 4, reduces to

Bðs; tÞjs-cut ¼
1

8π

Z
d−2ϵμ

×
Z

hλdλi hλjKjλi
hλjQ1jλihλjQ2jλiðð1 − 2zÞsÞ2 ;

ðD14Þ

with Q1 ¼ K1 þ zð2K·K1Þ
ð1−2zÞs K and Q2 ¼ −K4 −

zð2K·K4Þ
ð1−2zÞs K.

Using the identities 2K · K1 ¼ s and 2K · K4 ¼ −s, the
integrand simplifies to

Bðs; tÞjs−cut ¼
1

8πs2

Z
d−2ϵμ

Z
hλdλi hλjKjλi

hλj ~Q1jλihλj ~Q2jλi
;

ðD15Þ

with ~Q1 ¼ ð1 − zÞK1 þ zK2 and ~Q2 ¼ −ð1 − zÞK4 − zK3.
The spinor integration yields

Bðs; tÞjs-cut ¼
1

8s2

Z
d−2ϵμ

1

~Q1 · ~Q2 þ j ~Q1jj ~Q2j

×

�
K · ~Q1

jQ1j
þ K · ~Q2

jQ2j
�
: ðD16Þ

Moreover, using K · ~Q2 ¼ K · ~Q1 ¼ s and j ~Q1j ¼ j ~Q2j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞsp

, we obtain

Bðs; tÞjs-cut ¼
1

4s
3
2

Z
d−2ϵμ

1

4szð1 − zÞ − tð1 − 2zÞ2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zð1 − zÞp ;

ðD17Þ

and switching to y variables

Bðs; tÞjs-cut ¼
ð4πÞϵ

Γð−ϵÞ2s52
�
s
4

�
−ϵ Z

dy
1

y − xð1 − yÞ y
−3
2
−ϵ;

ðD18Þ

where x ¼ t
s. The integration is still simple enough to be

performed at all order in ϵ, giving

Bðs; tÞjs-cut ¼
ð4πÞϵ

ð1þ 2ϵÞΓð−ϵÞs32t

×

�
s
4

�
−ϵ

2F1

�
1;−1=2 − ϵ;
1=2 − ϵ

����1þ s
t

�
:

ðD19Þ

Once again, we notice that this cut could be obtained
simply from Eq. (2.17) using (D13). Indeed, in a regime
with s > 0 and t < 0, the hypergeometric function is purely
real, and the only imaginary part comes from the prefactor
ð−sÞ−3

2
−ϵ. Let us comment on the fact that this identi-

fication of the expression of the cut with the imaginary
part of the result of the integral is simple just at one loop
where the identification does not involve a sum over the
cuts. In general, from the result of an integral it is not
strightforward to reconstruct the expressions of the
different cuts.

3. C. u-CHANNEL CUT OF Ið1;2;4;3Þ − Ið1;4;2;3Þ
Equipped with the cuts of the triangle and of the scalar

box, we can easily compute the u-channel cut of
Ið1; 2; 4; 3Þ − Ið1; 4; 2; 3Þ using the decomposition (2.15).
The only subtlety comes in the mutual sign of the two
decompositions. To understand how this works, let us
introduce the notation Iðs; tÞ for Ið1; 2; 3; 4Þ given by the
decomposition (2.15). Permuting legs 2 and 4 obviously
implies exchanging s with t, but in order to respect the
symmetry property Ið1; 2; 3; 4Þ ¼ −Ið1; 4; 3; 2Þ, one has to
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require Ið1; 4; 3; 2Þ ¼ −Iðt; sÞ ¼ −Iðs; tÞ. In a similar way, we have Ið1; 3; 4; 2Þ ¼ Iðs; uÞ ¼ −Ið1; 2; 4; 3Þ and
Ið1; 4; 2; 3Þ ¼ Iðu; tÞ ¼ −Ið1; 3; 2; 4Þ. The result of this analysis is that

Ið1; 2; 4; 3Þ − Ið1; 4; 2; 3Þ ¼ −Iðs; uÞ − Iðu; tÞ

¼ 1

2i
ffiffiffiffiffiffiffi
stu

p ð2s2uTðsÞ þ 2t2uTðtÞ − 2u3TðuÞ − u2s2Bðs; uÞ − u2t2Bðu; tÞÞ: ðD20Þ

It is then clear that the d-dimensional u-channel cut of this expression is given by

Ið1; 2; 4; 3Þ − Ið1; 4; 2; 3Þju-cut ¼
u2

2i
ffiffiffiffiffiffiffi
stu

p ð2uTðuÞju-cut − s2Bðs; uÞju-cut − t2Bðu; tÞju-cutÞ

¼ 1

2i
ffiffiffiffi
st

p ð4πÞϵ
ð1þ 2ϵÞΓð−ϵÞ

�
u
4

�
−ϵ
ðuþ sFðsÞ þ tFðtÞÞ; ðD21Þ

where

FðxÞ ¼ 2F1

�
1;−1=2 − ϵ;
1=2 − ϵ

����1þ u
x

�

Expanding in ϵ the first order gives

Ið1; 2; 4; 3Þ − Ið1; 4; 2; 3Þju-cut ¼ ϵ
π

4
þOðϵ2Þ ðD22Þ

in perfect agreement with (2.19). This proves that the rule of replacing Ið1; 2; 3; 4Þ with Ið1; 2; 4; 3Þ − Ið1; 4; 2; 3Þ does
not work in the framework of d-dimensional cuts. This implies that the all order in ϵ expression for the one-loop
amplitude is (2.14).
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